Identification of Isoleucine-Accepting tRNA in Maize Mitochondria

  • Park, Young-In (Department of Genetic Engineering, Korea University) ;
  • Lee, Byung-Chul (Department of Genetic Engineering, Korea University) ;
  • Chang, Hyo-Ihl (Department of Genetic Engineering, Korea University) ;
  • Moon, A-Ree (College of Pharmacy, Duksung Women's University)
  • Received : 1995.05.03
  • Published : 1995.11.30

Abstract

Maize mitochondrial tRNAs for isoleucine have been isolated using a putative $tRNA^{Ile}$ gene probe which has been previously isolated and characterized. It contains the 5'-CAT anticodon which would normally recognize the AUG methionine codon. The nucleotide sequence of one of these tRNAs has been partially determined, and contains a modified nucleotide at the first position of the anticodon. This type of posttranscriptional modification event could change the specificity of amino acid acceptance of a tRNA, unlike that deduced from the corresponding gene. An aminoacylation experiment also demonstrated that these purified tRNAs have isoleucine acceptance activity but no methionine-accepting activity.

Keywords

References

  1. Proc. Natl. Acad. Sci. USA v.77 no.6 Barrell, B.G.;Anderson, S.;Bankier, A.T.;de Bruijn, M.H.L.;Chen, E.;Coulson, A.R.;Drouin, J.;Eperon, I.C.;Nierlich, D.P.;Roe, B.A.;Sanger, F.;Schreier, P.H.;Smith, A.J.H.;Staden, R.;Young, I.G. https://doi.org/10.1073/pnas.77.6.3164
  2. Mol. Gen. Genet. v.244 Binder, S.;Marchfelder, A.;Brennicke, A. https://doi.org/10.1007/BF00280188
  3. Proc. Natl. Acad. Sci. USA v.77 no.6 Bonitz, S.G.;Berlani, R.;Coruzzi, G.;Li, M.;Macino, G.;Nobrega, F.G.;Nobrega, M.P.;Thalenfeld, B.E.;Tzagoloff, A. https://doi.org/10.1073/pnas.77.6.3167
  4. Trends Biochem. Sci. v.10 Breitenberger, C.;RajBhandary, U.L. https://doi.org/10.1016/0968-0004(85)90209-9
  5. Meth. Chloroplast Mol. Biol. Burkard, G.;Steinmeta, A.;Keller, M.;Mubumbila, M.;Crouse, E.;Weil, J.H.;Edelman, M.(ed.);Hallick, R.B.(ed.);Chua, N.H.(ed.)
  6. J. Biol. Chem. v.139 Fukada, K.;Abelson, J.
  7. Biochemistry v.13 no.2 Harada, F.;Nishimura, S. https://doi.org/10.1021/bi00699a011
  8. Comp. Biochem. Physiol. v.106B no.3 Jukes, T.H.;Osawa, S.
  9. Anal. Biochem. v.44 Kelmer, A.D.;Heatherly, D.E. https://doi.org/10.1016/0003-2697(71)90236-3
  10. Biochemistry v.19 Kuchino, Y.;Watanabe, S.;Harada, F.;Nishimura, S. https://doi.org/10.1021/bi00551a013
  11. Nucl. Acids Res. v.18 Marechal-Drouard, L.;Guillemaut, P.;Cosset, A.;Arbogast, M.;Weber, F.;Weil, J.H.;Dietrich, A. https://doi.org/10.1093/nar/18.13.3689
  12. J. Biol. Chem. v.263 no.19 Muramatsu, T.;Yokoyama, S.;Horie, N.;Matsuda, A.;Ueda, T.;Yamaizumi, Z.;Kuchino, Y.;Nishimura, S.;Miyazawa, T.
  13. J. Bacteriol. v.134 no.2 O'Farrell, P.H.;Polisky, B.;Gelfand, D.H.
  14. Mol. Cells v.1 Park, Y.I.
  15. Plant Physiol. v.76 Parks, T.W.;Dougherty, W.G.;Levings, C.S. III;Timothy, D. https://doi.org/10.1104/pp.76.4.1079
  16. Meth. Enzymol. v.109 Silberklang, M.;Gillum, A.M.;RajBhandary, U.L.
  17. Eur. J. Biochem. v.72 Silberklang, M.;Prochianz, A.;Haenni, A.L.;RajBhandary, U.L. https://doi.org/10.1111/j.1432-1033.1977.tb11270.x
  18. Nucl. Acids Res. v.17 no.SUP. Sprinzl, M.;Hartmann, T.;Weber, J.;Blank, J.;Zeidler, R. https://doi.org/10.1093/nar/17.suppl.r1
  19. Nature v.274 Stanley, J.U.;Vassilenko, S. https://doi.org/10.1038/274087a0
  20. Nucl. Acids Res. v.18 no.17 Weber, F.;Dietrich, A.;Weil, J.H.;Marechal-Drouard, L. https://doi.org/10.1093/nar/18.17.5027
  21. Gene v.33 Yanisch-Perron, C.;Vieira, J.;Messing, J. https://doi.org/10.1016/0378-1119(85)90120-9