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ON THE CHAIN CONDITIONS OF THE
ENDOMORPHISM RING AND OF A FLAT MODULE

SOON-S00K BAE

1 Introduction

In this paper the author investigates the tools
I = Homp(M,L) = {fe§|Imf < L}

and

In = {feS|N<kef}

for submodules L , N < Af in order to find out the relationships
between the lattice of submodules of gAf and the lattice of left ideals
of the endomorphism ring § = End(M) on an endo — flat module M.
For a left{or right, or two-sided) ideal J of S, the sum of images of
endomorphisms in J and the intersection of kernels of endomorphisms
m J are denoted hy

ImJ = mef and kerJ = ﬂ kerf |
JeJ feJ

respectively .
Assume a ring R to be a commutaive ring with an identity.
The composition of mappings will follow the direction of arrows ;

fg : A f:B ., cC.

Tle following lemima is an equivalent definition of an §—flat module
as defined in [1],{2], and [5].
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DEFINITION 1.1. A left R—module g M = M is said to be §— flat(or
flat over S ) if for any left ideal J of S, we always have a Z —isomorphism
g, M®@sJ — MJ where p, is the restriction of u to M ®s J and
p o M®sS — Misdefined by (m® flu = mf forallm € M and
for all f € S . We have the commutative diagram below:

1ar®e
M®sJ —— M@sS

| J»

MJ —— MS=M

For a commutative ring R, the abelian group pAf @3S is an R—module.
Let p(r) be denoted by the endomorphism defined by mp(r) = rm for
all m € M.

Now a submodule L is called an open submodule of M if L is the
smallest submodule which corresponds to the left ideal I”, meaning
that

L=n{N,<M|IN= = I},

In other words, the interior
K° =n{N, < M | IV =[})

of K is defined for every submodule K < M. We shall investigate the
open submodules of an § — flat module A and their correspondence
to the left ideals of the ring S.

On the other hand, a submodule N is called a closed submodule of
M if it is the largest submodule which corresponds to the right ideal
In,infact, N = 3> {Ny|In, = In}.

A submodule K < A is said to be generated by A if K is a sum
of images of endomorphisms f, : M — M, ie., K =Y, Mf, =
Yoo Imfa.

The following lemma is for a faithful module pU from the lemma on
page 522 in {3].
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LEMMA 1.2, (p522,[3]) A fasthful module U is flat over its endo-
morphism ring if and only if it generates the kernel of each homomor-
phism

d: U S U (n=1,2,3,...)
where U™ is denoted by a direct product of n—copies of U.

REMARK 1.3. From the above lemma, every kernel of an endomor-
phism is an open submodule of a faithful module gM. But it still not
possible to say that for any submodule N < M is open, or any sub-
module N < M is a kernel of some endomorphism. In spite of that,
for every element € Af, where M is S — flat, there is some endo-
morphism h such that 2 € Imh. This means that it is still hard to tell
whether a sum of the images of non-epimorphic endomorphism may be
M or may not For distinct submodules I, L < A we might have the
same left ideals I" = IV = {f € §|Imf < L} of the ring S.

2 The correspondence between ideals of § and submodules
of pM = M

From now on, we assume the left R-, right S-module gMg = M
module is to be § — flat. For the commutative ring R, we have the
R—isomorphism g : M @5 S — Af defined by (m ® fiu = mf for
every m € A and every f € S.

In case, two left(right, or two-sided) ideals J, J' of S have the same
image

ImlJ= mef =ImlJ' = Z Imyg

jeJ g€J!

we will call J and J' s2milar. And if their kernel
kerd = Ogeskerf = kerd' = Nyeplery,

then we will call J and J' cossmilar. Furthermore similarity and cosim-
darity on the lattice of all submodules are equivalence relations. We
denoted ” simalarity” by gm~ and ”costmilarity” by cosime.

