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ON GENERALIZED HAMMING WEIGHTS
OF SOME CYCLIC LINEAR CODES

SEON JEONG IXIM AND M1 Ja YoO

1. Introduction and Preliminaries

Let F, be a finite field with two elements, and F' be the set of all
n-tuples of elements in F,. A binary linear code of length n means a
subspace of F3'. If the binary linear code has dimension k as a subspace
of F}, then it is referred to as an [n, k] code ovar Fy. A linear code C
of length n is called cyclic if whenever (a3, a2, - ,ay) is an element of
C, so is (an,a1,a2, - 16n—_1). The dual code C* of a linear code C
means the subspace

Cr={zeF}|iz-c=0forallceC},

where 2-¢ = (29,22, -+ ,2a) (1,02, ,en) = 2101 F 2202+ +TpCp-

In [W], Wei introduced the notion of generalized Hamming weights
and weight hierarchy for a linear code, which has been motivated by
several applications in cryptogiaphy. Let C' be an [n, k] code. Let
X{(C) = {1 ]|z, # 0for some {z;,79, -+ ,2,) € C}. The rth general-
1zed Hamming weight of C' is then defined as

d.(C) = min{|x(D)}| : D is an r-dimensional subcode of C}.

The weight hierarchy of C' means the set of generalized Hamming
weights {d(C) | 1 < r < k}. Obviously, d;(C) is just the minimum
Hamming weight or minimum Hamming distance of the code.

In this paper, we find the generalized Hamming weights of some
binary cyclic codes. Consider a natural vector space isomorphism
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(a‘{)! 3 PR aan...l) —ag+a T+ + an—l_i:n_lg
where T is a coset 2 +(z™ —1). Using this map, we obtain the following
theorem.

THEOREM 1.1 [L]. There is an one to one correspondence between
cyclic linear codes of length n and the ideals of Fy[x}/(2™ — 1). More-
over, there is an one to one correspondence between cyclic codes and
the factors of 2™ — 1.

Thus each cyclic code C of length n corresponds to the unique
polynomial ¢(z}, a divisor of 2" — 1. We call this polynomial g{(x)
the generator polynomial of the cyclic code C. More precisely, if
g(z) =a +ayz 4 -+ a2 + 2!, then the corresponding cyclic
code is generated by the rows of the matrix

ag a; ay ... 1 0 0 0O 0
0 dpg N T | 1 0 0 0
0 0 @ ... -2 - 1 0 0
0 0 0 e ag ay as daz ... 1

For such g(z), let 2™ — 1 = g(z)h(z). We call h{z) the parity
check polynomial of the cyclic code C. Let h(z) = ho + hyz + --- +
By 112" 4 27! Then the parity check matrix of the cyclic code

C is

1 hpetetr hp_j—a ... hy 4] 0 0 ... O
0 1 hpetc1 oo Ry ho 0 -0 ... 0
0 0 1 e hg hl ho 0 ae 0
0 0 0 vew 1 hn_j_l h,,_z_.-z hn_lag e h()

Note that this matrix is the generator matrix of the dual code C+ of
C.

The following theorem is easy to prove.

THEOREM 1.2, Let C be a cyclic code of length n with the generator
polynomial g(2) = (x + 1)), 0 <! < n. Then
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(1) dimC =n—1.

(2) dimC+ =1.

(3) If h(z) = (2" — 1)/g(z), then the polynomial z48* @) p(1/z) is
the generator polynomial of the dual code of a cyclic code with
generator polynomial g(z).

The following theorems are well-known basic tools used in the next
section.

‘THEOREM 1.3 (MoNoToNICITY) [W]. Let C bean [n, k] code, then

1< di(C) < do(C) < -+ < di(C) < n.

Remark. When C is nondegencrate, i.e., there is no always-zero bit
posttion, then di.{(C) = n.

THEOREM 1.4 (DUALITY) {W]. Let C be an [n, k] code and C*+ be
its dual code. Then

{d(CY|1<r <k} ={1,2,--- ,n}-{n+1—-d,(CH]1<r<n-k}.

2. A cyclic code with the generator polynomial g(z) = (1 +
z)!

Let C be a cyclic code of length n with the generator polynomial
¢(x). Recall that g(x) is a divisor of 2®—1. In this section, we consider
the case g(x) = (1 + z) for some I > Q.

THEOREM 2.1. Let C' be a cyclic [n,k] code with k < n. Then
& (C) > 2.

Proof. If di(C) = 1, then there exists a codeword of weight 1 in
C. Since C is cyclic, all vectors (1,0,0,---,0), {0,1,0,---,0), ---,
(0,0, ,0,1) are in C, and so C = F}. This contradicts the assump-
tion k < n.
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THEOREM 2.2. Let C be a binary cyclic code of length n and g{x)
be its generator polynomial. Then the following hold:
(1) Hg(z) =1, thend (C)=r for1 <r <n.
(2) fgz) =2 +1,thend,(C)=r+1for1<r<n-1
(3) Kg(z) =21 +27? 4+ ... 4z + 1, then d1{C) =n.
Proof. (1) and (3) are obvious. For (2), since dim C = n—-1,d,(C) =
2 by Theorem 2.1. Now the result follows fromn Theorem 1.1.

For convenience, we use a notation, for each integer r > 1,

1(C) = {(e,¢c, - ,¢c) | ce€ C}.
e s’

7 times

Obviously, if C is {n, k, d] code, then v,.(C) is au [rn, k, rd] code. Using
these notation, we can decompose cyclic codes into those with shorter
length.

