ON THE CHAIN CONDITIONS OF THE ENDOMORPHISM RING AND OF A FLAT MODULE

Soon-Sook Bae

1 Introduction

In this paper the author investigates the tools

\[I^L = \text{Hom}_R(M, L) = \{ f \in S \mid \text{Im} f \leq L \} \]

and

\[I_N = \{ f \in S \mid N \leq \text{ker} f \} \]

for submodules \(L, N \leq M \) in order to find out the relationships between the lattice of submodules of \(R M \) and the lattice of left ideals of the endomorphism ring \(S = \text{End}(M) \) on an endo-flat module \(M \). For a left(or right, or two-sided) ideal \(J \) of \(S \), the sum of images of endomorphisms in \(J \) and the intersection of kernels of endomorphisms in \(J \) are denoted by

\[\text{Im} J = \sum_{f \in J} \text{Im} f \quad \text{and} \quad \text{ker} J = \bigcap_{f \in J} \text{ker} f \]

respectively.

Assume a ring \(R \) to be a commutative ring with an identity.

The composition of mappings will follow the direction of arrows;

\[f g : A \xrightarrow{f} B \xrightarrow{g} C \]

The following lemma is an equivalent definition of an \(S-\text{flat} \) module as defined in [1],[2], and [5].

Received October 17, 1996
This paper was prepared during my substanical year 1995.
DEFINITION 1.1. A left R–module $_M = M$ is said to be S–flat (or flat over S) if for any left ideal J of S, we always have a Z–isomorphism $\mu_J : M \otimes_S J \rightarrow MJ$ where μ_J is the restriction of μ to $M \otimes_S J$ and $\mu : M \otimes_S S \rightarrow M$ is defined by $(m \otimes f)\mu = mf$ for all $m \in M$ and for all $f \in S$. We have the commutative diagram below:

$\xymatrix{ M \otimes_S J \ar[r]^{1_{M \otimes S}} \ar[d]_{\mu_J} & M \otimes_S S \ar[d]^{\mu} \\
MJ \ar[r] & MS = M}$

For a commutative ring R, the abelian group $_M \otimes_S S$ is an R–module. Let $\rho(r)$ be denoted by the endomorphism defined by $m\rho(r) = rm$ for all $m \in M$.

Now a submodule L is called an open submodule of M if L is the smallest submodule which corresponds to the left ideal I^L, meaning that $L = \bigcap\{N_\alpha \leq M \mid I^{N_\alpha} = I^L\}$.

In other words, the interior $K^o = \bigcap\{N_\alpha \leq M \mid I^{N_\alpha} = I^K\}$ of K is defined for every submodule $K \leq M$. We shall investigate the open submodules of an S–flat module M and their correspondence to the left ideals of the ring S.

On the other hand, a submodule N is called a closed submodule of M if it is the largest submodule which corresponds to the right ideal I_N, in fact, $N = \sum_{\alpha} \{N_\alpha \mid I_{N_\alpha} = I_N\}$.

A submodule $K \leq M$ is said to be generated by M if K is a sum of images of endomorphisms $f_\alpha : M \rightarrow M$, i.e., $K = \sum_{\alpha} Mf_\alpha = \sum_{\alpha} \text{Im} f_\alpha$.

The following lemma is for a faithful module $_U$ from the lemma on page 522 in [3].
Lemma 1.2. (p522,[3]) A faithful module $R U$ is flat over its endomorphism ring if and only if it generates the kernel of each homomorphism

$$d : U^{(n)} \to U \quad (n = 1, 2, 3, \ldots)$$

where $U^{(n)}$ is denoted by a direct product of n--copies of U.

Remark 1.3. From the above lemma, every kernel of an endomorphism is an open submodule of a faithful module $R M$. But it still not possible to say that for any submodule $N \leq M$ is open, or any submodule $N \leq M$ is a kernel of some endomorphism. In spite of that, for every element $x \in M$, where M is S--flat, there is some endomorphism h such that $x \in \text{Im} h$. This means that it is still hard to tell whether a sum of the images of non-epimorphic endomorphism may be M or may not. For distinct submodules $K, L \leq M$ we might have the same left ideals $I^K = I^L = \{ f \in S \mid \text{Im} f \leq L \}$ of the ring S.

2 The correspondence between ideals of S and submodules of $R M = M$

From now on, we assume the left R, right S-module $R M_S = M$ to be S--flat. For the commutative ring R, we have the R--isomorphism $\mu : M \otimes_S S \to M$ defined by $(m \otimes f) \mu = mf$ for every $m \in M$ and every $f \in S$.

In case, two left(right, or two-sided) ideals I, J' of S have the same image

$$\text{Im} J = \sum_{f \in J} \text{Im} f = \text{Im} J' = \sum_{g \in J'} \text{Img}$$

we will call J and J' similar. And if their kernel

$$\ker J = \cap_{f \in J} \ker f = \ker J' = \cap_{g \in J'} \ker g,$$

then we will call J and J' cosimilar. Furthermore similarity and cosimilarity on the lattice of all submodules are equivalence relations. We denoted "similarity" by sim and "cosimilarity" by cosim.