We notice that for any left ideal J <; S, the kernel kerJ = Nycykerf
is always a closed fully invariant submodule of A, and for any right
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ideal J 9, 5, the image ImJ is an open fully tnvariant submodule of
A. Thusfor J ;' S,

Lery 4 S and oml =" Nl < S
and for a right ideal J <, 5,
mmlias and g =" Nl,s4,. 5.

The following proposition is straight forward.

PROPOSITION 2.1. For an 5—flat module Af, we have the following:

(1} Two (left) ideals J,J' <; S of S are similar iff the additive

subgroups M @s J =M ®s J' < M @5 S.
There are one-to-one correspondences in the folowing:
(2) Between the set {J <; S}/ oim~ and { M Qs J|J < S }.
3) Between the set {J <; §}/sim~ and the set of all open sub-

modules of AI.

(4) Between the set {J <i S}/ cosam~ and the set of all closed fully
imvariant submodules of A,

(5) Between the set {J <, S}/sim~ and the set of all open fully
inveriant submodules of Af.

(6) Between the set {J <, S}/cossm~ and the set of all closed
submodules of Af.

REMARK 2.2. On the S — flat module M, in fact, for any ideal
J of S,the ideal I™Y is the largest ideal among the ideals similar to
the ideal J. This means that I™J = 3{ J, | Jo ~ J } is the largest
ideal which is similar to J. In the same way, the right ideal Ii.,r is the
largest one among the ideals cosimilar to the ideal J . This means that
era=3{JalJaxJ}.
We also have the properties:
(1) For a proper submodule I < A, the left ideal I¥ of § is proper.
(2) For each ideal J of S, the left ideal I'™™7 is simalar to J.
(3) For a nontrivial submodule N < M, the right ideal In is a
nontrivial right ideal of §.
(4) For each ideal J of S, the right ideal I}, is cosimilar to J.
(5) For two similar ideals J and J', there is an ideal IM7 = [MJ'
which is simslar to J and J'.
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(6) For cossmaler ideals J and J', there is an ideal Ier g = Igery
similar to Ixery and I,y which is cosimidar to J and J'.

DEFINITION 2.3. For conveniences, let’s call a module g M endo-
flat if gM 1s S-flat where S = Endp(rM) . Especially, for every closed
submodule N, if the quotient module A /N is endo-flat i.e.,, M/N 1s
Endg(M/N)—flat. we will call Al closedly quotient endo-flat.

For any subring 4 C 5, let the image (A x 4)(@5(13r®¢)) of M x A
under the mapping Og(1ar @ ¢), simply be denoted by M ©g A.

RCMARK 2.4. For any left ideal J <; S, if g Al is endo-flat, we have
to notice the following:

(1) If gM is closedly quotient endo-flat, then Al is endo-flat.

(2) M/kerJ @sJ 1s R~isomorphic to MJ and M @s J is isomor-
phic to MikerJ Qs J .

(3) If ALJ = M A for a subting A C S of S, then

M@osA=MasJ<MOsS

follows

Proof. 1}: Since0 = kerlys is a closed submodule and since Endg( M)
can bhe identified with Endp(A/{0}), it follows immediately.

2). Since we have S—balanced map A : M/kerJ x J — M J defined
by (m + kerd, g} = myg for every m € M and every g € J there
15 a unique R—homomorphism p; : Af/kerJ Og J ~ MJ such that
@pg = 3. In fact, the R—homomorphism

p, MikerJ ©s J — MJ

is defined by ({m + kerJ)© flp, = mf for evary ((m +kerJ)® f) €
M/fkerJ @s J and p, is an R—isomorphism followed from the R~
isomorphism 7, @1 : Al @ J — MjkerJ & .J where m, : M —
M/kerJ is the natural(canonical) projection defined by mn, = m +
kerJ , for eachm e M , 1:8 — § is the identity function, where

7,01 :M@s] - MikerJ @5 J
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is the tensor product of 7, and 1. And the isomorphism 7, ® 1 follows
from the fact that (r, ® 1)p, 17 = lasgs is the identity mapping on -
M @ J saying that o, ® 1 is an R—monomorphism.