THEOREM 2.3. Let C be a binary cyclic code with fength 2, ¢ > 1

and g(z) = (1 + z)! be the generator polynomial of C. The following
hold:

(1) If1 > 271 then C = vo(Cy), where C| is the cyclic code of length
2t=1 with the generator polynomial (z + 1)!=%"~ "

(2) If | < 2271, then C+ = y5(C,), where Cs is the cyclic code of
length 2*=1 with the generator polynomial (x + 1)2'_1".

Proof. (1) Let I=2""1+ 0o 0<a< 2. Then

g(z)=(1+a)
=(14+2)-(1 -i—::;zl—l)
=(1+2)"+(1+2) 2"

e~1
If we set C) the eyclic code of length 2'7! with the generator polynomial
(1+42)*, then, comparing the generator matrices of C and C, we obtain
the desired resuli.

(2) By Theorem 1.2, the generator polynomial of C+ is (1 /z +
D" = (142)"" Sincen — [ > 2", we can use (1).

To use Theorem 2.3 effectively, we find new expression for natural
numbers.
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THEOREM 2.4. For a given integer @ > 1, any integer ! satisfying
1 <1 <2"—1 can be uniquely expressed as the form

-1 -2
1=2"" 44,227 "+ - +a -2+ a0,
where (1,8,.2,0,-3, "+ ,a1,aqy) satisfles the condition

. . a;=1or —1lforj 2 a
(*) there exists an integer a > 0 such that .
a; =0 for 7 < a.

Proof. Note that we can express any number as the form
by 2" 4 b,y 27 b by 24 by,

where each coefficient is 0 or 1. I b, = 1 and b,4; = 0, then we can

' f_ 1 oyl s .
rePIace them by b = —1and b]ﬁ_l =1, since 27 = 2+ -‘-21. Repeating
this process, we obtain the desired expression. The uniqueness can be
easily proved.

In terms of Theorem 2.4, for fixed interger + > 1, there is an one
to one correspondence between the natural numbers less than 2* and
set of i-tuples (1,¢;-9,a,-3, - ,a;,ap) satisfving the above condition
(*). So we identify this :-tuple with { or with the cyclic code with the

generator polynomial ¢(z) = (1 + z)’.

THEOREM 2.5. With the same notation above, we have
(1) d-(1,1, a3, ,a1,a0) = 2-d{1,a,—3,- ,a1,ap) forl <7 <
n— 1.
(2) {d.(1,-1,a,-3,-- ya1,q0) |1 <r <n -1}
={1,2,--- 2\ {2 +1-4d, (1,1, —a,—3, - ,—a;,~ap) | 1 £
r < Z}.

Proof. (1) 1=2"141.2""244q, 3-273 +...4a; 2+ ao, then
clearly I > 2*71. By Theorem 2 3.(1), we obtain the equality. (2) If
l=2"14(-1).2"% g, 3-2073 ... 4 a; -2+ ag, then the generator
polynomial of the dual codeis [=2"1 +1.2072 g, 4 .2173 —... —
a1 -2 -~ ag. So we get the equation by Theorem 1.4.

Ezomple 2.6. Let C be a binary cyclic code with length 2' and

g{2) = (1+2)' be the generator polynomial of C. Then, using Theorem
2.5 several times, we get the following:
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(1) If1=2"242=2 4 ... 4241, then &;(C) = 2.
(2) H1=2"1 422 4 ... 4+ 2% with a > 1, then

d(C)=7r-2""%for 1 <r <29,

(3)UI=2"1 2072 ... g0 9ot _3e-2 ... 21 with
o > 1, then

d{C)=(r+1)-27%for 1 <y <2t — 1

(@)1 =214 22 ... 420920l _9e=2_ ... 28 with
a> 3 >1, then
r =0 "y 3 N .
d,.(C):(r-*—{'Fm_—_i.])g a—1 for 1<r < 20+1 _23’

where [f] means the integer part of 7.
(5)Hl=2"142 24, poo_ga-l_o-2_... 98 961, .. 4241
with o > # > 1, then

r o N
(r + fm])Q’ o=l for 1 < p < (284 —2y(207F 1)
dr(c) = (T + 25'}'1 _ 1)2!—0—1 fOr (2ﬂ+1 _ .2)(2a—ﬁ _ 1) +1 S

p <ot 9Bt L,

For a general integer n > 1, we have the theorem.

THEOREM 2.7. Let n = 2* - m with ¢ > 0 and odd interger m 2> 1.
Let C be a binary cyclic code with length n and g{z) = (1 + z)! with
1 <1< 2 —1 be the generator polynomial of C. Suppose that C be a
binary cyclic code with

length 2' and g(z) be the generator polynomial of C. Then C+ =
ym(C) and hence d{(C+) = m - d(C) for 1 <r <L

Proof. The check polynomial h{z) of C is
Ma)=(1+2)" " (Qdata?+ 42"
=1+ 2)7 7 (142 422 4 (MDY
=1+2) "+ (1 +2) 2+ (1 +2)T z¥?
4ot (14 )T gm 2
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Hence the generator polynomial of O+ is 248 M2 (1 /2) = h(z). Com-
paring their generator matrices, we obtain the result.

References
L] R. F Lax, Modern Algrbra and Discrete Struciures, Harper Collins Pubiish-

ers Inc , 1991

W] V K Wei, Generahized Hammang werghts for hnear codes, IEEE Trans
Inform. Theory 37 (1991), 1412-1418.

Department of Mathematics

and Research Institute of Natural Science
Gyeongsang National University

Chinju, 660-701, Korea

E-mail : skim@nongae.gsnu.ac.kr


mailto:skim@nongae.gsnu.ac.kr

