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ON THE CHAIN CONDITIONS OF 프HE

ENDOMORPHISM RING AND OF A FLAT MODULE

Soon-Sook Bae

1 Introduction

In this paper the author inve암tigates the tools

IL = HomR(M,L) = {feS\Imf < L}

and
In = {feS\N< kerf }

for submodules L N < M in order to find out the relationships 
between the lattice of submodules of rM and the lattice of left ideals 
of the endomorphism ring S = End(M) on an endo — flat module M. 
For a left(or right, or two-sided) ideal J of S, the sum of images of 
endomorphisms in J and the intersection of kernels of endomorphism용 
in J are denoted by

ImJ = ^2 Imf and her J —kerf , 
/gj feJ

respectively .
Assume a ring to be a commutaive ring with an identity.
The composition of mappings will follow the direction of arrows ;

f g
fg : A ------- > B ------- > C .

The following lemma is an equivalent definition of an S—fldt module 

as defined in and [5].
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DEFINITION 1.1. A left R—module nM = M is said to be S~flat(or 
flat over S) if any left ideal J of S, we always have a Z —isomorphism 
卩j : M ®s J MJ where /zJ is the restriction of to M ®s J and 
“ :M ®s S M is defined by (?n ® f、)卩=mf for all m G M and 
for all f E S . We have the commutative diagram below:

M ®s J ------- > M ®s S

MJ ------- > MS = M

For a commutative ring R、the abelian group is an J?—module.
Let p(r) be denoted by the endomorphism defined by mp(r) = rm for 
all m C M.

Now a submodule L is called an open submodule of M if L is the 
smallest submodule which corresponds to the left ideal /气 meaning 
that

L = n{Na < M I 1牌=IL}.

In other words, the interior

K° = Q{Na < M I N = /K}

of K is defined for every submodule K < M. We shall investigate the 
open submodules of an S — flat module M and their correspondence 
to the left ideals of the ring S.

On the other hand, a submodule N is called a closed submodule of 
M if it is the largest submodule which corresponds to the right ideal 
In、in fact, N = £，{ Na \ INa = IN }.

A submodule A* < 71/ is said to be generated by M if is a sum 
of images of endomorphisms fa : M T M, i.e., K = =
& Wa.

The following lemma is for a faithful module rU from the lemma on 
page 522 in [3].
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Lemma 1.2. (p522, [3]) A faithful module rU is flat over its endo­
morphism ring if and only if it generates the kernel of each homomor­
phism

d"j3 -U (n = 1,2,3,...)

where is denoted by a direct product of n—copies of U.

REMARK 1.3. from the above Iemma, every kernel of an endomor­
phism is an open submodule of a faithful module rM, But it still not 
possible to say that for any submodule N < M is open, or any sub­
module N < M is a kernel of some endomorphism. In spite of that, 
for every element x € M, where M is S — flat, there is some endo­
morphism h such that x G Imh. This means that it is still hard to tell 
whether a sum of the images of non-epimorphic endomorphism may be 
M。호 m처y not Foz' distinct submodules L < M we might have the 
same left ideals — IL = {f E S \ Imf < L } of the ring S.

2 The correspondence between ideals of S and submodules 

of rM = M

From now on, we assume the left R-, right S-niodule rMs = M 
module is to be S — flat. For the commutative ring R、we have the 
7?—isomorphism 卩:M 0s S M defined by (m(X)/)“ = mf for 
every m G M and every f E S.

In case, two left(right, or two-sided) ideals J, J' of S have the same 
image

Im J = Imf 頌二 ImJ1 =Img
feJ geJ1

we will call J and J1 similar. And if their kernel

her J = Clf^jkerf = kerjf = j> kerg ,

then Ave will call J and J1 co similar. Furthermore similarity and cosim- 
zlanty on the lattice of all submodules are equivalence relations. We 
denoted similarity^ by stm^ and co similarity by 海河=

We notice that for any left ideal J </ S, the kernel kerJ = Qf^jkerf 
is always a closed fully invariant submodule of AR and for any right
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ideal J <r S. the image Im J is an open fullu invariant submodule of 
M. Thus for J<iS,

her J < s and I^rJj = IhnJ Qlker J <tS

and for a right ideal J <r S ,

IImJ < s and I臨=IImJ n Ikerj <r S .