We notice that for any left ideal $J \trianglelefteq S$, the kernel $\ker J = \cap_{f \in J} \ker f$ is always a closed fully invariant submodule of M, and for any right
ideal \(J \triangleleft_\mathbf{r} S \), the image \(\text{Im} J \) is an open fully invariant submodule of \(M \). Thus for \(J \triangleleft_\mathbf{l} S \),
\[
I_{\ker J} \triangleleft_\mathbf{l} S \quad \text{and} \quad I^\text{Im} J = I^\text{Im} J \cap I_{\ker J} \triangleleft_\mathbf{l} S
\]
and for a right ideal \(J \triangleleft_\mathbf{r} S \),
\[
I^\text{Im} J \triangleleft_\mathbf{r} S \quad \text{and} \quad I^\text{Im} J = I^\text{Im} J \cap I_{\ker J} \triangleleft_\mathbf{r} S
\]
The following proposition is straightforward.

Proposition 2.1. For an \(S \)-flat module \(M \), we have the following:

1. Two (left) ideals \(J, J' \triangleleft_\mathbf{l} S \) of \(S \) are similar iff the additive subgroups \(M \otimes_S J = M \otimes_S J' \leq M \otimes_S S \).

 There are one-to-one correspondences in the following:

2. Between the set \(\{ J \triangleleft_\mathbf{l} S \}/\sim_{\text{sim}} \) and \(\{ M \otimes_S J \mid J \triangleleft_\mathbf{l} S \} \).

3. Between the set \(\{ J \triangleleft_\mathbf{l} S \}/\sim_{\text{sim}} \) and the set of all open submodules of \(M \).

4. Between the set \(\{ J \triangleleft_\mathbf{l} S \}/\sim_{\text{cosim}} \) and the set of all closed fully invariant submodules of \(M \).

5. Between the set \(\{ J \triangleleft_\mathbf{r} S \}/\sim_{\text{sim}} \) and the set of all open fully invariant submodules of \(M \).

6. Between the set \(\{ J \triangleleft_\mathbf{r} S \}/\sim_{\text{cosim}} \) and the set of all closed submodules of \(M \).

Remark 2.2. On the \(S \)-flat module \(M \), in fact, for any ideal \(J \) of \(S \), the ideal \(I^M J \) is the largest ideal among the ideals similar to the ideal \(J \). This means that \(I^M J = \sum \{ J_\alpha \mid J_\alpha \sim J \} \) is the largest ideal which is similar to \(J \). In the same way, the right ideal \(I_{\ker J} \) is the largest one among the ideals cosimilar to the ideal \(J \). This means that \(I_{\ker J} = \sum \{ J_\alpha \mid J_\alpha \simeq J \} \).

We also have the properties:

1. For a proper submodule \(L \leq M \), the left ideal \(I^L \) of \(S \) is proper.
2. For each ideal \(J \) of \(S \), the left ideal \(I^M J \) is similar to \(J \).
3. For a nontrivial submodule \(N \leq M \), the right ideal \(I_N \) is a nontrivial right ideal of \(S \).
4. For each ideal \(J \) of \(S \), the right ideal \(I_{\ker J} \) is cosimilar to \(J \).
5. For two similar ideals \(J \) and \(J' \), there is an ideal \(I^M J = I^M J' \) which is similar to \(J \) and \(J' \).
(6) For similar ideals J and J', there is an ideal $I_{ker J} = I_{ker J'}$

similar to $I_{ker J}$ and $I_{ker J'}$ which is similar to J and J'.

DEFINITION 2.3. For conveniences, let's call a module RM endo-

flat if RM is S-flat where $S = \text{End}_R(RM)$. Especially, for every closed

submodule N, if the quotient module M/N is endo-flat i.e., M/N is

$\text{End}_R(M/N)$-flat, we will call M closely quotient endo-flat.

For any subring $A \subseteq S$, let the image $(M \times A)(\otimes_S(1_M \otimes i))$ of $M \times A$

under the mapping $\otimes_S(1_M \otimes i)$, simply be denoted by $M \otimes_S A$.

REMARK 2.4. For any left ideal $J \subseteq S$, if RM is endo-flat, we have

to notice the following:

1. If RM is closely quotient endo-flat, then RM is endo-flat.
2. $M/\text{ker } J \otimes_S J$ is R-isomorphic to MJ and $M \otimes S J$ is isomorphic

 to $M/\text{ker } J \otimes_S J$.
3. If $MJ = MA$ for a subring $A \subseteq S$ of S, then

 $M \otimes_S A = M \otimes_S J \leq M \otimes_S S$

 follows

Proof. 1). Since $0 = \text{ker } 1_M$ is a closed submodule and since $\text{End}_R(M)$

can be identified with $\text{End}_R(M/\{0\})$, it follows immediately.