Therefore

p,=(n, @)y, : MlkerJ @J = MJ
is an R—isomorphism.
3): Since the R—submodule M @sJ = (m@j) < M @s S is gener-
ated by
{m @z |me A, je J} which is R—isomorphic to MA = MJ,

M@sA=M0s] < M©®sS

follows immediately.

For a fully invariant submodule N < M |, A{/N is a right S—module
and A/N ©g J is a left R—module. And for any left ideal J <; §,
M/kerd @s J is well- defined and is a left B~ module.

Since the kernel of J , kerJ = Nyegkerf is a fully invariant sub-
module of M for every left ideal J <; S, for this fully invariant sub-
module kerJ < Af, the quotient module Af/kerJ is a right S— module
and S is a subring of T' = End(pl/kerJ) .

LEMMA 2.5, If an endo-flat module Al has an endo-flat quotient
module M /kerJ for a left ideal J < S, then there is an R—isomorphism

¢+ MJI[(kerJ N\ MJ) — M/kerd @s J

defined by
(Z m,g, +kerJNAMJ)¢ = Z(m, +kerJ)® g,
) 1

for every element ) m,g, + kerJNAJ € MJ/(kerJ N M T) .

Proof. Let’s denote the endomorphism rving Endp(M/kerJ) = T
and
p I ker N L4 e T Imt < (M/kerJ)T } .
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Then we can cousider the following diagram in which
E:MJI/(kerJNMJ)— (MT + kerJ ) kerJ
1s an R—isomorphism defined by

ki1 n
(O meg + kerJ N MI)E = g, + kerJ
1 1

for every element )y m,q, + kerJNAM T € M J/(kerJ N M JT) and
B:MikerJ @5 J — (MJ + ker)fkerd
1s defined by
(Z(”h + kerJ) ®g;)))§ = Z m,g, + kerlJ

for every element Y (m, + kerJ)© ¢,) € MfkerJ @s J ;

MjkerJ &s J LA (M J + kerJ)/kerJ & MJ/(kerJ N MJ)

1 Hrs ! L T er,

Mikerd ®g ST & M/kerd @ TJ = M/[kerd ®r (r J(M/ker )y
I

I M/kerd @ J

1/'71

M/kerd @s SJ & MJ



220

in which all elements are assigned by mappings as follows :

Sim.g, + (kerd N M J)
) ¢
TH((m + kerd) ®s 4) 5 LM mug, + kerJ)[kerJ
H Ly, t
21 ((m, + kerd) ®s 1) <L 21 ({(my + kerJ) ©7 4,)
il
i H((my + kerJ) &r j.)
 m
Shm. + kerd) ©s G < T (musi)

Clearly 7, is an R—isomorphism since ImT = Al/kerJ and T'—balanced
is S—balanced. And 7; is also an R—isomorphism by 2) and 3} Remark
24.

Let v = mya : M/herJ @ TJ — MjkerJ @5 SJ , then v is an
R—isomorphism by diagram chasing and

¢ =Eup, My c MIf(kerJ O MJ) = Mjkerd @s SJ = M/kerJ ®s J
is the required one. Hence the proof of Lemma is completed.

The similarity does not imply the cosimilarity in general (See the
next following Remark 2.7).
We have a theorem for a closedly quotient endo-flat module gAM.

THEOREM 2.6. Let pA{ be closedly quotient endo-flat. Then we
have a property: if J and J' are similar then they are cosimilar where
J, J' are left ideals of S.