The following proposition is straight forward.

PROPOSITION 2.1. For an S—flat module Mwe have the following:
(1) Two (left) ideals J, J1 <i S of S are similar iff the additive 

subgroups M ®s J = M ®s Jf < M ®s S.
There are one-to-one correspondences in the folowing:

(2) Between the set {J </ S}/and { M ®s J | J S ).
(3) Between the set {J S}/sim^ and the set of all open sub­

modules of M.
(4) Between the set {J </ S'] com and the set of all closed fully 

invariant submodules of M.
(5) Between the set {J <r S}/妇 〜and the set of all open fully 

invariant submodules of M.
(6) Between the set {J <r S}/CO3im^ and the set of all closed 

submodules of M.

REMARK 2.2. On the S — flat module M, in fact, for any ideal 
J of S,the ideal IMJ is the largest ideal among the ideals similar to 
the ideal J. This means that IM3 — JQ \ Ja J } is the largest 
ideal which is similar to J. In the same way, the right ideal IkerJ is the 
largest one among the ideals co similar to the ideal J ・ This means that 
Ikerj = £{ Jq I Jq M 丿}.

We also have the properties:
(1) for a proper submodule L < M, the left ideal IL of S is proper.
(2) For each ideal J of S, the left ideal IImJ is similar to J.
(3) Eor a nontriviaJ submodule N < M, the right ideal In is a 

nontrivial right ideal of S.
(4) For each ideal J of S, the right ideal IkerJ is cosimilar to J.
(5) fbi* two similar ideals J and there is an ideal IhtJ = IMJ， 

which is similar to J and 丁.
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(6) 호 coszmilar ideals J and J”, there is an ideal IkerJ = IkerJ1 
similar to her J IkerJf which is coszmilar to J and 지.

DEFINITION 2.3. For conveniences^ let's call a module rM endo- 
fldt if rM is S-flat ivhere S = EtlcIr(rM) . Especially, for every closed 
submodule N, if the quotient module hl/N is endo~flat Le., M/N is 
Endfi(M/N)-~flat, we will call M closedly quotient endo-flat.

For any subring A 으 5, let the image (M x A)(05(l^/®i)) of Mx A 
under the mapping Os(1a/ 0 i), siniply be denoted by M Q)s 4

REMARK 2.4. For any left ideal J </ S, if rM is endo-flat, we have 
to notice the following:

(1) If rM is closedly quotient endo-flat, then rAI is endo~Hat.
(2) M/kerJ 05 J is R—isom or phi c to hl J and M(2)s J is isomor­

phic to M/kerJ J .
(3) If MJ = MA for a subiing A C S of S7 then

Al E)s A = 71/ 0s J < 21/ 0s S

follows

Proof. 1): Since 0 二二 kerl^ is a closed submodule and since End^M) 
can be identified with End^(M/{0}), it follows immediately.

2). Since we have S—balanced map (3 : M/kerJ x J MJ defined 
by (?7? + k°、J)gV3 = mg for every m G M and every g C J there 
is a unique J?—homomorphism pj : M/kerJ Os J 一스 MJ such that 
®pj = 0. In fact, the R—homomorphism

Pj : M/kerJ 0s J —> MJ

is defined by ((zvi + kerj) Q f)pd = mf for every ((m + kerj) ® /) £ 
M/kerJ 0s J and p3 is an R—isomorphi sm followed from the R— 

isomorphism O 1 :® J t M/kerJ Q J where 孔:M —>
M/kerJ is the natural(canonical) projection defined by rriTTj = m + 
her J , for each m € hl , 1 : S t S is the identity function, where

7Fj 0 1 : M &s J T M/kerJ ®s J
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is the tensor product of 7、and 1. And the isomorphism ® 1 follows 
from the fact that(71、@ is the identity mapping on -
M ® J saying that tt^ ® 1 is an 7?—monomorphism.