2). Since we have S-balanced map $\beta : M/\text{ker } J \times J \rightarrow MJ$ defined

by $(m + \text{ker } J, g)\beta = mg$ for every $m \in M$ and every $g \in J$ there

is a unique R-homomorphism $\rho_J : M/\text{ker } J \otimes_S J \rightarrow MJ$ such that

$\otimes \rho_J = \beta$. In fact, the R-homomorphism

$$\rho_J : M/\text{ker } J \otimes_S J \rightarrow MJ$$

is defined by $((m + \text{ker } J) \otimes f)\rho_J = mf$ for every $((m + \text{ker } J) \otimes f) \in$

$M/\text{ker } J \otimes_S J$ and ρ_J is an R-isomorphism followed from the R-

isomorphism $\pi_J \otimes 1 : M \otimes S J \rightarrow M/\text{ker } J \otimes S J$ where $\pi_J : M \rightarrow$

$M/\text{ker } J$ is the natural(canonical) projection defined by $m\pi_J = m + \text{ker } J$, for each $m \in M$, $1 : S \rightarrow S$ is the identity function, where

$$\pi_J \otimes 1 : M \otimes S J \rightarrow M/\text{ker } J \otimes S J$$
is the tensor product of \(\pi_j \) and 1. And the isomorphism \(\pi_j \otimes 1 \) follows from the fact that \((\pi_j \otimes 1)\rho_J^{-1} = 1_{M \otimes J} \) is the identity mapping on \(M \otimes J \) saying that \(\pi_j \otimes 1 \) is an \(R \)-monomorphism.

Therefore

\[
\rho_J = (\pi_j \otimes 1)^{-1}\mu_J : M/\ker J \otimes J \to MJ
\]

is an \(R \)-isomorphism.

3): Since the \(R \)-submodule \(M \otimes S J = \langle m \otimes j \rangle \leq M \otimes S S \) is generated by

\[
\{ m \otimes j \mid m \in M, j \in J \}
\]

which is \(R \)-isomorphic to \(MA = MJ \),

\[
M \otimes S A = M \otimes S J \leq M \otimes S S
\]

follows immediately.

For a fully invariant submodule \(N \leq M \), \(M/N \) is a right \(S \)-module and \(M/N \otimes S J \) is a left \(R \)-module. And for any left ideal \(J \triangleleft S \), \(M/\ker J \otimes S J \) is well-defined and is a left \(R \)-module.

Since the kernel of \(J \), \(\ker J = \cap_{\ell \in J} \ker f \) is a fully invariant submodule of \(M \) for every left ideal \(J \triangleleft S \), for this fully invariant submodule \(\ker J \leq M \), the quotient module \(M/\ker J \) is a right \(S \)-module and \(S \) is a subring of \(T = \text{End}(R M/\ker J) \).

Lemma 2.5. If an endo-flat module \(M \) has an endo-flat quotient module \(M/\ker J \) for a left ideal \(J \triangleleft S \), then there is an \(R \)-isomorphism

\[
\phi : MJ/(\ker J \cap MJ) \to M/\ker J \otimes S J
\]

defined by

\[
(\sum_i^n m_i g_i + \ker J \cap MJ)\phi = \sum_i^n (m_i + \ker J) \otimes g_i
\]

for every element \(\sum_1^I m_i g_i + \ker J \cap MJ \in MJ/(\ker J \cap MJ) \).

Proof. Let's denote the endomorphism ring \(\text{End}_R(M/\ker J) = T \) and

\[
\tau \text{I}^{M/\ker J} J = \{ t \in T \mid \text{Im}t \leq (M/\ker J)J \}
\]
Then we can consider the following diagram in which

\[\xi : MJ/(\ker J \cap MJ) \rightarrow (MJ + \ker J)/\ker J \]

is an \(R\)-isomorphism defined by

\[(\sum_{1}^{n} m_{i}g_{i} + \ker J \cap MJ)\xi = \sum_{1}^{n} m_{i}g_{i} + \ker J, \]

for every element \(\sum_{1}^{n} m_{i}g_{i} + \ker J \cap MJ \in MJ/(\ker J \cap MJ)\) and

\[\hat{\beta} : M/\ker J \otimes_{S} J \rightarrow (MJ + \ker J)/\ker J \]

is defined by

\[(\sum (m_{i} + \ker J) \otimes g_{i})\hat{\beta} = \sum m_{i}g_{i} + \ker J \]

for every element \(\sum (m_{i} + \ker J) \otimes g_{i} \in M/\ker J \otimes_{S} J \);
in which all elements are assigned by mappings as follows:

\[\sum_{i}^{n} m_{i} j_{i} + (\ker J \cap MJ) \]

Clearly \(\gamma_1 \) is an \(R \)-isomorphism since \(\text{Im}T = M/\ker J \) and \(T \)-balanced is \(S \)-balanced. And \(\gamma_2 \) is also an \(R \)-isomorphism by 2) and 3) Remark 2.4.

Let \(\gamma = \gamma_1 \gamma_2 : M/\ker J \otimes_T TJ \rightarrow M/\ker J \otimes_S SJ \), then \(\gamma \) is an \(R \)-isomorphism by diagram chasing and

\[\phi = \xi \mu_{TJ}^{-1} \gamma : MJ/(\ker J \cap MJ) \rightarrow M/\ker J \otimes_S SJ = M/\ker J \otimes_S J \]

is the required one. Hence the proof of Lemma is completed.

The \textit{similarity} does not imply the \textit{cosimilarity} in general (See the next following Remark 2.7).

We have a theorem for a \textit{closedly quotient endo-flat} module \(_RM \).

Theorem 2.6. Let \(_RM \) be \textit{closedly quotient endo-flat}. Then we have a property: if \(J \) and \(J' \) are similar then they are \textit{cosimilar} where \(J, J' \) are left ideals of \(S \).