Proof. Since the left ideals J, .J' are similar and since .J and T 7 are
also simalar, it suffices to show that J and I/ are cosimilar because
once this is proved then the fact I3 = I'M7" would imply cosimilarity
of J and J'. Since kerJ, kerIMY are fully invariant, also the tensor
products

MikerIM g J | AfkerJ@s] , M/kerJ@sIM? | and M/kerIMI@gIMJ

are well-defined and they are R—modules. Since J € I'*M7 | it follows
that kerJ 2 kerI™7. We can consider the following diagrams (1*) and
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(2%) 1 which mappings j, 7, , 7, #, K0y Py s and g,
are involved, Let

7 MjkerIM — M/ker]

be defined by (m + kerIM7); = m + kerJ, for every element m +
kerIM7 ¢ M/KerI™J | Let

poas : MfkerIMY @g I3 AfIMT 2 AT

be defined by -
((m+ kerI*My g 0y =mf

for every
(m+ kerIMY @ fe MikerIM T o 1M

and let
p, Mikerd @s J — MJ be defined by ({m + kerJ) @ h)p, = mh ,
for every (m + kerJ) G h € M/ker ] Cs J. Infact, p ,,, and p, are

R— isomorphisms.

T @1
M&sJ et = M/kerI™’ g J e M [ kerI™J @g 1M/

101 . & @1 N " pes O
“IN, Mikerd ®sJ N Mikerd @5 MY | P Mg [MY
1P '/FIMJ
MJ = MIMI
(1*)

Since (7 ,,, @15)19¢t)p, 5, = p, is an R—isomorphism, 7 ,,, @1,
is an R—monomorphism and so T, @ 1 is an isomorphism. Since
the facts that

1@15= (F,Au ®1J)—IF‘JPJ -



222

. p _ - - -1
andl@::(w””wlj) l,uJ;uM” 1 (nl,wle} :(W]AI'I@lJ) By P
it follows that

F@1; : MikerI" ©g J — M/kerJ ®s J
with the identity mapping 1;: J — J and
19¢ : M/kerIM @g J — M[kerIM @4 1M

are R—isomorphisimns too.

M/kerIMJ g4 [MJ
- \ 1
™I Mikerd @g J M/kerd @s 1M’ & M/kerJ x MY
Pry BT ¢ In B/

MJ _
MITZ=MJ  MJIf(kerJAMJI) = MM j(kersn MIM /)

(2*)

For an S—balanced mapping
B Mfker x IMI 5 MM f(kerJ 0 M M)

defined by
(m + kerd, g)B = mg + kerJ 0 MIM’

for every element (m + kerJ, g) € M/kerJ x IM7 | there is a unique
R-homomorphism

n o MJkerd @ IMY — MIMYT [(ker ] 0 MTYMY)y

such that @5 = .

Since M is closedly quotient endo-flat, by the above Lemma 2.5 there
1s an R—isomorphism ¢ : M J/(kerJ N M J) — M/kerJ @5 J defined
by

k k
(O mufi+kerJNMIN6 =Y (m, +kerd)® £,

1 1
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for any elements

k

m,fo + kerJNMJ € MJ/(kerJ O MJ) .
1

Hence (j@1) 7 ¢ p, = p,u, is an R—isomorphism, from which
we have an R—monomorphism j @ 1. By combining this with the
surjectivity of 1 @ 1, 7 @ 1 becomes an R-—isomorphism. Also the
homomorphism

lﬂf/;er‘j ®¢ : MjkerJ @s J — MikerJ @s ™7

is an R—isomorphism since 1atery @ ¢t = 0 ®15)7 (1 Q)7 ® 1) is
the composition of isomorphisms.

It remains to show that kerJ C kerI*7, Hence for each m € kerd,
the fact of

(m+kerJ)@ g = O0prjpersoins

for every g € I says that mg = 0 always for each ¢ € I*7, Thus
kerJ C kerI*7 follows. Hence the cosimalarity of J and T follows.
Therefore the proof is completed.

