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NONLINEAR ERGODIC THEOREMS
FOR ALMOST-ORBITS OF
ASYMPTOTICALLY NONEXPANSIVE SEMIGROUPS
IN BANACH SPACES

JonGg Kyu KM

1. Introduction

In 1975, Baillon {1] proved the first nonlinear ergodic theorem for
nonexpansive mappings: Let C be a closed convex subset of a Hilbert
space H and T a nonexpansive mapping of C into itself. If the set
F(T') of fixed points of T is nonempty, then for each z € C, the Cesaro
mean

converges weakly as n — oo to a point p € F(T).

A corresponding result for a strong continuous one parameter semi-
group of nonexpensive mappings S(¢), ¢ > 0 was proved soon after
Baillon’s work by Baillon-Brézis [3], i.e.,

1
Az = -/ S(s)x ds
t Jo

converges weakly as ¢ — oo to a common fixed point of S(¢), ¢t > 0.
These theorems were extended to Banach spaces by Baillon {2], Bruck
{5], Hirano (7], Hirano-Kido-Takahashi [8], Park-Kim [12] and Reich
(14].

In this paper, we are going to extend the results of Miyadera -

Kobayasi [11], that is to say, we will prove the existence of the weak
himit of the Cesaro mean

t
oh) = —1—/ u(s + h)ds
0
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uniformly in kb > 0, where u(-) is the almost-orbit of an asymptotically
nonexpansive semigroup in a uniformly convex Banach space which
has a Fréchet differentiable norm. Our main theorem give extensions
of the results in [8],[12] because for each z € C, S(-)z : [0,00) — C
is an almost-orbit of § = {S(¢) : ¢ > 0}.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space X and
S = {S(t) : t = 0} an asymptotically nonexpansive semigroup on C,
ie., &= {5(¢):t > 0} denotes a family of mappings from C into itself
satisfying that
(1) S{0) = I (Identity),
(2) S(t+ s)x = 8(1)S(s)x for each z € C and ¢,s > 0,
(3) limy_o+ || S(t)z —2z ||=0, for z € C|
(1) | S-Sty i< ki lz—~y ], fora,y € C, t > 0 where
limf_mo A‘y =1
Let X* be a dual space of X. The value of 2* € X* at =z € X will
be denoted by (z,z*). With each € X, we associate the set

J(z) = {z* € X* : (z,2") = = |*=] 2™ |I°}.

Using the Hahn-Banach theorem, it is immediatedly clear that J(z) #
¢ for each z € X. The multivalved mapping J{-) : X — X* is
called the duality mapping of X. Let B = {¢ € X :|| z ||= 1} stand
for the unit sphere of A. Then the norm of X is said to be Fréchet
differentiable if for each z € X with 2 £ 0,

NN eI
t—0 t

exists uniformly for y € B. It is easily seen that X has a Fréchet
differentiable norm if and only if for any bounded set A C X and any
z € X,
ety PP
t—0 2t

= Re(y, J(2))

uniformly in y € A, where Re(y, J(2)) denotes the real part of (y, J(z)).
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We denote by ' the set of strictly increasing continuous convex
functions v : [0,00) — [0, 00) with 4(0) = 0. A mappingT : C — X
1s said to be of type (v) [5]ify € Mand forall 2,y € Cand 0 < A <1,

Al ATz + (1 = Ny Tz + (1= M) ) <z —y )l - | Te =Ty ||

Let T';: C' — X be a Lipschitzian mapping with Lipschitz constant

k. T is said to be of type k— (y) if ¥y € T and for all z,y € C and
0<AL],

I AT2+(1-M)Ty-TAz+(1-Ny < by (| a—y || 67" || T2z~Ty |}

A semigroup § = {S(t) : t > 0} on C is said to be of type &k — () if
each S(t) is of type & — (7).
A continuous function u{-) : [0,00) — C is called an almost-orbit

of § = {S(¢): ¢ >0} if
zlim [sup || u(t + ) — S(s)u(t) ||] = 0.
—0C >0
We denote by AO(S) the set of all almost-orbits of S = {5(¢) : t > 0}.

3. Main Results

Now, we prove lemmas and propositions which play a crucial role
in the proof of our main theorems. The following Lemma 3.1 is an

immediate consequence of the definition of type & — () and Corollary
2 of {13].

LEMMA 3.1. Let C be a bounded closed convex subset of a uni-
formly convex Banach space X and § = {S(¢) : ¢ > 0} an asymp-
totically nonexpansive semigroup with Lipschitz constant k;. Then
§={S(t):t >0} isof type ky — (v) for all t > 0.

By the methods of [10] for an asymptotically nonexpansive, we have
the following Lemma.

