CHARACTERIZATIONS OF CONTINUOUS MAPPINGS IN FRÉCHET SPACES

Woo Chorl Hong

1. Introduction.
A. V. Arhangel'skii [1] introduced a Fréchet space, which satisfies the following property (called the Fréchet-Urysohn property [4, 7 and 8]): The closure of any subset \(A \) of a topological space \(X \) is the set of limits of sequences in \(A \).

It is clear that each first-countable space (and so each metric space) is a Fréchet space. Many authors introduced other generalizations of a first-countable space and studied some properties of these spaces and their related topics (see [2]-[5], [7] and [8]).

In section 2, we introduce a concept of sequential convergence structures and show that Fréchet spaces are determined by these structures. The main results of this section 2 were announced in [6] and hence we omit the proofs. In the final section, we characterize continuous mappings in Fréchet spaces using sequential convergence structures.

2. Fréchet spaces.
Let \(X \) be a non-empty set and let \(S(X) \) be the set of all sequences in \(X \). Sequences in \(X \) will be denoted by small Greek letters \(\alpha, \beta \), etc. The \(k \)-th term of the sequence \(\alpha \) is denoted by \(\alpha(k) \).

A non-empty subfamily \(L \) of the Cartesian product \(S(X) \times X \) is called a sequential convergence structure on \(X \) if it satisfies the following properties:

(S1) For each \(x \in X \), \(((x), x) \in L\), where \((x)\) is the constant sequence whose \(k \)-th term is \(x \) for all indices \(k \).

(S2) If \((\alpha, x) \in L\), then \((\beta, x) \in L\) for each subsequence \(\beta \) of \(\alpha \).

(S3) Let \(x \in X \) and \(A \subseteq X \). If \((\alpha, x) \notin L\) for each \(\alpha \in S(A) \), then \((\beta, x) \notin L\) for each \(\beta \in S(\{y|(\alpha, y) \in L\} \textrm{ for some } \alpha \in S(A))\).

We denote \(SC[X] \) by the set of all sequential convergence structures on \(X \).

Received September 19, 1996
Theorem 2.1. For \(L \in SC[X] \), define a mapping \(C_L : P(X) \to P(X) \) as follows: for each subset \(A \) of \(X \),

\[
C_L(A) = \{ x \in X | (a, x) \in L \text{ for some } a \in S(A) \}.
\]

Then, \(C_L \) is a Kuratowski closure operator on \(X \), that is, \((X, C_L)\) is a topological space.

Let \(L(C_L) \) denote the set of all pairs \((a, x)\) such that \(a \) converges to \(x \) in the space \((X, C_L)\). Now we are going to determine the relations between \(L \) and \(L(C_L) \).

Lemma 2.2. Let \(L \in SC[X] \) and \(x \in A \subseteq X \). Then, \(A \) is a neighborhood of \(x \) in \((X, C_L)\) if and only if for each \((a, x) \in L, a \) is eventually in \(A \).

Theorem 2.3. Let \(L \in SC[X] \). Then, we have

1. \(L \subseteq L(C_L) \subseteq SC[X] \) and
2. \(C_L = C(L(C_L)) \).

Corollary 2.4. (1) For each \(L \in SC[X], \bigcup \{ L' \in SC[X] | C_L = C_{L'} \} = L(C_L) \).

(2) Let \(\mathfrak{S} \) be a Fréchet topology on \(X \) and let \(L_{\mathfrak{S}} = \{ (a, x) \in S(X) \times X | a \text{ converges to } x \text{ in } (X, \mathfrak{S}) \} \). Then, \(L_{\mathfrak{S}} = L(C_{L_{\mathfrak{S}}}) \in SC[X] \).

It is obvious that for each \(L \in SC[X], (X, C_L) \) is a Fréchet space.

Example. In general, \(L \neq L(C_L) \). Let \(Q \) be the rational number set with usual topology. Let \(L_Q \) denote the set of all pairs \((a, x) \in S(Q) \times Q\) such that \(a \) converges to \(x \) in \(Q \) and \(L = \{ ((x), x) | x \in Q \} \cup \{ (a, x) \in S(Q) \times Q | a \text{ converges to } x \in Q \text{ and } a \text{ is either strictly increasing or strictly decreasing } \} \). Then \(L_Q \subseteq L \in SC[Q] \). Since \(C_{L_Q} \) is the closure operator in the usual space \(Q \), \(L(C_{L_Q}) = L_Q \). Moreover, it is easy to see that \(C_{L_Q} = C_L \). Hence \(L \nsubseteq L_Q \), \(L = L(C_{L_Q}) = L(C_L) \).