Proof. Since the left ideals \(J, J' \) are \textit{similar} and since \(J \) and \(IM^J \) are also \textit{similar}, it suffices to show that \(J \) and \(IM^J \) are \textit{cosimilar} because once this is proved then the fact \(IM^J = IM^{J'} \) would imply \textit{cosimilarity} of \(J \) and \(J' \). Since \(\ker J, \ker IM^J \) are \textit{fully invariant}, also the tensor products

\[M/\ker IM^J \otimes_S J, \ M/\ker J \otimes_S J, \ M/\ker J \otimes_S IM^J, \text{ and } M/\ker IM^J \otimes_S IM^J \]

are well-defined and they are \(R \)-modules. Since \(J \subseteq IM^J \), it follows that \(\ker J \supseteq \ker IM^J \). We can consider the following diagrams\((1^*) \) and
(2{*}) in which mappings \(j, \pi_j, \pi_{iMj}, \mu_j, \mu_{iMj}, \rho_j \), and \(\rho_{iMj} \) are involved. Let

\[
j : M/\ker I^{Mj} \to M/\ker J
\]

be defined by \((m + \ker I^{Mj})_j = m + \ker J\), for every element \(m + \ker I^{Mj} \in M/\ker I^{Mj}\). Let

\[
\rho_{iMj} : M/\ker I^{Mj} \otimes_S I^{Mj} \to M^{IMj} = MJ
\]

be defined by

\[
((m + \ker I^{Mj}) \otimes f)\rho_{iMj} = mf
\]

for every

\[
(m + \ker I^{Mj}) \otimes f \in M/\ker I^{Mj} \otimes_S I^{Mj},
\]

and let

\[
\rho_j : M/\ker J \otimes_S J \to MJ \text{ be defined by } ((m + \ker J) \otimes h)\rho_j = mh,
\]

for every \((m + \ker J) \otimes h \in M/\ker J \otimes_S J\). In fact, \(\rho_{iMj} \) and \(\rho_j \) are \(R \)– isomorphisms.

Since \((\pi_{iMj} \otimes 1_J)(1 \otimes \iota)\rho_{iMj} = \mu_j\) is an \(R \)–isomorphism, \(\pi_{iMj} \otimes 1_J \) is an \(R \)–monomorphism and so \(\pi_{iMj} \otimes 1_J \) is an isomorphism. Since the facts that

\[
j \otimes 1_J = (\pi_{iMj} \otimes 1_J)^{-1} \mu_j \rho_j^{-1}
\]
and \(1 \otimes i = (\pi_{I_{M_J}} \otimes 1_J)^{-1} \mu_J \mu_{I_{M_J}}^{-1} (\pi_{I_{M_J}} \otimes 1_J) = (\pi_{I_{M_J}} \otimes 1_J)^{-1} \mu_J \rho_{I_{M_J}} \)

it follows that

\[j \otimes 1_J : M/\ker I_{M_J} \otimes_S J \to M/\ker J \otimes_S J \]

with the identity mapping \(1_J : J \to J\) and

\[1 \otimes i : M/\ker I_{M_J} \otimes_S J \to M/\ker I_{M_J} \otimes_S I_{M_J} \]

are \(R\)-isomorphisms too.

\[
\begin{array}{ccc}
\pi_{I_{M_J}} \otimes_1 M/\ker I_{M_J} \otimes_S I_{M_J} & \cong & M/\ker J \otimes_S I_{M_J} \\
\phi \otimes_1 & \cong & 1 \otimes 1 \\
M^{I_{M_J}} = M_J & \quad & M_J/(\ker J \cap M_J) = M^{I_{M_J}}/(\ker J \cap M^{I_{M_J}})
\end{array}
\]

(2*)

For an \(S\)-balanced mapping

\[\beta : M/\ker J \times I^{M_J} \to M^{I_{M_J}}/(\ker J \cap M^{I_{M_J}}) \]

defined by

\[(m + \ker J, g) \beta = mg + \ker J \cap M^{I_{M_J}} \]

for every element \((m + \ker J, g) \in M/\ker J \times I^{M_J}\), there is a unique \(R\)-homomorphism

\[\eta : M/\ker J \otimes_S I^{M_J} \to M^{I_{M_J}}/(\ker J \cap M^{I_{M_J}}) \]

such that \(\otimes \eta = \beta\).

Since \(M\) is closedly quotient endo-flat, by the above Lemma 2.5 there is an \(R\)-isomorphism \(\phi : M_J/(\ker J \cap M_J) \to M/\ker J \otimes_S J\) defined by

\[(\sum_{i=1}^k m_i f_i + \ker J \cap M_J) \phi = \sum_{i=1}^k (m_i + \ker J) \otimes f_i , \]
for any elements

\[
\sum_{i=1}^{k} m_i f_i + \ker J \cap MJ \in MJ/(\ker J \cap MJ).
\]

Hence \((j \otimes 1) \eta \circ \rho_j = \rho_{IM}J\) is an \(R\)-isomorphism, from which we have an \(R\)-monomorphism \(j \otimes 1\). By combining this with the surjectivity of \(j \otimes 1\), \(j \otimes 1\) becomes an \(R\)-isomorphism. Also the homomorphism

\[
1_{M/\ker J} \otimes \iota : M/\ker J \otimes S J \to M/\ker J \otimes S I^M J
\]

is an \(R\)-isomorphism since \(1_{M/\ker J} \otimes \iota = (j \otimes 1) (1 \otimes \iota) (j \otimes 1)\) is the composition of isomorphisms.