LEMMA 3.2. Let C be a nonempty closed convex subset of a uni-
formly convex Banach space X and & = {S(t) : t > 0} an asymp-
totically nonexpansive semigroup. Then {I — 5(%)) is demiclosed with
respect to zero { ie., for each {x,} C C withw ~limp—uzpn =2 € C
and hmy,_,o || 2, ~S(t)x, {|= 0 it follows that S(¢)z = z for all t > 0).
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LEMMA 3.3. Let C be a closed convex subset of Banach space X
and & = {S(t) : t 2 0} an asymptotically nonexpansive semigroup on
C. If u(-) € AO(S), then for every h > 0, u(-+ h) € AG(S).

Proof. Put up(t) = u(t + h). Since
tlirgo[sgl")) fup(t + s)—S(s)un(t) |l

= Jim [sup {| u(t + s + k) — S(s)ut + k) {]

0 5>0

= lim [sup I ul(t + )+ s) — S(s)u(t + k) [|]

1—00

= 0,

we have u,(-) € 40(S). O

LEMMA 3.4. Let X,C and § be as in Lemma 3.3. If u(-),v(-)
AO(S), then || u(t) — v(t) {| converges as t — co.

Proof. Put A(t) = sup,»p | w(t + s} — S(s)u(t) || and B(t)
sup,>o || v(t 4 ) — S(s)v(t) || for ¢ > 0. Then lim; oo A(t) = 0
im¢_. B(t). Since for all ¢ > 0,

llu(t +s) = v(t + )| < [[u(t + s) = S(s)u(®f + vt + s) — S(s)u()l
+ [ S(s)ult) ~ S(s)v(t)
< A + B(t) + ks|luelt) — v(?)]l,

m

(i

we have lmsup,_ o || u(s) — »(s) || A(#) + B(t)+ || u(t) — v(t) |
for every t > 0. Hence, limsup,_ ., || u(s) — v(s) [|< liminfi—eo ||
u(t) —o(t)||. O

PROPOSITION 3.5. Let X be a uniformly convex Banach space and
let C and § = {S(¢) : t > 0} be as in Lemma 3.3. If u(-) € AO(S),

then
FS=(F(St)=(HeeC:Stz=2})# ¢
>0 >0

if and only if {u(t):t > 0} is bounded.
Proof. Let f € F(S). Put 2(¢) = f for all t > 0. Since

Jim fsup || 2( +s) = S(s)2() I} = Jim [sup || f = S5(s)f I} =0,
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z(-) € AO(S). Hence, || u(t) — f || converges as ¢ — oo from Lemma
3.4. Therefore, {u{t) : ¢ > 0} is bounded. Now, suppose that {u(¢) :
t > 0} is bounded. Since u(-) € AO(S), there exists to > 0 such that
{S(s)u(ty) : s = 0} is bounded. From Theorem 4.1 in [6], there exists
a unique asymptotic center ¢ of {S(s)u(tg) : s > 0} with respect to C,
Le.,

limsup || S(s)u{te) — c || < limsup || S(s)u(to) — z ||

S— 00 =0

for all z € C'— {c}. Since for all £ > 0
I'SG + s)u(to) — S(t)e I< ke || S(s)ulto) — <,
limsup || S(¢)u(te) — S(t)c || < limsup k. || S(s)ulto) —c ||
t—o0 t—00

=l S(s)u(te) — ¢ .

Hence, we have

limsup || S(t)u(to) — S(t)e |{|< limsup || S(s)u(te) — ¢ || -
t—o0

I—0O

This implies that S(t)c = ¢, for alit > 0. Thus F(S) #¢. O
LEMMA 3.6. If § = {5(¢) : t > 0} is of type k¢ — («), then AO(S)

is convex.

Proof. Let A € [0,1] and put 2(2) = Au(#)+(1~X)o{t) for u(t),v(t) €
AO(S) and t > 0. Put A(t) = sup,sq || w(t + s) — S(s)u{t) | and
B(t) = sup,5o || v(t + 8) — S(s)u(t) || . Since each S(t) is of type
ky — (%), we have

lz(t +s) = S(s)=(t)|
= [[Au(t + s) 4 (1 = Mot + s) = S()[Aul®) + (1 = No()]|
< Allu(t + 5 ) = S(su(t)f + (1= Mlfv(t + ) — S(s)u(2)]
+ IAS()u(t) + (1 — A)S(s)u(t) — S(s)Au(t) + (1 — Mot |
< AA(t) 4 (1 — A)B(#)
+ hey T (Jle(t) = oD — E7HIS(s)u(t) — S(shu(t)])
< AA() + (1 - MB(1)
+ ke [Jlae(®) — o) — k7 (lult + 5) —o(t + s)|| — A(t) — B(t))]

for ¢,5 > 0. Combining this with Lemma 3.4 and lim, o k¢ = 1, it

follows that z(-) € AO(S). O
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LEMMA 3.7. Let X,C and § be as in Lemma 3.1. If u(-) € AO(S),
then o4(-) € AO(S), where g,(t) = ];fos u(t + h)dhs > 0,t = 0.

