특징폐기물의 발생 및 관리에 대한 항후대책

Counter-measure on the Generation and Management of Specified Waste in Korea

1. 서론

폐기물은 인간의 일상생활과 산업활동에서 필연적으로 생성되는 것으로 최근 제품의 다양화와 품질의 향상에 수반되며 발생되는 폐기물은 양적으로 증가하고 점적으로 다양화 되어가는 추세에 있다. 또한 이들 폐기물은 여러 가지 위험이(risk)을 일으킨다. 이를 위해 크게 세가지로 분류할 수 있는데 그 첫째가 발생원에서의 생활환경의 위험이고, 그 다음이 이 폐기물 처리에 수반되며 발생되는 오염물질에 의한 지역 환경의 위험이고, 마지막으로 이들 오염물질에 의한 지구환경의 위험이다. 최근의 지구환경(Global Environment) 문제는 오존층 파괴, 지구온난화 현상, 유해폐기물 유폐와 이동 등으로 가까운 미래에 지구의 위기를 예측할 정도로 심각한 국제 문제로 대두되어 가고 있다. 각계에서 강조하고 있는 이상이면도 이와같은 지구환경오염 결과로 야기되는 현상으로 보는 경향이 우세하다. 이들 현상들이 폐기물의 효율적인 관리와 밀접한 관련이 있으므로 이들과 폐기물 처리와의 관계를 정립하여 효율적인 폐기물 위험관리(risk management) 방안을 모색하여야 한다. 특히 폐기물관리법의 주목 개정되어 폐기물의 분류에 혼란을 야기시키는 현 상황에서는 기업인들의 폐기물에 대한 올바른 인식이 정립되지 못하면 국가의 환경보전과 국민건강에 큰 위협을 입으킬 가능성이 다분하다. 미국에서도 1978년 Love Canal 사고와 1987년 Trash Crisis 등을 겪으면서 고형폐기물(solid waste), 병원폐기물, 유해폐기물의 안전성 평가를 통한 폐기물 관리에 노력을 집중하고 있다. 일본에서도 1989년 제2의 쓰레기 전쟁을 겪으면서 국민의 폐기물 환경규제와 각종 처리지수지와의 한계 등으로 폐기물 처리 규제가 점점 엄격해질 뿐만 아니라 환경오염을 최소화하고 유해폐기물의 처리제한에 따른 효율적인 관리대책을 시도하고 있다. 내외적으로 폐기물에 의한 환경오염의 중요성은 인식하고 있는 지금이야말로 발생자(가정, 생산업체), 처리업소, 학계 등에서 이에 대한 관심과 자세를 가지고 이에대한 대책을 강구한 시기이다. 특히 강우량이 낮아 수량이 적으로 수질이 악화됨에 작은 수수로 폐기물관리에 이 이상이 생기면 폐기물 유통수의 수질을까지 직접 영향을 경감할 수 있다.

본 논에서는 특정폐기물의 분류방법과 이를 특정폐기물의 발생 및 처리현황을 국내외의 자료를 사용하여 비교분석하고 이들 특정폐기물의 근본 관리방안을 모색하였다. 특별히 특정폐기물의 분류에 혼란을 야기시키는 현 상황에서는 기업인들의 폐기물에 대한 올바른 인식이 정립되지 못하면 국가의 환경보전과 국민건강에 큰 위협을 입으킬 가능성이 다분하다.
2. 특정폐기물의 발생 및 처리현황

2.1 폐기물의 분류 및 발생현황

폐기물의 분류 및 관리체계는 1986년의 제정 이후 크게 두번이나 바뀌었다(1). 이를 그대로 나타내면 표 1과 같다.

이와 같이 분류시스템이 사주 변하게 되었으므로 이에 따른 발생량을 정확하게 조사하는 어려운 상황이다. 환경부의 각종 자료(2-4)를 토대로 하여 1990년도, 1992년도와 1993년도 폐기물의 종류별 발생량을 나타내 보면 표 2와 같다.

이에 의하면 1990년의 경우 특정산업폐기물의 발생량은 연간 768천톤으로 전체 폐기물 발생량 22,415천톤의 약 4.3%이었으며, 1993년의 경우 특정폐기물이 9,178천톤이 발생하여 전체 사업장폐기물 29,607천톤의 31.0%인 것으로 나타났다. 그러나 1994년 4월 1일부터 계분류함에 특정폐기물은 이보다 훨씬 적은 3,871천톤으로 전체 사상장

<table>
<thead>
<tr>
<th>표 1 국내 폐기물의 분류 및 관리체계 변화</th>
</tr>
</thead>
<tbody>
<tr>
<td>분류</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>처리</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| | | *특정 - 안전성, 방산성, 관리, 환경, 침진,지형 | *특정 - 방산성, 관리
| **시행일** | 1987. 4. 1 | 1993. 6. 8 | 1994. 4. 5 |
표 2 연도별 사업장폐기물 발생량