Therefore

Pj =(71； ® 1)一半丿:M/kerJ ® J MJ

is an 2?—isomorphism.
3): Since the 2?—submodule M J = < M ®s S is gene호-

ated by
{m 0 j |m € -Af , J G J} which is II—isomorphic to —

M 务s -4 = M 0s J V M 0s S

follows immediately.

For a fully invariant submodule N < M , M/N is a right S—module 
and M/N 0s J is a left J?—module. And for any left ideal J S, 
M/kerJ @s J is well- defined and is a left R_ module.

Since the kernel of J , her J = Qf^jkerf is a fully invariant sub­
module of M for every left ideal J </ S, for this fully invariant sub­
module kerJ < M the quotient module M/kerJ is a right S— module 
and S is a subring of T = End(nM/kerJ).

LEMMA 2.5. If an endo-flat module M has an endo-flat quotient 
module M/ her J for a left ideal J S, then there is an R—isomorphism

(/): MJ/(kerJ Q MJ) M/kerJ ®s J

defined by

n n
(，［mlgl + her J A M — + her J) ® gz

i i

for eveiy element migl + her J A MJ G MJ/(kerJ D MJ).

Proof. Let's denote the endomorphism ring EndR(M/kerJ) = T 
and

rI(M/kerJ)J = e y j < (M/kerJ)J } .
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Then we can consider the following diagram in which

: MJ/(kerJ D MJ) t (MJ + kerj)/kerj

is an J?—isomorphism defined by

n n
m血 + kerJ D = »刀泓 + kerJ ,

I i

for every element £；〃七@ + kerJ A MJ E MJ/(kerJ fl M J) and

B : M/kerJ ®s J —> (M J + ker.J)/kerJ

is defined by

(£(叽 + kerJ) ® gj、)B = £ m 血 + kerJ

for every element + kerJ) ® gj 6 M/kerJ J ；

M/kerJ ®s J 4 (MJ + kerJ)/kerJ £ MJ/(kerJ n MJ)

II 卩1 -I T I^TJ

M/kerJ ®s SJ 二 M/kerJ ®T TJ = M/kerJ ®T (“吵次丿少
II

|( M/kerJ ®t J

71

M/kerJ SJ 2色 MJ
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in which all elements are assigned by mappings as follows :

Ze '

£3((〃" + her J) ®s ji)鬼 £并(〃&九 + kerJ)/kerJ
II 丄fT

Ei((^ + kerJ) 人)〈으 + kerJ) ®T 九)
II

II £芳((77% + kerJ) ■有)

Ei(^t + k®J) ®s jt 2으 £i(mjj

Clearly 71 is an /?—isomorphism since ImT = hl/kerJ and T—balanced 
is S—balanced. And 72 is also an K—isomorphism by 2) and 3) Remark 
2.4.

Let 7 = 7j72 : M/kerJ 切厂 TJ —> M/kerJ ®s SJ , then 7 is an 
J?—isomorphism by diagram chasing and

《5 = &卩tj—'i : MJ/{her J MJ) —> M/kerJ 0s SJ = M/kerJ 0s J

is the required one. Hence the proof of Lemma is completed.

The similarity does not imply the cosimtlarity in general (See the 
next following Remark 2.7).

We have a. theorem for a close(니시 quotient endo-flat module rM.

THEOREM 2.6. Let rAI be closedly quotient endo-flat. Then we 
have a property: if J and * are similar then they cosimilar where 
J, J1 are left ideals of S.