REMARK 2.7. For a study of correspondences between left or right
ideals of S = Endp{(A!) and submodules of an endo-flat g M, we have
to see the following properties:

(1) The hypothesis "closedly quotient endo-flatness” of the Theo-
rem 2.6 is essential.
(2) The converse of the above theorem 2.6 doesn’t hold.

For an endo-flat module M, we have the following 3),4),
and 5):

(3) For an open submodule L and a submodule I/, IX = IV im-
plies that L < L',
(4) For a closed submodule N and a submodule N', In = Iy
implies N' < N.
(5) Foreach left ideal J <) § = End(A{) for an R—fasthful module
rAM, the closed submodule kerJ is open. Hence we have
{H < M |H is a closed submodule of M }
C {IK £ M |K is an open submodule of M } .
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Proof. For each element r € R, let p(r) be denoted by the endomor-
phism defined by mp(r) = rm for all m € M.

1): For a prime number p, let’s consider a left Z—faithful module
2zZ(p>). Then zZ(p™) is not endo-flat by the Lemma 1.2 since the
kernel

kerp(p) = {0,1/p,2/p, ....(p — 1)/p}

is not generated by the endomorphic images. For the endomorphism
ring S = Endz{zZ(p*)), it follows immediately that two distinct left
ideals Sp(p) and Sp(p?) are similar but not cosimlar. Also Sp(p) is
similar to § = ITme(®) but Sp(p) is not cosimalar to § = [1me(P) = M
with kerS = 0 and every quotient module Z{p>)/{kerSp{(p™)), for any
natural number n, is isomorphic to a non-endo-flat module Z{p™), from
which zZ(p™) is not closedly quotient endo-flat.

For a specific example of an endo-flat module which is not closedly
quoticnt endo-flat:

Take a Z—left module M = zZ, @& Z;, M is endo-flat since any
non-invertible endomorphism

a 0

b ¢/’
possibly a = 0,1,b = 0,7, and ¢ = 0,1,2,3 has a non-zero left anni-
hilator in S = End{M) where j : Z; — Z is defined by (k + Z4)j =
k+ Z,, for every k = 0,1,2, 3. By applying Lemma 1.2, it follows that

M= 272, & Z, is endo-flat.
In particular, for the endomorphisms

10
r=(a )
{0 0
g= J 0 )

we have distinct kernels kerSf = 0322, # kerSg = Z ® 2Z4,
however ImSf = I'mSg = Z5 @ 0 shows that the hypothesis " closedly
quotient endo-flatness” cannot be dropt to obtain the cosimilarity of

and
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two ssmalar left ideals of §. In other words, A = 22, @ Z, is endo-flat
but not closedly quotient endo-flat since for the endomorphism

h = (j g) : M/(kerSf)y— M/(kerSf),

considering the following element :

= = 1 0
(1631)@7”(} ,))

-

1s not the zero in

(frerspyort (1 9)

-

but is the zero element of Af/(kerSf)Q7T, it follows that the quotient
module Af/(kerSf) is not endo-flat

Note that for endomorphisms

0 0 10
=020 o)

h={0 0)_
= (0 9) =0

shows that & has a non-zero left annihilator endomorphism &£ # 0 in
S = End(Al), but in T = End{M/(kerSf)), h has only zero left

annihilator
0 0
k= (0 2) =0r.

Hence "closedly quotient endo-flamess” the hypothesis of Theorem
2.6 1s essential.

2): Considering a simple example of closedly quotient endo-flat mod-
ules; Z—faithful module zZ has a property that S can be identified
with § = {p(a)la € Z} which is a PID (i.e., principal idea! domain).
Distinct ideals are cossmilar which are not simzier For an instance,

kerSp(2) = 0 = kerSp(3) and ImSp(2) = 2Z # ImSp(3) = 37 says

we have that
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that Sp(2) and Sp(3) are cosimilar but not similer. This shows that
costmilarity doesn’t imply ssmilarity, in general.

3),4): The proofs of 3) and 4) are omitted.

