Mechanism for the Change of Cytosolic Free Calcium Ion Concentration by Irradiation of Red Light in Oat Cells

  • Han, Bong-Deok (Department of Biochemistry, Chungbuk National University) ;
  • Lee, Sang-Lyul (Department of Biochemistry, Chungbuk National University) ;
  • Park, Moon-Hwan (Department of Biochemistry, Chungbuk National University) ;
  • Chae, Quae (Department of Biochemistry, Chungbuk National University)
  • 투고 : 1995.05.20
  • 발행 : 1995.11.30

초록

In our previous studies (Chae et al., 1990; Chae et a1., 1993), we found that a phytochrome signal was clearly connected with the change in cytosolic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) in oat cells. It was determined that the $[Ca^{2+}]_i$ change occured both by mobilization out of the intracellular $Ca^{2+}$ store and by influx from the medium. The specific aim of this work is to elucidate the processes connecting $Ca^{2+}$ mobilization and influx. The cells treated with thapsigargin (increasing $[Ca^{2+}]_i$ by inhibition of the $Ca^{2+}$-ATPase in the calcium pool) in the presence of external $Ca^{2+}$ showed the same increasing pattern (sustained increasing shape) of $[Ca^{2+}]_i$ as that measured in animal cells. Red light irradiation after thapsigargin treatment did not increase $[Ca^{2+}]_i$ These results suggest that thapsigargin also acts specifically in the processes of mobilization and influx of $Ca^{2+}$ in oat cells. When the cells were treated with TEA ($K^+$ channel blocker), changes in $[Ca^{2+}]_i$ were drastically reduced in comparison with that measured in the absence of TEA. The results suggest that the change in $[Ca^{2+}]_i$ due to red light irradiation is somehow related with $K^+$ channel opening to change membrane potential. The membrane potential change due to $K^+$ influx might be the critical factor in opening a voltage-dependent calcium channel for $Ca^{2+}$ influx.

키워드

참고문헌

  1. Annu. Rev. Biochem. v.56 Berridge, M.J. https://doi.org/10.1146/annurev.bi.56.070187.001111
  2. J. Membrane Biol. v.124 Blatt, M.R. https://doi.org/10.1007/BF01870455
  3. J. Biol. Chem. v.267 Carlos, R.;Brown, E.J.
  4. Kor. Biochem. J. v.26 Chae, Q.;Han, B.D.
  5. Biochim. Biophys. Acta v.1051 Chae, Q.;Park, H.J.;Hong, S.D. https://doi.org/10.1016/0167-4889(90)90182-D
  6. Korean Biochem. J. v.25 Chae, Q.;Pyo, T.Y.;Park, M.H.;Cho, T.J.
  7. FEBS Lett v.235 Clementi, F.;Sher, E.;Pandiella, A. https://doi.org/10.1016/0014-5793(88)81258-4
  8. Plant Physiol. v.99 Crain, R.C.;Kim, H.Y.;Cote, G.G. https://doi.org/10.1104/pp.99.4.1532
  9. J. Biol. Chem. v.264 Haruo, T.;Hughes, A.R.;Thastrup, O.;Putney, J.R. Jr.
  10. Science v.265 Laurent, C.;Champeil, P.;Finch, E.A.;Goldin, S.M.
  11. FEBS Lett. v.304 Malcolm, E.J.;Lee, A.G.;Michelangeli, F.;Witcome, M. https://doi.org/10.1016/0014-5793(92)80599-C
  12. Second Messengers in Plant Growth and Development Marme, D.;Boss, W.F.(ed.);Morre, D.J.(ed.)
  13. Science v.235 Miller, R.J. https://doi.org/10.1126/science.2432656
  14. J. Biol. Chem. v.264 Minta, A.;Kao, J.P.Y.;Tsien, R.Y.
  15. Calcium Regulation by Calcium Antogonists Nayler, W.G.
  16. Biochim. Biophys. Acta v.1053 Ng, J.;Gustavsson, J.;Jondal, M.;Andersson, T. https://doi.org/10.1016/0167-4889(90)90031-8
  17. Cell Calcium v.7 Putney, J.W. https://doi.org/10.1016/0143-4160(86)90026-6
  18. Plant Physiol. v.98 Rasi-Caldogno, F.;Antonella, C.;Maria, I.;De, M. https://doi.org/10.1104/pp.98.3.1196
  19. Plant Physiol. v.100 Robert, R.J.;Smith, F.A. https://doi.org/10.1104/pp.100.2.637
  20. Biochemistry v.31 Schaller, G.E.;Harmon, A.C.;Sussman, M.R. https://doi.org/10.1021/bi00121a020
  21. J. Biol. Chem. v.266 Sergio, G.;Mason, M.J.;Garcia-Rodriguez, C.
  22. Neuroscience Letters v.122 Stockton, M.E.;Masafumi, F. https://doi.org/10.1016/0304-3940(91)90180-2
  23. Agents and Actions v.27 Thastrup, O.;Dawson, A.P.;Scharff, O.;Foder, B.;Cullen, P.J.;Drobak, B.K.;Bjerrum, P.J.;Christensen, S.B.;Hanley, M.R. https://doi.org/10.1007/BF02222186
  24. Proc. Natl. Acad. Sci. USA v.87 Thastrup, O.;Cullen, P.J.;Drobak, B.K.;Hanley, M.R.;Dawson, A.P. https://doi.org/10.1073/pnas.87.7.2466