Proof. Since the left ideals J, Jf are simzlar and since J and are 
also similar, it suffices to show that J and I” ' are cosimilar because 
once this is proved then the fact V」=/Af ’ would imply cosimilarity 
of J and Jf. Since kerj^ kerIMJ are fully inua.riant^ also the tensor 
products

M/kerIMJ&sJ , M/kerJ@sJ , M/kerJ®sIMJ , and M/kerIMJ®sIMJ

are well-defined and they are 7?—modules. Since J C , it follows 
that kerJ 그 M?、时”. We can consider the following diagrams (1*) and
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(2*) in which mapping동 丿 , 心 , , 卩j , 小j， Pj ，and PlMJ
are involved. Let

j : M/kerIMJ M/kerJ

be defined by {m + kerIMJ')j = m + kerJ, for every element m + 
kerIMJ G M/KerIMJ . Let

pjMJ : M/kerIMJ @s IMJ — MIMJ = MJ

be defined by 一
((m + kerIMJ)® f)prMJ = mf

for every
(m + kerIMJ} M/kerIMJ Qs 时”，

and let

Pj : hl/kerJ ®5 J -t MJ be defined by ((m + kerJ) ® h)pj = mh , 

for every (??? + kerJ) Q)h E M/kerJ Qs / In fact, pjMJ and Pj are 
R— isomorphisms.

M®SJ '孚y M/kerIMJ ®s J 쯔 M/kerIMJ ®s IMJ

/ 1即 猝】/ 、州心®】）一'
“J \ M/kerJ ®s J "뜨竺 M/kerJ IMJ [ M^®s

I /
MJ = MImj

(1*)

Since(7顷j ® =卩」is an J?—isomorphism, 7r/JWJ ®1j

is an JJ—monomorphism and so 0 1j is an isomorphisni. Since
the facts that

J ® 1j =(七宀® "广半展・,7 
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a^dlC" =(7%j®1j)T “"5广'(七=(7%j®1j)T Nj PiMJ 
it follows that

J 0 lj : M/kerIMJ 0s J —，M/kerJ ®s J

with the identity mapping 1 j : .7 —> J and

1®^ : M/kerIMJ Q)s J — M/kerIMJ ®s IMJ

are 1?—isomorphisms too.

7」/ M/kerJ J M/kerJ IMJ M/kerJ x IMJ

”/ 妇 IC I J? § /

MIMJ = MJ MJ/(kerJHMJ) = MImj/(ker J d MImj)

（2*）

For an S—balanced mapping

0 : M/kerJ x IMJ t MImj/{kerJ

defined by
(m + kerJ,g、)。= mg + her J n MImj

for every element (?7? J- kerJ^ g) £ M/kerJ x there is a unique 
2?—homomorphism

〃 :M/kerJ 0s IMJ - MIMJ/(kcr.J Cl MIMJ}

su시】 that ©?/ = /?.
Since M is closedly quotient endo-flat. by the above Lemma 2.5 there 

is an R—isomorphism。: MJ /{her J「1 MJ) 一승 M/kerJ J defined 
by

k k
(£： mt ft + her J A MJ、g = + kerJ} ® ft ,
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for any elements

mifi + her J Q MJ E M J/(kerJ Q MJ).
i

Hence (j ® 1) p3 = pjAfJ is an J?—isomorphism, from which 
we have an 7?—monomorphism j 0 1. By combining this with the 
surjectivity of j 0 1, j ® 1 becomes an isomorphism. Also the 
homomorphism

^M/UrJ ® 匕：M/kerJ ®s J —> M/kerJ ®s IMJ

is an J?—isomorphism since l^/kerj ® z. = (j 0 1 ® l)(j ® 1) is
the composition of isomorphisms.

It remains to show that kerJ C kerIMJt Hence for each m E kerj^ 
the fact of

(m + kerJ) 0 g = 0A//A.er,

for every g E says that mg = 0 always for each g £ IMJ. Thus 
kerJ C kerI^tJ follows. Hence the cosimzlarity of J and IMJ follows. 
Therefore the proof is completed.