It remains to show that \(\ker J \subseteq \ker I^M J\). Hence for each \(m \in \ker J\), the fact of

\[
(m + \ker J) \otimes g = 0_{M/\ker J \otimes I^M J},
\]

for every \(g \in I^M J\) says that \(mg = 0\) always for each \(g \in I^M J\). Thus \(\ker J \subseteq \ker I^M J\) follows. Hence the cosimilarity of \(J\) and \(I^M J\) follows. Therefore the proof is completed.

Remark 2.7. For a study of correspondences between left or right ideals of \(S = \text{End}_R(M)\) and submodules of an endo-flat \(R\) module \(M\), we have to see the following properties:

1. The hypothesis "closedly quotient endo-flatness" of the Theorem 2.6 is essential.
2. The converse of the above theorem 2.6 doesn't hold.

For an endo-flat module \(M\), we have the following 3), 4), and 5):

3. For an open submodule \(L\) and a submodule \(L'\), \(I^L = I^{L'}\) implies that \(L \leq L'\).
4. For a closed submodule \(N\) and a submodule \(N'\), \(I^N = I^{N'}\) implies \(N' \leq N\).
5. For each left ideal \(J \trianglelefteq S = \text{End}(M)\) for an \(R\)-faithful module \(R\) module \(M\), the closed submodule \(\ker J\) is open. Hence we have

\[
\{H \leq M \mid H \text{ is a closed submodule of } M\} \subseteq \{K \leq M \mid K \text{ is an open submodule of } M\}.
\]
Proof. For each element $r \in R$, let $\rho(r)$ be denoted by the endomorphism defined by $m\rho(r) = rm$ for all $m \in M$.

1) For a prime number p, let's consider a left Z—faithful module $zZ(p^\infty)$. Then $zZ(p^\infty)$ is not endo-flat by the Lemma 1.2 since the kernel

$$\ker \rho(p) = \{0, 1/p, 2/p, ..., (p - 1)/p\}$$

is not generated by the endomorphic images. For the endomorphism ring $S = \text{End}_Z(zZ(p^\infty))$, it follows immediately that two distinct left ideals $S\rho(p)$ and $S\rho(p^2)$ are similar but not cosimilar. Also $S\rho(p)$ is similar to $S = I^{1m\rho(p)}$ but $S\rho(p)$ is not cosimilar to $S = I^{1m\rho(p)} = I^M$ with $\ker S = 0$ and every quotient module $Z(p^\infty)/(\ker S\rho(p^n))$, for any natural number n, is isomorphic to a non-endo-flat module $Z(p^\infty)$, from which $zZ(p^\infty)$ is not closely quotient endo-flat.

For a specific example of an endo-flat module which is not closely quotient endo-flat:

Take a Z—left module $M = zZ_2 \oplus Z_4$, M is endo-flat since any non-invertible endomorphism

$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix},$$

possibly $a = 0, 1, b = 0, j$, and $c = 0, 1, 2, 3$ has a non-zero left annihilator in $S = \text{End}(M)$ where $j : Z_4 \to Z_2$ is defined by $(k + Z_4)j = k + Z_2$, for every $k = 0, 1, 2, 3$. By applying Lemma 1.2, it follows that $M = zZ_2 \oplus Z_4$ is endo-flat.

In particular, for the endomorphisms

$$f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

and

$$g = \begin{pmatrix} 0 & 0 \\ j & 0 \end{pmatrix},$$

we have distinct kernels $\ker Sf = 0 \oplus 2Z_4 \neq \ker Sg = Z_2 \oplus 2Z_4$, however $\text{Im} Sf = \text{Im} Sg = Z_2 \oplus 0$ shows that the hypothesis "closely quotient endo-flatness" cannot be dropped to obtain the cosimilarity of
two similar left ideals of S. In other words, $M = \mathbb{Z} \oplus \mathbb{Z}_4$ is endo-flat but not closely quotient endo-flat since for the endomorphism

$$h = \begin{pmatrix} 1 & 0 \\ j & 2 \end{pmatrix} : M/(kerSf) \to M/(kerSf),$$

considering the following element:

$$(1 \oplus 1) \otimes_T \begin{pmatrix} 1 & 0 \\ j & 2 \end{pmatrix}$$

is not the zero in

$$(M/(kerSf)) \otimes_T T \begin{pmatrix} 1 & 0 \\ j & 2 \end{pmatrix}$$

but is the zero element of $M/(kerSf) \otimes_T T$, it follows that the quotient module $M/(kerSf)$ is not endo-flat.

Note that for endomorphisms

$$k = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ j & 2 \end{pmatrix},$$

we have that

$$kh = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0_S$$

shows that h has a non-zero left annihilator endomorphism $k \neq 0$ in $S = End(M)$, but in $T = End(M/(kerSf))$, h has only zero left annihilator

$$k = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} = 0_T.$$

Hence "closely quotient endo-flatness" the hypothesis of Theorem 2.6 is essential.

2): Considering a simple example of closely quotient endo-flat modules; \mathbb{Z}–faithful module $\mathbb{Z} \mathbb{Z}$ has a property that S can be identified with $S = \{\rho(a) | a \in \mathbb{Z}\}$ which is a PID (i.e., principal ideal domain). Distinct ideals are cosimilar which are not similar. For an instance, $kerS\rho(2) = 0 = kerS\rho(3)$ and $ImS\rho(2) = 2\mathbb{Z} \neq ImS\rho(3) = 3\mathbb{Z}$ says
that $S\rho(2)$ and $S\rho(3)$ are cosimilar but not similar. This shows that cosimilarity doesn't imply similarity, in general.