<table>
<thead>
<tr>
<th></th>
<th>1990년도</th>
<th></th>
<th>1992년도</th>
<th></th>
<th>1993년도</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>럽(천톤/년)</td>
<td></td>
<td>럽(축/년)(%)</td>
<td></td>
<td>럽(축/년)(%)</td>
</tr>
<tr>
<td>대칭원재</td>
<td>82</td>
<td>대칭원재</td>
<td>255,01(3.3)</td>
<td>517,83(5.6)</td>
<td></td>
</tr>
<tr>
<td>폐유</td>
<td>190</td>
<td>폐유</td>
<td>257,57(3.3)</td>
<td>243,06(2.6)</td>
<td></td>
</tr>
<tr>
<td>폐합성수지</td>
<td>302</td>
<td>폐유</td>
<td>153,39(2.0)</td>
<td>262,59(2.9)</td>
<td></td>
</tr>
<tr>
<td>폐산, 폐알카라리</td>
<td>394</td>
<td>폐유기용제</td>
<td>95,28(1.2)</td>
<td>188,40(2.1)</td>
<td></td>
</tr>
<tr>
<td>소계</td>
<td>968(4.3)</td>
<td>폐합성고분자화합물</td>
<td>669,91(8.6)</td>
<td>852,33(9.3)</td>
<td></td>
</tr>
<tr>
<td>일반산업</td>
<td>유기물류</td>
<td>폐</td>
<td>6312</td>
<td>폐</td>
<td>20,295(1)</td>
</tr>
<tr>
<td></td>
<td>무기물류</td>
<td>폐</td>
<td>15,123</td>
<td>폐</td>
<td>90,057(1.2)</td>
</tr>
<tr>
<td>소계</td>
<td>21,477(95.7)</td>
<td>폐</td>
<td>3,389,83(43.4)</td>
<td>4,255,74(46.4)</td>
<td></td>
</tr>
<tr>
<td>종계</td>
<td>22,415(100)</td>
<td>폐</td>
<td>2,625,104(33.6)</td>
<td>2,389,472(26.0)</td>
<td></td>
</tr>
<tr>
<td>폐쇄회</td>
<td>116,94(13)</td>
<td>폐쇄회</td>
<td>116,94(13)</td>
<td>폐쇄회</td>
<td>116,94(13)</td>
</tr>
<tr>
<td>동물성산재</td>
<td>298,83(2.7)</td>
<td>동물성산재</td>
<td>298,83(2.7)</td>
<td>동물성산재</td>
<td>298,83(2.7)</td>
</tr>
<tr>
<td>기 타</td>
<td>26,653(0.7)</td>
<td>기 타</td>
<td>26,653(0.7)</td>
<td>기 타</td>
<td>26,653(0.7)</td>
</tr>
<tr>
<td>개</td>
<td>7,804,014(100)</td>
<td>개</td>
<td>9,178,404(100)</td>
<td>개</td>
<td>9,178,404(100)</td>
</tr>
<tr>
<td>사용</td>
<td>9,229,755</td>
<td>사용</td>
<td>9,781,270</td>
<td>사용</td>
<td>9,781,270</td>
</tr>
<tr>
<td>연소재</td>
<td>3,317,120</td>
<td>연소재</td>
<td>3,293,760</td>
<td>연소재</td>
<td>3,293,760</td>
</tr>
<tr>
<td>분진류</td>
<td>634,370</td>
<td>분진류</td>
<td>1,608,555</td>
<td>분진류</td>
<td>1,608,555</td>
</tr>
<tr>
<td>금속</td>
<td>600,060</td>
<td>금속</td>
<td>1,075,655</td>
<td>금속</td>
<td>1,075,655</td>
</tr>
<tr>
<td>기 타</td>
<td>3,759,865</td>
<td>기 타</td>
<td>4,669,445</td>
<td>기 타</td>
<td>4,669,445</td>
</tr>
<tr>
<td>총계</td>
<td>17,541,170</td>
<td>총계</td>
<td>20,428,685</td>
<td>총계</td>
<td>20,428,685</td>
</tr>
<tr>
<td>종계</td>
<td>25,345,184</td>
<td>종계</td>
<td>29,607,089</td>
<td>종계</td>
<td>29,607,089</td>
</tr>
</tbody>
</table>

장관이 지정 고시하는 사업장에서 발생되는 것이 다(5).