5): From Lemma 1.2 for each f, € J we have an open submod-
ule kerfo, < M of M. And since NINe = I"Ne for any submodules
N, € M (a), in particular for each open submodule Ny = kerfq,
the left ideal NINe = ™o = [Okerfa - Jherd = nrkerfa has its im-
age Im(I*77) = kerJ followed by the isomorphism ..., and by the
S—balanced mapping 3

B:MxS - MRsS , MxITFerfa = Mx(NI¥7f) = N(AM x I*erfa)
is mapped onto the submodule kerJ. Thus the image MI*¢™ = kerJ
is open. Hence the kernel kerJ is open for every left ideal J of S. In
this case, the " R—fathfulness” is needed in order to apply Lemma 1.2.

For more applications of the correspondences between the the lattice
of submodules of an R— left module gAf and the lattice of left ideals
of the endomorphism ring § = Endg(p: )}, the following definition is
used from {4].

DEFINITION 2.8. ([4]) A module M is said to be self-generated if
every submodule is generated by A{, that means that for each submod-
ule L < Af, there are some endomorphisms f, : Al — A such that
L=3% Imf,.

A module M is called self-cogenerated if any submodule N is cogen-
erated by A i.e., for any submodule N < M there is an R—homomorphism
d : M — [] M such that kerd = N.

Equvalently, there are some endomorphisms fg : M — M such
that N = Ngherfs .

Let {J] be the equivalence class containing J in the set {J <
S } / SNt~ -

TUEOREM 2.9. If a closedly quotient endo-flat module M is self-
generated, then we have a one-to-one corresponcences between the fol-
lowing sets :

{J<S)T 8 Mome ={[J]|J 45} &5 {A<M}
EL(TAA<S M )
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Proof. For an S—flat module A1, if Al is self-generated, then every
submodule is an open submodule, which means that every ideal J of S
is contained in only one largest ideal I/™4 with open submodules Im.J

and kerJ.

And by the Theorem 2.6, ker.J is determined by J uniquely, in other
words, kerJ = kerIMY for every left ideal .J <; S. Hence

ImJ TaeJ AT
ni=pm=r
ner

is an ideal of S which is similar and cosimalar to J. In fact, I'™Y is
the largest ideal containing J such that I'™7 is simalar and cosimalar
to J. Hence the remaining parts of the proof are easily completed.

Let (J) be the equivalence class containing J in {J <y S}/ cosme-

THEOREM 2.10. If an endo — flat module M is self-cogenerated,
then there are one-to-one correspondences between the following sets:

{J < S} costmn ={(N) T S} <-> {B < M | B is fully invariant }
< {Iz|B<Mis fully invariant }.

Proof. In the correspondences, take B = kerJ for each J <, S, then

kerJ is fully invariant. Hence the remaining parts of the proof follow
easily.

3 Chain conditions on an endo-flat module M

The chain conditions of M and .S are to be studied. For any left ideal

J < S, 7] C(J) = (Liers) holds for any closedy quotient endo-flat
module Af.

NOTE 3.1. For any closedly quotient endo-flat g M and for any ideal
J < S8, by Theorem 2.6, it is concluded that

(=N =[] with a umque kerJ and (J) = (Ixers)-
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THEOREM 3.2. For an endo-flat module Al and a left ideal J <; S,
if{J] = (J), then I'™7 = I; ..y is a two-sided ideal of S.

Proof. Since [J] = {I'™Y] = (J) = (Iters) and since I'™ | Iiers
are maximal elements in[J] = (J) , I’/ = It follows. Now that
kerJ is fully snvariant for a left ideal J < S, Itery = I/ < Sisa
two sided ideal of 5.

COROLLARY 3.3. Fora closedly quotient endo-flat module M, there
is a one-to-one function from

{J < S}/Cosnn: = {(J) 1] < S} into {I < 5}/31,,,,\, = {{J] }J <, S} .