3), 4): The proofs of 3) and 4) are omitted.

5): From Lemma 1.2 for each $f_{\alpha} \in J$ we have an open submodule $\ker f_{\alpha} \leq M$ of M. And since $\bigcap I^N_{\alpha} = I^N_{\alpha}$ for any submodules $N_{\alpha} \leq M$ (α), in particular for each open submodule $N_{\alpha} = \ker f_{\alpha}$, the left ideal $\bigcap I^N_{\alpha} = I^N_{\alpha} = I^{\ker f_{\alpha}} = I^{\ker J} = \bigcap I^{\ker f_{\alpha}}$ has its image $\operatorname{Im}(I^{\ker J}) = \ker J$ followed by the isomorphism $\mu_{I^{\ker J}}$ and by the S-balanced mapping β

$$\beta : M \times S \to M \otimes_S S, \ M \times I^{\ker f_{\alpha}} = M \times (\bigcap I^{\ker f_{\alpha}}) = \bigcap (M \times I^{\ker f_{\alpha}})$$

is mapped onto the submodule $\ker J$. Thus the image $MI^{\ker J} = \ker J$ is open. Hence the kernel $\ker J$ is open for every left ideal J of S. In this case, the "R-faithfulness" is needed in order to apply Lemma 1.2.

For more applications of the correspondences between the the lattice of submodules of an R—left module RM and the lattice of left ideals of the endomorphism ring $S = \operatorname{End}_R(RM)$, the following definition is used from [4].

Definition 2.8. ([4]) A module M is said to be self-generated if every submodule is generated by M, that means that for each submodule $L \leq M$, there are some endomorphisms $f_{\alpha} : M \to M$ such that $L = \sum \operatorname{Im} f_{\alpha}$.

A module M is called self-cogenerated if any submodule N is cogenerated by M i.e., for any submodule $N \leq M$ there is an R—homomorphism $d : M \to \bigcap M$ such that $\ker d = N$.

Equivalently, there are some endomorphisms $f_{\beta} : M \to M$ such that $N = \bigcap \ker f_{\beta}$.

Let $[J]$ be the equivalence class containing J in the set $\{J \leq I S\} /_{\text{sim-}}$.

Theorem 2.9. If a closedly quotient endo-flat module M is self-generated, then we have a one-to-one correspondences between the following sets:

$$\{J \leq S | J \leq I S\} /_{\text{sim-}} = \{[J] | J \leq I S\} \overset{\sim}{\longrightarrow} \{A \leq M\} \overset{\sim}{\longrightarrow} \{I^A | A \leq M\}.$$
Proof. For an S-flat module M, if M is self-generated, then every submodule is an open submodule, which means that every ideal J of S is contained in only one largest ideal I^m_J with open submodules ImJ and $kerJ$.

And by the Theorem 2.6, $kerJ$ is determined by J uniquely, in other words, $kerJ = kerI^m_J$ for every left ideal $J \trianglelefteq S$. Hence

$$I^m_{kerJ} = I^m_J = I^mJ$$

is an ideal of S which is similar and cosimilar to J. In fact, I^m_J is the largest ideal containing J such that I^m_J is similar and cosimilar to J. Hence the remaining parts of the proof are easily completed.

Let (J) be the equivalence class containing J in $\{ J \trianglelefteq S \}/cosim_{\sim}$.

Theorem 2.10. If an endo-flat module M is self-cogenerated, then there are one-to-one correspondences between the following sets:

$$\{ J \trianglelefteq S \}/cosim_{\sim} = \{ (J) \mid J \trianglelefteq S \} \leftrightarrow \{ B \leq M \mid B \text{ is fully invariant } \} \leftrightarrow \{ I_B \mid B \leq M \text{ is fully invariant } \}.$$

Proof. In the correspondences, take $B = kerJ$ for each $J \trianglelefteq S$, then $kerJ$ is fully invariant. Hence the remaining parts of the proof follow easily.

3 Chain conditions on an endo-flat module M

The chain conditions of M and S are to be studied. For any left ideal $J \trianglelefteq S$, $[J] \subseteq (J) = (I_{kerJ})$ holds for any closedly quotient endo-flat module M.

Note 3.1. For any closedly quotient endo-flat module M and for any ideal $J \trianglelefteq S$, by Theorem 2.6, it is concluded that

$$[J] = [I^m_{kerJ}] = [I^mJ] \quad \text{with a unique } kerJ \text{ and } (J) = (I_{kerJ}).$$
Theorem 3.2. For an endo-flat module M and a left ideal $J \subseteq_l S$, if $[J] = (J)$, then $I^m_J = I_{\ker J}$ is a two-sided ideal of S.

Proof. Since $[J] = [I^m_J] = (J) = (I_{\ker J})$ and since I^m_J, $I_{\ker J}$ are maximal elements in $[J] = (J)$, $I^m_J = I_{\ker J}$ follows. Now that $\ker J$ is fully invariant for a left ideal $J \subseteq_l S$, $I_{\ker J} = I^m_J \subseteq S$ is a two-sided ideal of S.