표 3 사업장폐기물 발생량 전망

(단위: 럽/일(%))

<table>
<thead>
<tr>
<th>구분</th>
<th>1994년</th>
<th>1997년</th>
<th>2001년</th>
</tr>
</thead>
<tbody>
<tr>
<td>특정폐기물</td>
<td>10,605(11.9)</td>
<td>15,36(12.9)</td>
<td>24,079(13.9)</td>
</tr>
<tr>
<td>사업장폐기물</td>
<td>76,622(88.1)</td>
<td>103,458(87.1)</td>
<td>149,792(86.1)</td>
</tr>
<tr>
<td>총계</td>
<td>89,227(100)</td>
<td>118,769(100)</td>
<td>173,872(100)</td>
</tr>
</tbody>
</table>

표 4 오나리 종류별 지역별 발생현황(1993년)

(단위: 럽/톤(으로))

<table>
<thead>
<tr>
<th>지역</th>
<th>발생량</th>
<th>지역</th>
<th>발생량</th>
<th>총계</th>
</tr>
</thead>
<tbody>
<tr>
<td>서 울</td>
<td>85,974</td>
<td>19,161</td>
<td>5,696</td>
<td>100,831(2.4)</td>
</tr>
<tr>
<td>부 산</td>
<td>86,471</td>
<td>21,790</td>
<td>3,831</td>
<td>112,092(2.6)</td>
</tr>
<tr>
<td>대 구</td>
<td>326,880</td>
<td>2,057</td>
<td>1,455</td>
<td>330,392(7.8)</td>
</tr>
<tr>
<td>인 천</td>
<td>117,905</td>
<td>35,733</td>
<td>153,863</td>
<td>307,501(7.2)</td>
</tr>
<tr>
<td>광 주</td>
<td>11,580</td>
<td>1,175</td>
<td>1,330</td>
<td>14,094(0.3)</td>
</tr>
<tr>
<td>대 전</td>
<td>61,073</td>
<td>24,070</td>
<td>1,353</td>
<td>86,496(2.0)</td>
</tr>
<tr>
<td>경 기</td>
<td>727,824</td>
<td>21,250</td>
<td>49,418</td>
<td>796,492(18.8)</td>
</tr>
</tbody>
</table>

그림 1 오나리 발생량의 지역별분포(1993년)
2.2 폐기물처리현황

사업장폐기물 가운데 1992년의 특정폐기물과 일반폐기물의 처리현황은 그림2와 그림3에 각각 나타내었다.

증 날	146,136	2,743	1,877	150,756(3.5)
증 북	335,809	9,419	1,266	346,494(8.1)
전 날	462,050	8,374	-	470,424(11.1)
전 북	440,801	9,939	1,247	451,987(10.6)
강 원	164,501	246	123	164,870(3.9)
경 남	348,011	29,975	2,831	380,817(8.9)
경 북	496,128	39,486	2,030	537,644(12.7)
제 주	2,859	-	-	2,859(0.1)
계	3,814,011	215,418	226,320	4,255,749(100)

특정폐기물의 경우 재활용 47.4%, 소각 12.9%, 매립 29.0%, 해양투기 4.4%, 기타 6.3%이었고, 사업장 일반폐기물의 처리는 자치단체 처리 24.1%, 대행처리 49.3%, 자가처리 26.6%이며, 처리방법별로는 매립 41.8%, 재활용이 56.4%, 소각이 1.8%이었다(16).

1993년도 특정폐기물 종류별 처리현황은 표5와 같이 자가처리가 19.0%, 위탁처리가 74.7%, 보관이 6.3%이었다.

![그림2 특정폐기물의 처리현황(1992년) 메릴 47.4% 소각 12.9% 해양투기 4.4%]

표 5 특정폐기물 종류별 처리현황(1993년)
(단위: 톤, 년/%)の

<table>
<thead>
<tr>
<th>폐기물명</th>
<th>발생량</th>
<th>자가처리</th>
<th>위탁처리</th>
<th>보관</th>
</tr>
</thead>
<tbody>
<tr>
<td>폐 산</td>
<td>517,486</td>
<td>13,047</td>
<td>485,036</td>
<td>19,753</td>
</tr>
<tr>
<td>폐 알칼리</td>
<td>243,406</td>
<td>25,569</td>
<td>215,848</td>
<td>1,651</td>
</tr>
<tr>
<td>폐 유우</td>
<td>262,590</td>
<td>17,909</td>
<td>229,718</td>
<td>14,963</td>
</tr>
<tr>
<td>폐유기용제</td>
<td>188,401</td>
<td>31,253</td>
<td>150,655</td>
<td>6,483</td>
</tr>
<tr>
<td>폐합성수지</td>
<td>632,305</td>
<td>98,789</td>
<td>481,306</td>
<td>52,208</td>
</tr>
<tr>
<td>폐합성상유</td>
<td>37,365</td>
<td>8,623</td>
<td>24,877</td>
<td>3,805</td>
</tr>
<tr>
<td>폐합성고무</td>
<td>112,019</td>
<td>11,465</td>
<td>73,304</td>
<td>27,310</td>
</tr>
<tr>
<td>폐합성피혁</td>
<td>6,400</td>
<td>1,989</td>
<td>3,918</td>
<td>493</td>
</tr>
<tr>
<td>폐페인트</td>
<td>19,097</td>
<td>65</td>
<td>18,332</td>
<td>700</td>
</tr>
<tr>
<td>기타폐합성</td>
<td>45,212</td>
<td>7,432</td>
<td>33,522</td>
<td>4,258</td>
</tr>
<tr>
<td>폐 석면</td>
<td>13,124</td>
<td>22</td>
<td>12,971</td>
<td>131</td>
</tr>
<tr>
<td>폐 광제</td>
<td>1,031</td>
<td>77</td>
<td>881</td>
<td>73</td>
</tr>
<tr>
<td>폐분진</td>
<td>126,804</td>
<td>591</td>
<td>105,035</td>
<td>21,178</td>
</tr>
<tr>
<td>폐수처리장</td>
<td>2,659</td>
<td>497</td>
<td>1,400</td>
<td>762</td>
</tr>
<tr>
<td>폐화물당</td>
<td>2,569</td>
<td>2,338</td>
<td>172</td>
<td>59</td>
</tr>
<tr>
<td>소각재물류</td>
<td>5,286</td>
<td>17</td>
<td>4,811</td>
<td>458</td>
</tr>
<tr>
<td>폐품재수리</td>
<td>611</td>
<td>-</td>
<td>584</td>
<td>27</td>
</tr>
<tr>
<td>폐품작업판</td>
<td>207</td>
<td>21</td>
<td>174</td>
<td>12</td>
</tr>
<tr>
<td>폐농약</td>
<td>316</td>
<td>1</td>
<td>302</td>
<td>13</td>
</tr>
<tr>
<td>PCB합유물</td>
<td>20</td>
<td>-</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>총계</td>
<td>4,255,749</td>
<td>1,289,833</td>
<td>2,577,669</td>
<td>388,247</td>
</tr>
</tbody>
</table>