REMARK 2.7. Fbr a study of correspondences between left or right 
ideals of S = EndR(A£) and smbmod니les of an endo-flat rM, we have 
to see the following properties:

(1) The hypothesis Jiclosedly quotient endo-flatness^ of the Theo­
rem 2.6 is essentiaL

(2) The converse of the above theorem 2.6 doesn't; hold.

For an endo-flat module M, we have the following 3),4), 
and 5):

(3) For an open submodule L and a submodule Lr, IL = IL im­
plies that L < Ll.

(4) For a closed submodule N and a submodule Nl, In = In1 
implies N1 < N.

(5) For each left ideal J 勺 S = End(M) for an R—faithful module 
rM, the closed submodule kerJ is open. Hence we have

{H < M \H is a closed submodule of M }
C {K < M \K is an open submodule of M }.
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Proof. For each element r G J?, let p(r) be denoted by the endomor­
phism defined by mp(r) = rm for all m € M.

1):  For a prime number p, let's consider a left Z—faithful module 
zZ(，8). Then ^Z(p°°) is not endo-flat by the Lemma 1.2 since the 
kernel

kerp(p) = {0,1/p, 2/p,(p 一 l)/p}

is not generated by the endomorphic images. For the endomorphism 
ring S = E"dz(zZ(力8)), it follows immediately that two distinct left 
ideals Sp(p) and Sp(p2) are similar but not cosimlar. Also Sp(p) is 
similar to S = ］아北 Sp{p) is not cosimtlar to S = 尸叫心) =
with kerS = 0 and every quotient module Z(p°°)/(A'erS/9(pn)), for any 
natural number is isomorphic to a non- endo-flat module Z(p°°), 요。m 
which z・Z(p8) is not closedly quotient endo-flat.

For a specific example of an endo-flat module which is not 사Q$edly 
quotient endo-flat:

Take a Z-left module M = & %, M is endo-flat since any
non-invertible endomorphism

(；0'
possibly a = 0,1,6 = 0, j, and c = 0,1,2, 3 has a non-zero left anni- 
hilator in S = End(M) where 项：2打 t 务 is defined by (k + Z^j =

+ Z2, for every fe = 0,1,2, 3. By applying Lemma 1.2, it follows that 
M = ® Z4 is endo-flat.

In particular, for the endomorphisms

f= (0

and
fo

9 = {;

we have distinct kernels kerSf = 0 ® 2% + kerSg = Z2 & 2Z4, 
however ImSf = ImSg = Z?㊉ 0 shows that the hypothesis ^closedly 
quotient endo-flatness^ cannot be dropt to obtain the cosimilariiy of
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two similar left ideals of S. In other words, M = ® -^4 is endo-flat
but not closedly qiLotient endo-flat since for the endomorphism

h = Q. ?) : M/ikerSf) - M/(kerSf),

considering the following element :

2)

is not the zero in

(M/(A-erS/)) ®r T Q ?)

but is the zero element of M/(kerS®tTit follows that the quotient 
module ]\I/(kerSf) is not endo-fl.at

Note that for endomorphisms

fc= (o *)"=(； 2)'

we have that
"=(：o) =Os

shows that h has a non-zero left annihilator endomorphism 0 in 
S = End(AI\ but in T = Eiid(M/ikerSf)}^ h has only zero left 
annihilator

Hence 11 closedly quotient endo-flaixies^ the hypothesis of Theorem 
2.6 is essential.

2):  Considering a simple example of closedly quotient endo-flat mod­
ules; Z—faithful module zZ has a property that S can be identified 
with S = {p(a)\a G Z} which is a PID (i.e., principal ideal domain). 
Distinct ideals are costmilar which are not similar For an instance, 
kerSp(2) ~ 0 = kerSp(3) and ImSp{2) = 2Z J ImSp(Ji) = 3Z says 
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that S/?(2) and Sp(3) are cosimilar but not similar. This shows that 
cosimilarity doesn't imply similarity^ in general.

