Specific Recognition of Unusual DNA Structures by Small Molecules: An Equilibrium Binding Study

  • Suh, Dong-Chul (Department of Biochemistry, The University of Mississippi Medical Center)
  • Published : 1996.01.31

Abstract

The binding interaction of ethidium to a series of synthetic deoxyoligonucleotides containing a B-Z junction between left-handed Z-DNA and right-handed B-DNA, was studied. The series of deoxyoligonucleotides was designed so as to vary a dinucleotide step immediately adjacent to a B-Z junction region. Ethidium binds to the right-handed DNA forms and hybrid B-Z forms which contain a B-Z junction, in a highly cooperative manner. In a series of deoxyoligonucleotides, the binding affinity of ethidium with DNA forms which were initially hybrid B-Z forms shows over an order of magnitude higher than that with any other DNA forms, which were entirely in B-form DNA The cooperativity of binding isotherms were described by an allosteric binding model and by a neighbor exclusion model. The binding data were statistically compared for two models. The conformation of allosterically converted DNA forms under binding with ethidium is found to be different from that of the initial B-form DNA as examined by CD spectra. The ratio of the binding constant was interestingly correlated to the free energy of base unstacking and the conformational conversion of the dinucleotide. The more the base stacking of the dinucleotide is unstable, or the harder the conversion of B to A conformation, the higher the ratio of the binding constant of ethidium with the allosterically converted DNA forms and with the initial B-Z hybrid forms. DNA sequence around a B-Z junction region affects the binding affinity of ethidium. The results in this study demonstrate that ethidium could preferentially interact with unusual DNA structures.

Keywords