Corollary 3.3. For a closely quotient endo-flat module M, there is a one-to-one function from

$\{J \subseteq_l S\}/_{\sim_{cosm}} = \{(J) \mid J \subseteq_l S\}$ into $\{J \subseteq_l S\}/_{\sim_{adm}} = \{[J] \mid J \subseteq_l S\}$.

Proposition 3.4. If a module $_RM$ is closely quotient endo-flat, then the following easily follow:

1. For a self-generated module M, if S is left Noetherian, then M is Noetherian.
2. For a self-generated module M, if S is left Artinian, then M is Artinian.
3. For an R—faithful self-cogenerated module M, if S is left Noetherian, then M is Artinian and Noetherian.
4. For an R—faithful self-cogenerated module M, if S is left Artinian, then M is Artinian and Noetherian.
5. For a self-cogenerated module M, if S is right Noetherian, then M is Artinian.
6. For a self-cogenerated module M, if S is right Artinian, then M is Noetherian.

Proof. For (1) and (2), the proofs are easy so we will not write them here.

3): In order to show that M is Noetherian, let

$$N_1 \leq N_2 \leq \ldots \leq N_m \leq N_{m+1} \leq \ldots$$

be any ascending chain of submodules of M. Then

$$I^{N_1} \subseteq I^{N_2} \subseteq \ldots \subseteq I^{N_m} \subseteq I^{N_{m+1}} \subseteq \ldots$$
is an ascending chain of left ideals of S. Since S is left Noetherian, there is an $n \in N$ such that $I_{N_i}^n = I_{N_{i+1}}^n$, for each $i = 1, 2, 3, \ldots$ Since M is an R-faithful endo-flat module, every submodule is open and closed by 5) of Remark 2.7, which implies that $N_k = I_{N_k} M_{N_k} = M_{I_N_k}$ for each $k \in N$. And thus $N_n = N_{n+1}$ for each $i = 1, 2, 3, \ldots$ follows. Hence M is Noetherian.

To show that M is Artinian, let

$$N_1 \supseteq N_2 \supseteq \ldots \supseteq N_m \supseteq N_{m+1} \supseteq \ldots$$

be any descending chain of submodules of M. Then we have an ascending chain of right ideals of

$$I_{N_1} \subseteq I_{N_2} \subseteq \ldots \subseteq I_{N_m} \subseteq I_{N_{m+1}} \subseteq \ldots$$

On the other hand, the facts that M is Noetherian and that $M I_{N_i} \subseteq M I_{N_{i+1}} \subseteq \ldots$ is an ascending chain of submodules of M imply that there is an $n \in N$ such that $M I_{N_n} = M I_{N_{n+1}}$, for each $i = 1, 2, 3, \ldots$. Thus I_{N_n} and $I_{N_{n+1}}$ are similar for each $i = 1, 2, 3, \ldots$. By Theorem 2.6, they are cosimilar, in other words, $\ker I_{N_n} = N_n = N_{n+1} = \ker I_{N_{n+1}}$, follows for each $i = 1, 2, 3, \ldots$. Thus M is Artinian.

4) For the proof of Artinian module M, it follows from the first part of the proof of (3) in a similar way, it remains to show that M is Noetherian. To show that M is Noetherian, let's consider any ascending chain

$$N_1 \leq N_2 \leq \ldots \leq N_m \leq N_{m+1} \leq \ldots$$

of submodules of M. Then we have a descending chain

$$I_{N_1} \supseteq I_{N_2} \supseteq \ldots \supseteq I_{N_m} \supseteq I_{N_{m+1}} \supseteq \ldots$$

of right ideals of a left Artinian ring S. And also we have a descending chain

$$M I_{N_1} \geq M I_{N_2} \geq \ldots \geq M I_{N_m} \geq M I_{N_{m+1}} \geq \ldots$$

of submodules of Artinian module M. Then there is an $n \in N$ such that $M I_{N_n} = M I_{N_{n+1}}$, for each $i = 1, 2, 3, \ldots$. By Theorem 2.6 and by
5) of Remark 2.7, \(N_n = N_{n+1} \) for every \(i = 1, 2, 3, \ldots \) follows. Hence \(M \) is Noetherian.

5): Let

\[
N_1 \geq N_2 \geq \ldots \geq N_m \geq N_{m+1} \geq \ldots
\]

be any descending chain of submodules of a self-cogenerated module \(M \), then we have an ascending chain of right ideals of \(S \)

\[
J_1 = I_{N_1} \subseteq J_2 = I_{N_2} \subseteq \ldots \subseteq J_m = I_{N_m} \subseteq J_{m+1} = I_{N_{m+1}} \subseteq \ldots
\]

Since \(S \) is a right Noetherian there is an \(n \) such that

\[
J_n = I_{N_n} = J_{n+1} = I_{N_{n+1}} \text{ for all } i = 1, 2, 3, \ldots
\]

Then since the \(N_i \)'s are closed submodules,

\[
ker J_n = N_n = ker J_{n+1} = N_{n+1} \text{ for all } i = 1, 2, 3, \ldots
\]

follows immediately from \(I_{N_n} = I_{N_{n+1}} \text{ for all } i = 1, 2, 3, \ldots \) Hence \(M \) is Artinian.

For (6), proof is followed by taking the reversing inclusion and the right Artinian ring \(S \) in the previous item (5).