Proof. Let s > 0 and e > 0. By uniform continuity of u(-) on {0,00),
there is § = 6(¢) > 0 such that || w(t') — u(t) i< 357 i | ' =t {< 4,
where M = sup,sohs. Let A 1 0 =& < & < - < & =shea
partition of [0,s) such that d, =& — £,y < §fori=1,2,--- , k. Then

k s k
o) = 3 D dat+ &)=l 5 [ u(t+ Wk =33 datt+6))

=1

k ot
1 t
< SU [ e —ute+ )l db) -
=] v el
< [
1+ M

for ¢t > 0. Since AO(S) is convex and u(-+£,) € AG(S), 1 Zf=1 dou(t+
&) € AO(S) and so

k k
1 1
}_ljg}oliup I E du(t+h+6&)— 5(’?)[; z du(t+ &) ] =0.
=] =1
Since

I oo(t + h)=5(h)o(2) ||

k
<| ot +h) - %Zd ult+h+ &)

3=}

K k
12 St 4 b+ 6) - S Y dut + £

1=1 1=1

k
FI WSS dult +6)] - S(Wau(®) I

=1

sup |los{t + h)— S(h)o. ()
A0

M. —=

£
S1FM Y]

k

X
+ sup 1]% Z dault + h+£) — S(h) "} Z dru(t +&)]-

=1
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Therefore, we have

:l_if?o[i‘;’f, | oot + 1) — S(h)oa(t) [[| <&

Hence, o,(-} € AO(S). 0O

REMARK[9]. Let u(-):[0,00) — X be a continuous function. Then
by the integration by parts we have

1/ 1o
;[ e mde=1 [ [ utern nanic + 561,5,1)

fort,s > 0 and h > 0, where z(t,s,h} = & fo‘g{ s—)u(g +h) —v(n+
h + t)]dy

PRrOPOSITION 3.8. Let C be a bounded closed convex subset of a
uniformly convex Banach space X which has a Fréchet differentiable
norm and let § = {S(t) : ¢ > 0} be an asymptotically nonexpensive

semigroup on C. If u( ) € AO(S), then we have the following state-
ments.

(1) Re(u(t), J(f — g)) converges as t — oo for every f,g € F(S).

(2) conuW,.(u(t}) N F(S) consists of at most one point, where
Wi(u(t)) = {y : 3 {t,} such that w — lim,—.co u(t,) = y} and
convA is the closure of the convex hull of A.

Proof. Let f,g € F(8). Forany 0 < A < 1, du(-)+(1-X}f € AO(S)
from Lemma 3.6 and so || Au(t) + (1 — X)f — ¢ || converges as t — oo,

Since {|| w(t) — f ||} is bounded, the Fréchet differentiability of X
mplies that

o\ )= 5l (F )+ M) = I =11 f =g )

converges to Re(u{t) — f,J(f — ¢)) as A — 0 wuniformly in ¢ > 0.
Hence lim, .o Re(u(t) — f, J(f — ¢)) = lim¢— oo x—g @A, 1) exits. This
proves (1). It follows from (1) that Re(u — v, J(f — ¢)) == 0 for all
u, v € Conv Wy(u(t)). Therefore, conv Wy, (u(t)) N F(S) consists of at
most one pomt. [3
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PROPOSITION 3.9. Let X,C and S be as in Proposition 3.8 and let
u(-) € AQ(S). If for a sequence {t,} of nonnegative numbers,

lim [sup || oaltn + k) — S(h)ou(tn) ] =0,
A>0

n—oo

then we have the following statements.
(1) For {t,} witht] >1t, for all n,

lim [ sup || o.(t, + h) — S(R)a,(t,) ||] =0,
>0

n—oo h

(2) For every f € F(S), || on(tn) — f || converges as n — oo.

(3) If {u(t) : t > 0} is bounded, then there exists an element y
of F(S) such that w ~ lim, e o5(tn) = y. Moreover, F(S) N
convWy,(u(t)) = {y}.