이 가운데 폐수처리오너, 공정오너, 지정오너로는 총 9,178,494(100)에서 1,745,122(19.0)로 보관이 6,453,361(74.7)로 8,717,621(6.3)이다.
표 6 오니류의 처리현황 (1993년)

<table>
<thead>
<tr>
<th>종류</th>
<th>자가처리</th>
<th>위탁처리</th>
<th>보관</th>
<th>계</th>
</tr>
</thead>
<tbody>
<tr>
<td>폐수처리온니</td>
<td>1,267.56 (33.2)</td>
<td>2,226.81 (58.4)</td>
<td>319.65 (8.4)</td>
<td>3,814.01 (100)</td>
</tr>
<tr>
<td>공정온니</td>
<td>21,886 (10.2)</td>
<td>154,069 (71.5)</td>
<td>39,443 (18.3)</td>
<td>215,418 (100)</td>
</tr>
<tr>
<td>지정온니</td>
<td>383 (0.2)</td>
<td>196,768 (86.8)</td>
<td>29,169 (13.0)</td>
<td>226,300 (100)</td>
</tr>
<tr>
<td>계</td>
<td>1,289.33 (30.3)</td>
<td>2,577.66 (60.6)</td>
<td>388.24 (7.9)</td>
<td>4,525.74 (100)</td>
</tr>
</tbody>
</table>

전체적으로 30.3%를 자가처리하며 위탁처리를 60.6%로 보관을 9.1% 하였다. 오니 종류별로 폐수처리온니는 자가처리가 많이 하는 반면 공정온니와 지정온니는 대부분 위탁처리를 하였다. 처리방법별로는 제활용, 소각, 매립, 기타가 있는데 1993년의 오니 종류별 재활용폐기물로는 표7과 같다.

표 7 오니류 재활용현황 (1993년)

<table>
<thead>
<tr>
<th>오니류</th>
<th>업체수</th>
<th>폐기물량 (톤/년)</th>
</tr>
</thead>
<tbody>
<tr>
<td>폐수처리온니</td>
<td>3</td>
<td>15,743</td>
</tr>
<tr>
<td>유기성폐수처리온니</td>
<td>146</td>
<td>703,497</td>
</tr>
<tr>
<td>무기성폐수처리온니</td>
<td>17</td>
<td>19,602</td>
</tr>
<tr>
<td>기타폐수처리온니</td>
<td>2</td>
<td>5,508</td>
</tr>
<tr>
<td>공정온니(우레알질رحم유)</td>
<td>6</td>
<td>16,188</td>
</tr>
<tr>
<td>공정온니(우레알질보습유)</td>
<td>16</td>
<td>24,400</td>
</tr>
<tr>
<td>계</td>
<td>190</td>
<td>785,338</td>
</tr>
</tbody>
</table>

*환경처치법(7)을 개정한 것임

전체 재활용량은 연간 785,338톤이며 이는 총 오니발생량 4,255,749톤의 18.5%이었다.