PROPOSITION 3.4. If a module gM is closedly quotient endo-flat,
then the following easily follow:

(1) For a self-generated module M, if § is lcft Noetherian,
then M is Noetherian.
(2) For a self-generated module A, if § is left Artinian, then M is
Artinian.
(3) For an R—fasthful self-cogenerated module M, if S is left Noe-
therian.
then Af is Artiman and Noetherian.
(4) For an R—faithful self-cogenerated module M, if S is left Ar-
tinian, then M is Artinian and Noetherian.
(5) For a self-cogeneraied module A, if S is right Noetherian, then
Af is Artinian.
(8) For a self-cogenerated module M, if S is right Artinian, then
A 1s Noetherian.

Proof. For (1) and (2), the proofs are easy so we will not write them
lhere.
3): In order to show that A is Noetherian, let

Ny <N £ &Ny € Npgs <
be any ascending chain of submodules of Af. Then

Il\'t - N2 C..C JNm C JNm+1 C ..
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is an ascending chain of left ideals of 5. Since S is left Noetherian,
there is an n € N such that I¥» = IN»+ for each 2 = 1,2,3,.... Since
M is an R-faithful endo-flat module, every submodule is open and
closed by 5) of Remark 2.7, which implies that Ny = ImI™Ne = MM
for each ¥ € N. And thus N, = N,,, for cach ¢ = 1,2,3, ... follows.
Hence A is Noetherian.

To show that Af is Artinian, let

ZVI Z N? 2 aee Z Arm Z ]Vm-lvl _>..

be any descending chain of submodues of 3f. Then we have an ascend-
ing chain of right ideals of

Ine €In, €. C N, CINpyy €

On the other hand, the facts that A{ is Noethcrian and that M Iy, <
MIy, <...< My, <My, <..isanascending chain of submod-
ules of Af imply that there is an n € N such that MIy, = My,
for each ¢ = 1,2,3,.... Thus Iy, and Iy,,, are similar for each
: = 1,2,3,.... By Theorem 2.6, they are cosimilar, in other words,
kerly, = N, = Npy, = kerly,,, follows for each ¢+ =1,2,3,.... Thus
A is Artinian.

4) For the proof of Artinian module M, it follows from the first part
of the proof of (3) in a similar way, it remains to show that M is Noe-
therian. To show that Af is Noetherian, let’s consider any ascending
chain

jvl S AT? S vee S Ntu SNm-i-l '.<_ oe

of submodules of Af. Then we have a descending chain
Iny21In, 2 ..2 1IN, 2IN,,, 2

of right ideals of a left Artinian ring S. And also we have a descending
chain

MIy, > MIy, > .. > MIn, > MIx, ., 2 ..

of submodules of Artinian module Af. Then there is an n € N such
that M In, = MIy,,, for each ¢ = 1,2,3,.... By Theorem 2.6 and by
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5) of Remark 2.7, N,, = N, 4, forevery ¢ = 1,2,3, ... follows, Hence M
is Noetherian.
5): Let
Arl 2 N2 2 e 2 I\rm 2 Nm+1 2

be any descending chain of submodules of a self-cogenerated module
M, then we have an ascending chain of right ideals of S

JI = IN1 g J2 = INQ c.. g Jm = INm g Jm+l = INm+1 c..

Since § is a right Noetherian there is an n such that

Jon=In =Jny,=In, . forall:=1,23, ...

n41

Then since the N,’s are closed submodules,
kerd, = Ny = kerJpy, = Nug, foralli =1,2,3,...

follows immediately from In, = In,,, for alli1=1,2,3,.... Hence M
is Artinian.

For (6), proof is followed by taking the reversing inclusion and the
right Artinian ring S in the previous item (5).

The theorem stated on page 69 in [2] is well known. If § is right
Artinian, then any right S-module is Noetherian if and only if it is
Artinian.