3),4):  The proofs of 3) and 4) are omitted.
5): From Lemma 1.2 for each fQ E J we have an open submod­

ule kerfa < M of M. And since RlNa = ZnAfa for any submodules 
Na < M (a), in particular for each open submodule Na = kerfa^ 
난le left ideal「l"니© = = j-nkerfQ = j-kerJ =「口庇仇 has its im-
a잉e Im(IkerJ) = kerJ followed by the isomorphism ^}kerJ and by the 
S—balanced mapping (3

13 : MxS 一，M®sS , = Mx(nlIer/-) = Q(MxIkerf-)
is mapped onto the submodule kerJ. Thus the image MIkerJ = kerJ 
is open. Hence the kernel kerJ is open for every left ideal J of S. In 
this case, the ” R—fathfulness" is needed in order to apply Lemma 1.2.

For more applications of the correspondences between the the lattice 
of submodules of an R— left module rM and the lattice of left ideals 
of the endomorphism ring S = E“cIr(rM)i the following definition is 
used from [4],

DEFINITION 2.8. ([4]) A module M is said to be self-generated if 
every submodule is generated by Mthat means that for each submod­
ule L < M, there are some en d om or ph isms fa : M M such that 
L =

A module hl is called self-cogenerated if any submodule N is cogen- 
crated by M i.e., for any submodule N < M there is an R—homomorphism 
d : 21/ —> M such that herd = N.

Equivalently, there are some endomorphisms 加 :M M such 
that N = C\pkerfi3 .

Let [J] be the equivalence class containing J in the set {J 
S}/s?m〜.

THEOREM 2.9. If a closedly quotient endo-flat module M is self- 
generated^ then we have a one-to-one correspondences between the fol­
lowing sets :

{J<S\J<tS }/szm~ = {[이 \ J <lS} {A<M}
{IA \A<M}.
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Proof. For an S—flat module Mif M is self-generated^ then eve호y 
submodule is an open submodule, which means that every ideal J of S 
is contained in only one largest ideal l[^j with open submodules ImJ 
and kerJ.

And by the Theorem 2.6, kerJ is determined by J uniquely, in other 
words, kerJ = kerl^fj for every left ideal J 의/ S. Hence

j I mJ _ jlmJ _ [MJ

is an. ideal of S which is similar and coszmilar to J. In fact, IImJ is 
the largest ideal containing J such that J is similar and cosimtlar 
to J. Hence the remaining parts of the proof are easily completed.

Let (J) be the equivalence 시ass containing J in {J $}/次算心.

THEOREM 2.10. If an endo — flat module Al is self-cogenerated, 
then thei'e are one-to-one correspondences between the following sets:

{丿 으i 8}/coszme느 ={(J) IS }巳{B < M I B is fully invariant } 
K {Ib \ B < M is fully invariant }.

Proof. In the correspondences, take B = kerJ for each J S, then 
kerJ is fidly muarzant. Hence the remaining pa 나,s of the proof follow 
easily.

3 Chain conditions on an endo-fl.at module M

The chain conditions of M and S are to be studied. For any left ideal 
J S , [J] C (J) = (Ikerj) holds for any closecly quotient endo~flat 
module M,

NOTE 3.1. For any closedly quotient endo-flat rM 처口d fbr a” ideal 
J </ S, by Theorem 2.6, it is concluded that

[J]=思财=V M a umque kerJ and (J) = (/fcerJ)«
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THEOREM 3.2. For an endo-flat module hl and a left ideal J S , 
if [J] = (J), then = IkerJ is a two-sided ideal of S.

Proof. Since [J] = = (J) = (Ijterj) and since IJrnJ , IkerJ
axe maximal elements in [J] = (J) , IlmJ = IkerJ follows. Now that 
kerJ is fully invariant for a left ideal J </ 5* , IkerJ = IImJ < S is a 
two sided ideal of S.