Proof. Put M,(t) = supyyg || 04(t + k) — S(h)o,(t) || for s > 0 and
t 2 0. Then im, o M,(t,}) = 0. Since

Mn(t::) = ?’;P l O'n(t'n +h) - S(h)o,,(t:,) !
20
< sup[ ff oalty, + k) = S(t, —ta + R)oa(ta) ||
h>0

+ 1} S, —ta + h)oa(ta) — S(R)oa(th) ]
< i’;%[ “ on(t'n + h) - S(t:z —tat+ h)on(tn) H

+ kp | onlth) — S, —ta)oa(ta) |}

< A-{n(tn) + fllp ky A, (tn)
h >0

= {1+ supkp)Mo(t,)
h2>0

for all ¢, > t,,, limy,oo Mp(t),) = 0.
In order to prove (2), we use the equality in Remark with t = n +
k,s =n and h = t,4; then we have

1 n+k
Tnatltnn) = e [ Gulturs + O+ 500 + Byt
]
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Let f € F(S) and put L = sup,5, |f u(t) — f || . Then

2t kot | € s [T =t + ) = £
+luln+tase+n+ k)= fl{dy

1 s
P — -
Sy iy L/o (n—njdy
_ nlL
n+k’
On the other hand, if £ > ¢, then
| onltntr +&) = F Il < Ma(ta)+ ke [l onlta) ~ F 1l -

Therefore, we have

t, n4-h
oussltnss) = IS gl [ [ ) Nouttnsr )= 1) 0
-+ ” Z(n =+ ka n,tn-i-R) "

t.L nl
< 3 -—
SoiE + Ma(ta)+ ke || onltn) ~ f || +n+k

for n + k > t,. Since limg—.oo ke = 1,
Lhimsup || op(tr) — f | < liminf || on{t,) = f -
n—oG

A —o0

This completes the proof of (2).

Now, let W be the set of weak subsequential limits of {o,(¢,)}} as
n — oo. Since X is reflexive and {o,(t,)} is bounded from (2), W is
nonempty. To prove (3}, it suffices to show that IV C F(S) and W is
a singleton. Since

(I = S{R))on(ta)ll

SHoa(tn + 1) = S(h)oa(ta)l] + llon(tn) — onlts + R)||
h+n

< My(ta) + 2| ] [ultn+€) = f1dE— [ [ulta +€) ~ flde]
n+

1 h h
< Ma(ta) + = i Ilu(tn+€)—f||d£+f lultn +£) — flld¢]

2h L

n

N
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for each it 2 0,limp—.oo (I — S{h))o,.(tn} = 0. Since (I — S(I}) is demi-
closed with respect to zero [see Lemma 3.2, W C F(S§). Since X has
a Fréchet differentiable norm,

W C ﬂ conv{u(t) : t > s} = oo Wh(u(t))[4).

>0

Thus W C Eonv Wy {u(t))NF(S) and hence W is a singleton by Propo-
sition 3.8-(2). This proves (3). 1O

Now, we can prove a nonlinear exgodic theorem for almost-orbits of
asymptotically nonexpansive semigroups in a uniformly convex Banach
space with a Fréchet differentiable norm.

THEOREM 3.10. Let C be a bounded closed convex subset of a uni-
formly convex Banach space X which has a Fréchet differentiable norm
and § = {S(t) : t > 0} an asymptotically nonexpansive semigroup on
C. Ifu(-) is a bounded almost-orbit of S, then there exists an y € F(§)

such that .

w — lim : u(h+s)ds =y

t~—~oo o

uniformly in h > 0.

Proof. Let A = {{t,} : lim,—oo[sUpysg || Onlta + 1) — S(h)on(ts) ||
] = 0}. Then A # ¢ from Lemma 3.7. Let {t,} € A and {I,} be
any sequence with I, > ¢, for all n. Then by Proposition 3.9-(1),(3),
there exists an element y such that {y} = F(8) N conv W,,(u(t)) and
w = iMp—oo On(ln) = y. This implies that w ~liMy—oo Tn(tn + A} =y
uniformly in A > 0. Therefore, for any € > 0, there is an integer n such
that | (0,(tp +2) ~y,2*) |<eforall h > 0 and o* € X*. Since

lodm) =y <5 [ Noutht o) =yl dst | st ) |

tnl 1 [ L
<B2 i [ Nothies -y as+ 5
t t Je, t

fort > ¢, and h > 0, where L = sup,~q || u{t)—y i, w—lim;—e 04(h) =
y uniformly in 2> 0. 0O B

Following Corollary is the extension of the theorems in [7],{8],{11]
and [12].
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COROLLARY 3.11. Let X,C and S be as Theorem 3.10. Then for

every ¢ € C, there exists an y € F(S) such that

.1
w— lim - | S{s+h)zds =y
t—oco ¢t 0

uniformly in h > 0 as t - oo.

Proof. Since for each z € C,5(-) : {0,00) — C is an almost-orbit

of § = {5(¢) : t > 0}, the result is obvious. O

=]

10

11
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