표 8 특성폐기물 중간처리시설 현황 (1993년)

<table>
<thead>
<tr>
<th>구분</th>
<th>소각 (사업장소)</th>
<th>고온열분해 (사업장소)</th>
<th>기타 (사업장소)</th>
</tr>
</thead>
<tbody>
<tr>
<td>처리업체</td>
<td>1,271/41</td>
<td>415/19</td>
<td>4,780/37</td>
</tr>
<tr>
<td>배출업체</td>
<td>7,745/771</td>
<td>67/11</td>
<td>1,068/38</td>
</tr>
<tr>
<td>공공처리시설</td>
<td>-</td>
<td>46/2</td>
<td>114/2</td>
</tr>
<tr>
<td>계</td>
<td>9,016/812</td>
<td>528/32</td>
<td>5,962/97</td>
</tr>
</tbody>
</table>

표 9 특성폐기물 최종처리시설 현황 (1993년)

<table>
<thead>
<tr>
<th>구분</th>
<th>개소수</th>
<th>총배출지</th>
<th>폐기물량</th>
<th>폐기물량 (톤/년)</th>
</tr>
</thead>
<tbody>
<tr>
<td>처리업체</td>
<td>4</td>
<td>54</td>
<td>471</td>
<td>200/271</td>
</tr>
<tr>
<td>배출업체</td>
<td>27</td>
<td>1,513</td>
<td>31,685</td>
<td>22,929/8,756</td>
</tr>
<tr>
<td>공공처리시설</td>
<td>2</td>
<td>79</td>
<td>491</td>
<td>265/226</td>
</tr>
<tr>
<td>계</td>
<td>33</td>
<td>1,646</td>
<td>32,647</td>
<td>23,384/9,253</td>
</tr>
</tbody>
</table>

표 10 특성폐기물 공공처리시설 계획

<table>
<thead>
<tr>
<th>시설</th>
<th>설계계획</th>
<th>폐기물량 (톤/년)</th>
</tr>
</thead>
<tbody>
<tr>
<td>총액</td>
<td>'93~'97</td>
<td>'98~'2001</td>
</tr>
<tr>
<td>매립</td>
<td>1,650m³</td>
<td>2,428m³</td>
</tr>
<tr>
<td>굴뚝</td>
<td>정부권242</td>
<td>정부권811</td>
</tr>
<tr>
<td>수도권330</td>
<td>정부권231</td>
<td></td>
</tr>
<tr>
<td>환경권132</td>
<td>환경권386</td>
<td></td>
</tr>
<tr>
<td>소각</td>
<td>468</td>
<td>1,271</td>
</tr>
</tbody>
</table>
100톤규모의 소각시설을 공단에 설치할 준비를 추진하고 있다(69). 외국의 한 예로 일본의 산업 폐기물 최종처분량, 감량화 및 재생비용의 변화추이를 그림 4에 나타내었다(69).

그림 4 일본의 산업폐기물의 최종처분량, 감량화 및 재생비용의 변화추이

3. 특정폐기물의 환경영향

특정폐기물이 위생적이고 안전하게 처리되지 못하고 환경으로 배출될 경우에는 생활환경, 작업환경, 지역환경을 오염시킬 뿐만 아니라 지구환경까지 영향을 미치게 된다. 지속적으로 배출될 경우에는 자연생태계를 파괴하고 공해배출을 유발하거나 환경사고로 확대된다. 지금까지 대표적 공해배출이나 환경사고를 소개하면 다음과 같다.

가. 일본의 이마이아이병(69)

1946년경 일본 도야마 현 지역에 전신이 수시로 아프며 기침만해도 쑤고 부스러지지 않아 변형을 일으키는 등 이때까지 알려진 질병과는 다른 증상을 나타내는 환자가 발생하였다. 그 원인을 분석해본 결과 건강한 공기를 쾌적한 가연, 낡은 카드뮴 등의 재정한 금속금형소에서 배출한 폐기물의 광폭배분인 것으로 밝혀져 사회에 큰 충격을 주었다. 이는 도야마 현 주위의 진주가와의 수질, 저질, 그 지역에서 생산되는 농, 환자의 장기 등을 분석해 본 결과 아연, 낡은 카드뮴 등의 증상이 상당히 많이 들어 있는 것을 발견하여 1961년 6월 정형외과학회에서 이한의 원인인 금속금형소의 광폭배분이라고 생각되는 보고가 있었으나 농업사령부에 의한 확실한 병원을 밝히지 못하였기 때문에 1967년에는 이마이아이병의 원인으로는 카드뮴의 역할이 크지만 저산화, 저갈슘 등의 영향에도 하나의 원인으로 생각된다는 결론을 내렸다. 도야마 현의 경우 그 지역에 거주한 수만 가구수 환자로 밝혀진 대부분이 아이를 많이 낳은 여성으로 남자는 7명 뿐이었으며, 환자는 200명이상이었고 사망자는 130여명으로 집계되었다.