COROLLARY 3.3. For a closedly quotient endo-flat module M, there 
is a one-to-one function from

{J S}/gg = {(J)\J <i S} vito {J </ S}/g〜={[J]\J <i S}.

PROPOSITION 3.4. If a rnoduJe rM is closedly quotient endo-flat) 
then the following easily follow:

(1) For a self-generated module M, if S is left Noetherian,
then M is Noetherian.

(2) For a self-generated module A/, if S is left Artmianf then M is 
Artinian.

(3) For an R~faithful self-cogencrated module M, if S is left Noe­
therian.

then M is Artinian and Noetherian.
(4) For an R—faithful self-cogenerated module M, if S is left Ar­

tinian, then M is Artinian and Noetherian.
(5) For a self-cogenerated module M, if S is right Noetherian, then 

M is Artinian.
(6) For a self-cogenerated module M, if S is 호ight Artinian, then 

M is NoGtherian.

Proof. Fbr (1) and (2), the proofs are easy so we will not write them 
here.

3): In order to show that M is Noetheiian, let

N\ w W …M Nm M + 1 M …

be any ascending chain of submodules of M. Then

IN1 C /M G …C [Nm G g … 
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is an ascending chain of left ideals of S. Since S is left Noetherian, 
난lere is an n € AT such that INn = [M너r for each i — 1,2,3,.... Since 
-M is an R~faithfid endo-flat module, every submodule is open and 
closed by 5) of Remai'k 2.7, which implies that Nk = ImINk = MINk 
for each k G N. And thus Nn = Nn^-Z for each i = 1,2,3,... follows. 
Hence M is Noetherian.

To show that M is Artinian, let

N\ > N2 > ... > Nm M Nm + 1 N ...

be a꾜y descending chain of submodues of M. Then we have an ascend­
ing chain of right ideals of

IN[ 으 In*2 으 … G【Nm —【Nm+l 으 ■,,,

On the other hand, the facts that M is Noetherian and that MIn、U 
MIn? W Y MlNm V < ... is an ascending chain of submod­
ules of M imply that there is an 7? C N such that MI^n = MI^n+t 
for each i = 1,2,3,.... Thus I^n and Iyn^t are szmtlar for each 
i = 1,2,3,.... By Theorem 2.6, they are cosimilar^ in other words, 
kerl^n = Nn = = kerl^n+t follows for each z = 1,2,3,.... Thus
M is Artinian.

4) For the proof of Artinian module A久 it follows from the first part 
of the proof of (3) in a similar way, it remains to show that M is Noe­
therian. To show that M is Noetherian, let's consider any ascending 
chain

N1 < N2 < ... V Nm < Mn+l M …

of submodules of M. Then we have a descending chain

In、그 In? 그 … 2【Nm — 그 …

of right ideals of a left Artinian ring S* And also we have a descending 
chain

2 MIn隹 > ...> M】Nm 2 2 …

of submodules of Artinian module JII. Then there is an n E N such 
that MI^n = for each i — 1,2,3,.... By Theorem 2.6 and by
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5) of Remark 2.7, Nn = Nn^.t for every i = 1,2,3,... follows. Hence M 
is Noetherian.

5): Let
N\ Z N? N ... 2 Nm > Nm+i 2 …

be any descending chain of submodules of a s elf~cogenerated module 
J\f, then we have an ascending chain of right ideals of S

Ji = In、으 丿2 = In? 으 … 으 Jm =【Nm G 丿成+i = 노、G ••••

Since S is a right Noetherian there is an n such that

Jn ~ INn = J九+z =f。厂 시 1 2 = 1,2,3, ....

Then since the N再 are closed submodules,

kerjn = Nn — kerjn^.t = Nn^-t for all ? = 1,2,3,...

follows immediately from I^n = 爪… for all i = 1,2,3,.... Hence M 
is Artinian.

For (6), proof is followed by taking the reversing in시usion and the 
right Artinian ring S in the previous item (5).

