Disruptions of Two Apparent rho-Independent Transcription Terminator Structures do not help in Enhancing the Expression of aceK in E. coli

  • Received : 1995.02.08
  • Published : 1995.09.30

Abstract

Two apparent rho-independent transcription terminator structures within the coding sequence of aceK have been destroyed to access their roles in the differential expression between aceA and aceK in the glyoxylate bypass operon of E. coli. The effect of mutations on the expression of aceK was evaluated in two different ways: one by maxicell labeling and the other by lacZ fusion gene construction. The maxicell labeling experiment with the mutant operon clones has failed, like that of the wild type operon clone, to visibly show isocitrate dehrogenase (IDH) kinase/phosphatase, the product of aceK, on the autoradiogram of a protein gel. When the same mutations were introduced into an aceK::lacZ fusion gene to quantitatively evaluate the mutational effect, the activity of ${\beta}-galactosidase$ in neither of the mutant versions of the fusion gene was elevated significantly enough to explain the degree of polarity observed in this region. Thus, we conclude that neither of these intragenic, apparent rho-independent transcription terminator structures, which have long been suspected as a major determinant in the down regulation of aceK, really act as a premature transcriptional terminator.

Keywords

References

  1. J. Bacteriol. v.96 Brice, C.G.;Kornberg, H.L.
  2. J. Bacteriol. v.170 Chung, T.;Klumpp, D.J.;LaPorte, D.C. https://doi.org/10.1128/jb.170.1.386-392.1988
  3. J. Bacteriol. v.175 Chung, T.;Resnik, E.;Stueland, C.;LaPorte, D.C. https://doi.org/10.1128/jb.175.14.4572-4575.1993
  4. Mol. Cells v.5 no.2 Chung, T.
  5. Science v.203 Garnak, M.;Reeves, H.C. https://doi.org/10.1126/science.203.4375.11
  6. J. Biol. Chem. v.254 Garnak, M.;Reeves, H.C.
  7. J. Gen. Microbiol. v.65 Holms, W.H.;Bennett, P.M. https://doi.org/10.1099/00221287-65-1-57
  8. J. Bacteriol. v.170 Klumpp, D.J.;Plank, D.W.;Bowdin, L.J.;Stueland, C.S.;Chung, T.;LaPorte, D.C. https://doi.org/10.1128/jb.170.6.2763-2769.1988
  9. Biochem. J. v.99 Komberg, H.L. https://doi.org/10.1042/bj0990001
  10. Biochim. Biophys. Acta v.24 Kornberg, H.L.;Madsen, N.B. https://doi.org/10.1016/0006-3002(57)90268-8
  11. Proc. Natl. Acad. Sci. USA v.82 Kunkel, T.A. https://doi.org/10.1073/pnas.82.2.488
  12. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  13. J. Biol. Chem. v.260 LaPorte, D.C.;Chung, T.
  14. J. Bacteriol. v.149 Malloy, S.R.;Nunn, W.D.
  15. Molecular Cloning Maniatis, T.;Fritsch, E.F.;Sambrook, J.
  16. Experiments in Molecular Genetics Miller, J.H.
  17. Cell v.48 Newbury, S.F.;Smith, N.H.;Robinson, E.C.;Hiles, I.D.;Higgins, C.F. https://doi.org/10.1016/0092-8674(87)90433-8
  18. Antimicrobial Agents and Chemotheraphy O'Callaghn, C.H.;Muggleton, P.W.;Ross, G.W.;Hobby, G.(ed.)
  19. J. Bacteriol. v.137 Sancar, A.;Hack, A.M.;Rupp. W.D.