나. 이탈리아 세베소사건(11, 12)

1976년 7월 10일 이탈리아 북부에 있는 세베소라는 도시의 ICMESA 화학공장에서 폭발이 일어난 후 구름같이 자욱한 화학물질이 인근지역을 오염시키면서 대기로 방출되었다. 이 화학물질은 독성화합물인 다이옥신 2kg을 함유하고 있었다. 사고현장은 농장 원료가 되는 수산물인 Sodium Trichlorophenate를 생산하는 반응 장치의 무제한 반응배분이었다. 사망자는 없었으나 2백여명이 경상을 입었고 주민은 인근 동물들이 많은 피해를 입었다. 토양오염으로 아종 심각하게 피해를 입은 지역은 1, 800ha의 지역이 접근까지 조사되었으며 아종 심각하게 피해를 입은 지역은 110ha 정도였다. 이 사고에 의한 직접적인 경제적 손실액은 약 2억 5천만 $이었다. 그 후 이곳에서 발생한 오염을 대범히 수거하여 외부를 시계를 놓아 1982년에 다발성병이 된 사고가 발생하였다. 1983년 이를 프랑스에서 발견되어 전문가가 있는 스위스에서 이를 회수 처리하는 조치를 취하였다. 이 사고를 계기로 유해폐기물의 국가간 이동으로 전세계 유해폐기물로 오염된 가능성이에 대한 EC를 중심으로 제기되면서 1989년 스위스 바젤에
서 유해폐기물의 국가간 이동 및 그 처분 규제
에 관한 바젤협약을 체결하게 되었다. 그 후 이
협약은 1992년부터 효력이 발효하였으며 우리나라
라도 이 협약에 1994년 5월 29일 부터 가입하였
다.

다. 인도보팔(Bhopal)사건(13, 14)
1984년 12월 2~3일 유니온카바이드 인도회사
보팔공장에서 유독가스인 이소시안산매달
(methylisocyanate, MIC)이 누출되어 바람을 타고
시내로 확산되었다. 가스누출은 약 40분 동안
계속되어 거의 약 40km²를 오염시켰으며, 그
영향으로 2,500명 이상이 사망하고 약 15만명이
증상되었다. 피해자는 구토와 가짐을 하였으
며 눈에 화상을 입고 동종을 느꼈다. 반년이 지
난후에는 시력저하, 천식, 식욕부진, 위장, 두통,
구토 등을 호소하는 환자가 많았다. 또한 유독
가스의 영향으로 피해지역에서 서식하던 남소
790마리, 소 270마리, 산羊 483마리 등 많은
동물이 죽고 식물도 말라 죽는 등 피해가 3억
5천만 $에서 30억 $로 추산되었다. 사고발생 이
t을 후 동물의 시체를 처리하기 위해 담보차 20
대와 크레인 6대가 동원된 것을 보아도 그 참상
을 짐작할 수 있다. 사고의 원인은 이소시안산매
달 반응조에 들어가 대량의 가스가 발생하
고 장치내의 압력이 높아져 열이 발생하면서 일
어나는 것으로 추정되고 있다. 사고의 발생경위
는 야간근무 교대 직전에 이소시안산매달 반응
조 가까이에 있는 파이프의 내부를 세척하던 작
업자가 파이프에 물을 공급한 관을 연결한 때
파이프와 반응조를 차단해야 하는 안전수칙을
지키지 않아 물이 반응조내부로 들어가 이소시
안산매달과 격렬한 화학반응을 일으켰고, 실상
가성으로 안전장치까지 작동되지 않아 새벽 1시
경에는 이미 배출관의 노즐을 통하여 MIC의 중
기가 보팔의 시내로 흘러나간 상태였다.

라. 러브캐널사건(15)
한 화학회사가 1942년부터 1953년까지 약 21,800
톤의 유해폐기물을 뉴욕주 나이어가라폭포의 한
도시에 있는 옛 운하인 Love Canal의 도래해
무단 폐기하였다. 그 회사는 1953년에 매립을
중단했고 얼마 뒤 인근에 학교와 몇몇 건물이
들어 섰다. 1975년 겨울과 1976년 봄에 폭우로
병이 자라나 변화물질의 화학물질에 의해 심하게
오염된 물로 된 연못이 생겨났다. 오염된 물은
근처 주거지로 침투되어 인체에 대한 유해성
문제로 공공의 관심과 불안을 일으켰다. 그후
기형 가족이 나타나고 물품가능 암사례가 되어
자연유산 되는 등 환경오염에 의한 피해가 나타
나게 되었다. 1978년 8월 거주인 238가구를
주시키는 건강조치가 취해졌다. 해당지역 복구
가주민 이전, 현재자소로 약 1억달러의 경비가
소요되었다. 이로 인하여 전국에 신재해를 일으
키는 유해물질의 불량배출을 재정하기 위한 작업을
착수하였으며 이를 위한 예산의 확보 및 지원을
하기 위하여 1980년에 CERCLA법을 제정 이행
Superfund Program을 5년간 한시적으로 추진
하였다. 이 예산으로 16억 $을 투자하게 되었다.
Superfund Program은 그후 SARA로 보다 더
강화되어 SITE Program과 함께 지금까지 추진
되고 있다. 15년이 지난 오늘까지도 Love Can-
nal 인근의 개발은 이 약속에서 벗어나지 못하
고 지연되고 있는 실정이다.