The theorem stated on page 69 in [2] is well known. If S is right 
Artinian, then any right S-module is Noetherian if and only if it is 
Artinian.

For a self-cogenerated module rM、by combining the above theorem 
with the facts:

{ 지 二 < M } = {A < M \ A is closed}
그 {B < 3/ I B is open }
그 { B I B is open fully invariant 

), we have the following theorem.

THEOREM 3.5. If a closedly quotient endo-flai module rM is self- 
cogenerated. then M is Artinian if and only if it is Noetherian.

Proof. Assume that M is a Noetherian module. Let

> N2 > ... > Nm > Nm + 1 > ...
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be any descending chain of submodules of M. Then we have an as­
cending chain of right ideals of S;

J] = In、으=【Nq G … G =【Ng G Jm + l =【Nm노% 으
from which we have an ascending chain of submodules of M;

MJ、< MJ2 W …V MJm < < .…

Since M is Noetherian, there is an n such that.

MJn = for all 1 = 1,2,3,....

Thus Jn and Jn^-Z are similar^ so Jn and are coszmtlar for all 
2 = 1.2,3,by Theorem 2.6. In other words,

kerjn = Nn = kerJn^.x = Arn+i for all 1 = 1,2,3,....

Hence M is Artinian.
For the convexse direction of proof, assume that M is an Artinian 

module. Let
Ari < N2 < ... < 心 < Me < ...

be any ascending chain of submodules of M. We have a descending 
chain of right ideals of S;

Jl = I= INq 2 … 2 J111 = INm 2 Jm + 1 =그 ,,,,
from which we have a descending chain of submodules of M;

Al J1 N NI J*2 Z …2 Al Jm 2 + 1 2 …•

Since M is Artinian, there is an n siH：h that

ML = Mlg = for all i = 1,2,3,... .

Thus Jn and are similar z = 1, 2, 3,... . Hence by Theorem 2.6, Jn 
and Jn+亀 are cosimilar. Since M is self-cogenerated^ every submodule 
of 3/ is closed. Thus

kerJn = Nr)= kerjn^.t =兴〃+? for all z = 1,2,3,

which implies that M is Noethenan. Hence the proof is completed.

The following corollary is a result of the Proposition 3.4 and Theo- 
icni 3.5.
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COROLLARY 3.6. If a faithful closedly qu.otient endo-flat M is self­
cogenerated. then the following hold:

(1) If S is a left ( or right, or two-sided ) Noetherian ring, then M 
is Artinian and Noetherian.

(2) If S is a left (or right, or two-sided) Artinian ring, then M is 
Artinian and Noetherian.

Proof. Fbi the case of a left Noetherian (or left Artinian) ring S, 
the results follow by (3) and (4) of Proposition 3.4. Hence it suffices 
to prove this corollay for the right Noetherian (or right Artinian) ring 
S.

1) : It follows from (5) of Proposition 3.4 that M is Artinian.
And if

N)W Na < …< Nm < JVm+i < …

is any ascending chain of submodules of M, Then

Ji = & 2 丿2 = In? 그 … 그 Jm = 】Nm 그 Jm + l = 邛血卩 그 …

is a descending chain of right ideals of S. Then

MJ\ > MJ2 2 ... > MJm N 人/丿m + l =Z …

is a descending chain of submodules of M. Since M is Artinian^ there is 
an n E N such that MJn = M Jn-^i for all i = 1,2,3..., in other words, 
Jn and are similar. Since every submodule is closed., by Theorem 
2.6 kerjn = kerl^n = Nn = = kerl^n^ fb호 all i = 1,2,3....
Hence M is Noetherian.

2) : For the case of a right Artinian ring S、we have to show that M 
is both Artinian and Noetherian. Cut by the theorem in [2] it suffices 
to show that one of the proofs that M is Noetherian and Artinian.

From 6) of Proposition 3.4 it follows that M is Noetherian. Hence 
the proof is completed.
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