3. Continuous mappings in Fréchet spaces.

Recall a well-known and useful theorem on continuous mappings in first-countable spaces:
THEOREM 3.1. Let \((X, \mathcal{S})\) and \((Y, \mathcal{S})\) be two first-countable spaces. A mapping \(f : (X, \mathcal{S}) \rightarrow (Y, \mathcal{S})\) is continuous if and only if for each \((\alpha, x) \in L_\mathcal{S}, (f(\alpha), f(x)) \in L_\mathcal{S}\), where \(f(\alpha)\) denotes the image sequence of \(\alpha\) under \(f\).

We now characterize continuous mappings in Fréchet spaces using sequential convergence structures and obtain a generalization of Theorem 3.1 above.

THEOREM 3.2. Let \(L_X \in SC[X]\) and \(L_Y \in SC[Y]\). A mapping \(f : (X, C_{L_X}) \rightarrow (Y, C_{L_Y})\) is continuous if and only if for each \((\alpha, x) \in L_X, (f(\alpha), f(x)) \in \mathcal{L}(C_{L_Y})\).

Proof. Let \((\alpha, x) \in L_X\). Then, by Theorem 2.3(1), \((\alpha, x) \in \mathcal{L}(C_{L_X})\). Since \(f\) is continuous at \(x\), \(f^{-1}(V)\) is a neighborhood of \(x\) in \(X\) for each neighborhood \(V\) of \(f(x)\) in \(Y\). So, by Lemma 2.2, \(x\) is eventually in \(f^{-1}(V)\). It follows that \(f(\alpha)\) is also eventually in \(V\). Thus, we have \((f(\alpha), f(x)) \in \mathcal{L}(C_{L_Y})\).

Conversely, suppose that there is a closed subset \(F\) of \(Y\) with \(f^{-1}(F)\) is not closed in \(X\), where \(f^{-1}(F)\) denotes the inverse image of \(F\) under \(f\). Then \(C_{L_X}(f^{-1}(F)) \supseteq f^{-1}(F)\) and so there is an element \(x\) in \(C_{L_X}(f^{-1}(F)) \setminus f^{-1}(F)\). It follows that \((\alpha, x) \in L_X\) for some \(\alpha \in S(f^{-1}(F))\), and hence \((f(\alpha), f(x)) \in \mathcal{L}(C_{L_Y})\) by hypothesis. Since \((f(\alpha), f(x)) \in \mathcal{L}(C_{L_Y})\) and \(f(\alpha) \in S(f(X) \cap F) \subset S(F)\), we have \(f(x) \in C_L(C_{L_Y})(F)\). According to Theorem 2.3(2), \(f(x) \in C_{L_Y}(F)\). By closedness of \(F\), \(f(x) \in F\) and thus we have \(x \in f^{-1}(F)\), a contradiction. \(\square\)

Corollary 3.3. Let \((X, \mathcal{S})\) and \((Y, \mathcal{S})\) be two Fréchet spaces and let \(L_X \in SC[X]\) with \(L_\mathcal{S} = \mathcal{L}(C_{L_X})\). A mapping \(f : (X, \mathcal{S}) \rightarrow (Y, \mathcal{S})\) is continuous if and only if for each \((\alpha, x) \in L_X, (f(\alpha), f(x)) \in L_\mathcal{S}\).

Proof. It follows immediately from Theorem 3.2. \(\square\)

By Corollary 2.4(2) and Corollary 3.3, we also obtain the following corollary.

Corollary 3.4. Let \((X, \mathcal{S})\) and \((Y, \mathcal{S})\) be two Fréchet spaces. A mapping \(f : (X, \mathcal{S}) \rightarrow (Y, \mathcal{S})\) is continuous if and only if for each \((\alpha, x) \in L_\mathcal{S}, (f(\alpha), f(x)) \in L_\mathcal{S}\).
Continuous mappings in Fréchet spaces

Note that Theorem 3.1 follows directly from Corollary 3.4. We thus obtain by Corollary 3.3 a convenient method to check a mapping in Fréchet spaces is whether continuous or not.

Example. Let f be a real-valued mapping defined on a subspace X of the real line \mathbb{R} with the usual topology and $L_X = \{(x,x) | x \in X\} \cup \{(\alpha, x) \in S(X) \times X | \alpha \text{ converges to } x \text{ in } X \text{ and } \alpha \text{ is either strictly increasing or strictly decreasing}\}$. Then it is easy to check that $L_X \in SC[X]$ and moreover (X, C_{L_X}) is precisely equal to the space X itself. By Corollary 3.3, we see that f is continuous if and only if for each $(\alpha, x) \in L_X$, $f(\alpha)$ converges to $f(x)$ in \mathbb{R}.

References

Department of Mathematics Education
Pusan national University
Pusan, 609-735, Korea