마. PCB 오염에 의한 가네미유증
1968년 3월 일본의 가네미 지방에 어드름 형
태의 뿌위가 물에 생기는 피부병에 걸린 사람
이 계속 발생하여 보건소에서 역학 조사를 하기
에 이르렀다. 조사 결과 가네미회사가 판매하고
있는 식용유 속에 함유되어 있는 PB(polychlo-
rinated biphenyl)가 이 병의 원인물질인 것으
로 밝혀졌다. 같은 해 2월, 이 지방에서 100만
마리의 닭이 증상되어 그 중 70만 마리가 죽었
는데 그 원인도 가네미회사가 생산한 식용유를
담의 머이에 혼합하였기 때문인 것으로 조사되

-37-

韓國技術士會誌
4. 특정폐기물의 향후 효율적인 관리 대책

현재 폐기물관리법상에는 특정폐기물의 처리는 오염자부담원칙에 따라 특정폐기물 배출자가 하수·처리수용이 부과하고 있다. 그러나 배출자가 하수·처리수용을 갖추어 처리를 하는 것이 경제적 부담이 크므로 전문처리업계에 위탁처리할 수 있게 허용하고 있다. 특정폐기물처리에는 수질·수면업, 중간처리업과 최종처리업이 있다. 중간처리시설에는 소각시설, 고온분해시설, 폐의·절단시설, 용융시설, 증발·농축시설, 정제시설, 반응시설, 수분처리시설, 온적·침전시설, 탈수시설, 건조시설, 고형화시설, 안정화시설이 있고 최종처리시설에는 관리형폐기물처리시설 및 차단형폐기물처리시설이 있다. 이들 시설에 대한 설치 및 관리기준이 폐기물관리법에 제시되어 있다. 그러나 1992년의 경우 배출이 해양투기 33.4%(그림2)로 일본의 배출량 33% (그림1)에 비하여 상당히 높은 편이다. 기존 배출로는 향후 4년이내에 바다에 담배하고 있으면 16) 환경부에서는 특정폐기물 배출규제 확장하기 위하여 표10과 같이 6개 원칙을 환경 특정폐기물 배출규제 확장계획을 세우고 추진하고 있으나 실제 입지 확보에 상당히 어려움을 겪고 있는 것이 현실이다. 미국에서는 HSWA(Hazardous and Solid Waste Amendment Act, 1984)를 제정하여 중간처리 없이는 배출을 억제하고 있고 EU 동지들들도 환경페이지의 적법함을 최대한은 역제하고 있다. 16) 환경부에서도 작년 향후 증가되야하는 특정폐기물 특별법의 규제를 완화할 수 있도록 조치가 급선무로 고려되어 관리기법 17) 개정을 추진하고 있다. 이를 정리하면 특정폐기물의 효율적인 처리과제를 문제점 도출하고 정책이왜 배출량을 제소하고자 한다. 한편 이 중요한 것은 아무런 조치도 이들을 관리하고 있는 태극 오렌지산이 효과적으로 공분한 에비단계를 두어야 한다. 그러나 실은 일정기간 후에 하여도 제도화 대신 시내에 성화 시설 필요가 있다.

4.1 특정폐기물분류 및 응용시험 방법의 개선
특정폐기물의 본질을 자주 변경하는 것은 좋지 않았다. 향후 효과적 필요가 있을 경우에는 유해폐기물의 국가간 이동 및 그 처리 규제에 관한 바결약관에 준하는 체계로 변경하는 것이 좋다. 현재 제도상에 유행성평가를 하는 유일한 방법이 폐기물공정시험방법 18)에 의한 응용시험 (Extraction Procedure Test) 방법이다. 초기 pH5.8~6.3에서 고체상태의 일정크기 임차상태로 시험하기 때문에 희생성상이나 고형화제의
경우는 정확한 분석이 불가능하다. 향상 pH를 5이하로 유지하고 휘발성액차에 적용할 수 있는 TCLP(Toxicity Characteristic Leaching Procedure)방안의 도입과 고형화된 상태에서 시험을 추진할 수 있는 방안이 도입되어야 한다. 이 외같은 조치는 국립환경연구원의 충분한 조사를 거쳐 5년정도의 향후시간을 두고 시행토록 한다.

4.2 폐기물 장적특성을 고려한 중간처리 활성화 방안

중간처리시설이 13종이 명시되어 있으나 우리와 유사한 일본에 비하여 모든시설의 보급이 미비하다. 다음사항을 보완하여 중간처리의 활성화를 도모토록 한다.

1) 특성폐기물 소각에 대한 지침서를 만들어 소각 형태별 화상효율(kg/m²·hr), 열화효율 (kcal/m²·hr) 등 설계기준치를 제시하고 소각제의 강열감량을 가연성분의 함량과 소각로의 형식에 따라 조절한다. 70%이하의 가연물을 함유한 폐기물의 소각에 있어 회분식 소각로는 15%이하, 연속식 소각로는 7%이하, 고온시험로는 5%이하로 하고 가연물은 70%이상 함유한 폐기물에 대하여는 연소효율 90%이상을 유지하게 된다. 가연분의 함량과 강열감량에 따른 연소효율은 그림5와 같다.