The theorem stated on page 69 in [2] is well known. If \(S \) is right Artinian, then any right \(S \)-module is Noetherian if and only if it is Artinian.

For a self-cogenerated module \(R M \), by combining the above theorem with the facts:

\[
\{ L \mid L \leq M \} = \{ A \leq M \mid A \text{ is closed} \} \\
\supseteq \{ B \leq M \mid B \text{ is open} \} \\
\supseteq \{ B \leq M \mid B \text{ is open fully invariant} \}
\]

we have the following theorem.

Theorem 3.5. If a closedly quotient endo-flat module \(R M \) is self-cogenerated, then \(M \) is Artinian if and only if it is Noetherian.

Proof. Assume that \(M \) is a Noetherian module. Let

\[
N_1 \geq N_2 \geq \ldots \geq N_m \geq N_{m+1} \geq \ldots
\]
be any descending chain of submodules of M. Then we have an ascending chain of right ideals of S;

$$J_1 = I_{N_1} \subseteq J_2 = I_{N_2} \subseteq ... \subseteq J_m = I_{N_m} \subseteq J_{m+1} = I_{N_{m+1}} \subseteq ...,$$

from which we have an ascending chain of submodules of M;

$$MJ_1 \leq MJ_2 \leq ... \leq MJ_m \leq MJ_{m+1} \leq ...$$

Since M is Noetherian, there is an n such that

$$MJ_n = MJ_{n+1} \text{ for all } i = 1, 2, 3,$$

Thus J_n and J_{n+1} are similar, so J_n and J_{n+1} are cosimilar for all $i = 1, 2, 3, ...$, by Theorem 2.6. In other words,

$$kerJ_n = N_n = kerJ_{n+1} = N_{n+1} \text{ for all } i = 1, 2, 3,$$

Hence M is Artinian.

For the converse direction of proof, assume that M is an Artinian module. Let

$$N_1 \leq N_2 \leq ... \leq N_m \leq N_{m+1} \leq ...$$

be any ascending chain of submodules of M. We have a descending chain of submodules of S;

$$J_1 = I_{N_1} \supseteq J_2 = I_{N_2} \supseteq ... \supseteq J_m = I_{N_m} \supseteq J_{m+1} = I_{N_{m+1}} \supseteq ... ,$$

from which we have a descending chain of submodules of M;

$$MJ_1 \supseteq MJ_2 \supseteq ... \supseteq MJ_m \supseteq MJ_{m+1} \supseteq$$

Since M is Artinian, there is an n such that

$$MJ_n = MI_{N_n} = MJ_{n+1} = MI_{N_{n+1}} \text{ for all } i = 1, 2, 3,$$

Thus J_n and J_{n+1} are similar $i = 1, 2, 3, ...$. Hence by Theorem 2.6, J_n and J_{n+1} are cosimilar. Since M is self-cogenerated, every submodule of M is closed. Thus

$$kerJ_n = N_n = kerJ_{n+1} = N_{n+1} \text{ for all } i = 1, 2, 3, ... ,$$

which implies that M is Noetherian. Hence the proof is completed.

The following corollary is a result of the Proposition 3.4 and Theorem 3.5.
Corollary 3.6. If a faithful closedly quotient endo-flat M is self-cogenerated, then the following hold:

1. If S is a left (or right, or two-sided) Noetherian ring, then M is Artinian and Noetherian.
2. If S is a left (or right, or two-sided) Artinian ring, then M is Artinian and Noetherian.

Proof. For the case of a left Noetherian (or left Artinian) ring S, the results follow by (3) and (4) of Proposition 3.4. Hence it suffices to prove this corollary for the right Noetherian (or right Artinian) ring S.

1): It follows from (5) of Proposition 3.4 that M is Artinian.

And if

$$N_1 \subseteq N_2 \subseteq \ldots \subseteq N_m \subseteq N_{m+1} \subseteq \ldots$$

is any ascending chain of submodules of M. Then

$$J_1 = I_{N_1} \supseteq J_2 = I_{N_2} \supseteq \ldots \supseteq J_m = I_{N_m} \supseteq J_{m+1} = I_{N_{m+1}} \supseteq \ldots$$

is a descending chain of right ideals of S. Then

$$MJ_1 \supseteq MJ_2 \supseteq \ldots \supseteq MJ_m \supseteq MJ_{m+1} \supseteq \ldots$$

is a descending chain of submodules of M. Since M is Artinian, there is an $n \in N$ such that $MJ_n = MJ_{n+1}$, for all $i = 1, 2, 3, \ldots$, in other words, J_n and J_{n+1} are similar. Since every submodule is closed, by Theorem 2.6 $\ker J_n = \ker I_{N_n} = N_n = N_{n+1} = \ker I_{N_{n+1}}$, for all $i = 1, 2, 3, \ldots$.

Hence M is Noetherian.

2): For the case of a right Artinian ring S, we have to show that M is both Artinian and Noetherian. But by the theorem in [2] it suffices to show that one of the proofs that M is Noetherian and Artinian.

From 6) of Proposition 3.4 it follows that M is Noetherian. Hence the proof is completed.

References

3 V.P.Camillo and K R Fuller, *Rings whose faithful modules are flat over their endomorphism rings*, Arch Math, Vol 27 (1976), 522-525

Dept of Mathematics
Kyungnam University
Masan, 631-701 South Korea

E-mail: ssb@hanma.kyungnam.co.kr