For a self-cogenerated module gAd, by combining the above theorem
with the facts:

{LIL<AM} = {A<M|A1sclosed)
2 {B<L M| Bis open }
2 {B< M| B is open fully invariani
}, we have the following theorem.

THEOREM 3.5. If a closedly quotient endo-flat module g M is self-
cogenerated, then Al is Artinian if and only if it is Noetherian.

Proof. Assume that A is a Noetherian module. Let

Ny 2N2 2.2 Np > Npy1 2 .
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be any descending chain of submodules of Af. Then wc have an as-
cending chain of right ideals of S;

=0y Ch=1In,C..Cn=In, CIus1=In,4, €

eudy

from which we have an ascending chain of submodules of A/;
MIi<ML<.<MJ, LMy £ ..
Since Af is Noetherian, there is an n such that
MI, =My, foradl:=1,2,3,... .

Thus J, and J,4, are ssmidar, so J,, and J,4, ave costmalar for all
= 1.2,3, ..., by Theorem 2.6. In other words,

11'67“];; - -]\rn == ;\.67an+1 - Ar"+l fOl‘ (‘I! = 1, 2‘3, N

Hence A is Artinian.

For the converse direction of proof, assume that A{ is an Artinian
module. Let

Arl ._<.. -’VZ S ane S Arm S -Nm+1 S
be any ascending chain of submodules of 3f. We have a descending

chain of right ideals of S;

Jy = I.'\"l 2 Jy = I!\"z 2w 2Jm= INm 2 Jm-s-l = IN,,,,H 2

ey

from which we have a descending chain of submodules of AM;
MIh>2ML2>2..2MI,>2Ml002...
Since Af is Artinian, there is an n such that

ATy =MIy, = MJyp = My

4t

Thus J, and Jpq, arve stmaar: = 1,2, 3, ... . Hence by Theorem 2.6, J,

and J,4, are cosimelar. Since A is self-cogenerated, every submodule
of A 18 closed. Thus

forallt =1,2,3,... .

kerJ, = N, = kerJpy, = Npy, for all 1 =1,2,3

yaseq

which implies that Af is Noetherian. Hence the proof is completed.

The following corollary is a result of the Proposition 3.4 and Theo-
rem 3.5,



232

COROLLARY 3.6. If a faithful closedly quotient endo-flat M is self-
cogenerated, then the following hold:

(1) IfS is a left ( or right, or two-sided ) Noctherian ring, then M
is Artinian and Noetherian.

(2) If S is a left(or right, or iwo-sided) Artinian ring, then M is
Artinian and Noetherian.

Proof. For the case of a left Noetherian (or left Artinian) ring S,
the results follow by (3) and (4) of Proposition 3.4. Hence it suffices
to prove this corollay for the right Noetherian (or right Artinian) ring
S.

1): 1t follows from (5) of Proposition 3.4 that Af is Artinian.

And if

47\7] S AT? é see S Nm S Nm-{-l S

is any ascending chain of submodules of A7. Then

Jl = IN1 :_) J’Z = IN? 2 .. 2 Jm = INm 2 Jm+1 = INm+1 i

is a descending chain of right ideals of 5. Then
MIy2MI> . . 2Ml, > MIpn =2 ..

is a descending chain of submodules of A7. Since Af is Artinian, there is
an 7 € N such that A J, = A J, 4, for all 7 = 1,2,3..., in other words,
Jn and Jp4, are ssmalar. Since every submodule is closed, by Theorem
2.6 kerJp, = kerIn, = Ny = Npyo = kerIn,,, forall i = 1,2,3....
Hence A is Noetherian.

2): For the case of a right Artinian ring S, we have to show that A
is both Artinian and Noctherian. But by the theorem in [2] it suffices
to show that one of the proofs that Af is Noetherian and Artinian.

From 6) of Proposition 3.4 it follows that Af is Noetherian. Hence
the proof is ccmpleted.

n4r
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