2) 소각산재물의 용출시험결과를 바탕으로 이의 처리도 고형화처리 중 증기간후 매립토록 한다. 항후 처리에 관한 생체위한 처리방안을 개발한다.

3) 유해폐기물의 소각성능에 있어 염적한 대기오염방지기준 관리를 수행한 뿐만 아니라 과학적 처리효율(DRE) 기준을 도입하고 대상화학물질에 대하여 기준을 정한다. 이에 앞서 대상화학물질의 표준시험방법을 도입한다. 이 제도의 도입은 일정기간(5년)의 준비기간을 거쳐 후 시행한다. dioxin의 매출기간 설정도 같은 개념으로 추진한다.

4) 환경관리공단에서는 유해폐기물의 고도의 소각기술인 SITE program기술을 도입하여 기술 개발과 동시에 안전하고 위생적으로 유해폐기물을 처리토록 한다.

5) 안전하나 고형화된 고형화체는 반드시 재활용이나 일반폐기물 배치 또는 특성폐기물 배치와 연계 처리토록 하여야 한다.

6) 고형화된 고형화체에 대한 물성시험(결포기밀도, 일측압축강도, 두수예수 및 내구성 등)과 용출시험 방법을 제도화하고 그 기준을 정하여 이행하게 한다.

7) 고형화체를 재활용시에는 고형화체 및 점가제의 함량을 정하고 고형화체의 균형을 규정하여 균형도록써 효율적으로 재활용이 이

![그림 5 연소효율과 강열감량과의 관계](image)
5. 결론

필자는 향후 경제적, 사회적, 환경적 관점에서 폐기물에 대하여 관심을 가졌다는 것을 강조해야 한다. 폐기물이 부적절하게 관리된다면 수질 대기·토양오염 등은 물론 지구환경에 치명 영향을 끼칠 전세계적인 도가니로 말이 없을 것이다. 또한 이로 인해 수질 오염을 초래할 수 있는 가능성이 높아져야 한다. 하수처리에도 다음사항을 시행할 것을 제안한다.

1. 차수시설은 재활용의 단계화로 현실적으로 경제적이면서도 충분한 차수효과를 높이는 방향으로 설계지침을 정하고, 반드시 배수시설을 설치하여 차수시설의 차수효과를 높이도록 한다.
2. 목표는 목토재의 재활용을 최적토양에서 매립지 개발에서 얻은 부식토, 흙토석토 등 다변화하고 Plastsoil과 같은 합성토석적 사용도 가능하도록 제도화한다.
3. 최종마감처리를 향후 5년이후부터 지정증은 60cm이상으로 하고 상부에서 차수층, 배수층, 적층층을 설치하고 그 설계요소와 설치시 두키는 배양처리증류, 토지이용계획에 따라 결정한다. 단 최종복토의 경사는 2~3cm를 유지한다. 구체적인 내용을 제도화한다.
4. 침출수 평가도 매립지 특성을 감안하여 수질환경보전법의 허용이나 평가기준을 달리는 평가항목과 평가기준으로 확정한다.

4.4. 사업장 폐기물 적절특성을 고려한 종합적 관리시스템 개발

사업장폐기물의 적절특성을 고려한 향후 효율적인 관리 종합시스템을 특장폐기물과 오너류에 대하여 그림 6과 그림 7과 같이 제안한다.
그림 6 특정폐기물 처리시설 종합시스템 구축을 위한 흐름과정
그림 7 오나류 처리시설 종합시스템 구축을 위한 효율과정

참고 문헌
2. 환경처, 한국환경연감, 1994년
3. 환경처, 전국폐기물 발생 및 처리현황(93), 1994
4. 환경처, 한국환경연감, 1991년
5. 환경처고시 제 1994-23호, 폐기물처리소, 공
7. 환경처, '93 특정폐기물제한법률, 1994
8. 환경관리공단(백산저지처리), IBRD 차관 전북권 특정폐기물 소각시설설치 적정소각 규모, 1994.4.
9. 하나지마, 폐기물 처리에 관한기술의 현황과 과제, 한국폐기물학회 추계총회 특별 강연, 1994 (11)
10. 이창기, 환경과 건강, p.168, p.197, 하서출판사, 1993
13. 한국자원재생공사(도갑수의), 특별폐기물 발생량 및 적절특성을 고려한 관리기법관, 1994(11)
16. 한국자원재생공사(도갑수의), 폐기물처리지 사후 관리 이행보증금 산정기준개발, 1993(3)
17. 환경처, 폐기물공정사항명령, 1992
18. 도감수, 지방자치단체의 환경보전정책, 한양대 지방자치대학원 센나, 1995.3.7
19. 도감수, 폐기물처리시설의 적정임차 지정기법과 지원방안, 서울시 쓰레기 적정처리계획 심포지움, 1995.3.11
20. 환경부, 폐기물처리시설 설치촉진 및 그 주변지역 지원 등에 관한 법률, 1995.1.5

-43-