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INTEGRATION OVER
OPERATOR-VALUED MEASURES

DonGg Hwa Kim

Introduction

Let H be a compact Hausedorff space, and D is a o-algebra. of sub-
sets of H. Let E be a normed space and F a locally convex Hausdorff
linear space generated by the family {¢} ¢ of continuous semi-norms on
F. In the present paper we consider some problems of the theory of
integration with respect to an operator-valued measure. Qur purpose
is develop an integration theory for functions on H with values in a
normed space E with respect to a measure defined on 3 with values
in L{E, F'}, the space of all continuous linear operators from E into F
equipped with the topology of bounded convergence on the unit ball
of E. In addition we will give the integral representation for weakly
compact operators from C(H, E) into F' by considering a represent-
ing measure on the o-algebra ), of Borel subsets of H with values in
L(E, F} and to consider the relation between them.

In section 1 we present some preliminaries and basic notations.

In section 2 we are to develop an integration theory of E-valued
functions with respect to L{E, F')-valued measures and the integral is
defined by means of linear functionals in the sense of Pettis, as followed
in [4].

The last section is concerned with the generalization of some results
of {1], [4] and we are to investigate the representation of weakly compact
operators fiom C(H, E) into F.

1. Notaticns and Preliminaries

Let C(H, E) denote the continuous functions from H into E with the
topology of uniform convergence. We denote families of all continuous
semi-norms on E and F by {¢}g, {¢} r, respectively.
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The topology of C(H, E) is generated by the semi-norms ¢(f) =
sup,e g ¢(f(s)), where {¢} g ranges over all continuous semi-norms on
E. Let E' and F’ denote topological duals of E and F, respectively,
and L(E, F') the space of all continuous linear operators from E into F,
equipped with the topology of bounded convergence. Let E' and F
denote the dual of E' and F”, respectively. By B, we shall designate
the g-unit ball for a continuous semi-norm ¢ on E, that is, the set
of all z € E with ¢(2) < 1, and B,° is the polar of By in E' , ie.,
B, = {a' € E';| < z,2" > | < 1,2 € B;}. We note that for each
z € E we have g(z) = sup{| < z,2' > |;2" € B,°}.

Let f be a function from H into E and y an operator-valued measure
on Y into L(F, F) with

o0
pUTL ) = D u(An), And, =00#5), Ui 4a€) .
n=3i

Then it is known that for each » € E, the set function gz;), — F
defined by p.(4) = u(A)z is a vector measure and conversely, if for
z € A, p( )2 is a vector measure, then y; Y, — L(E, F) is countably
additive with respect to the topology of convergence in L{E, F'). Thus

it can be proved that for each y' € F', the set function y'y; Yy, — E'
defined by

(y'p)(A)r = y'(p(A)r) for A€ Z,
1s an F'-valued measure.

DEFINITION 1.1. The set function y'y ; 3 — E' has variation on
> if
n

[y t| = sup Zq{;:{A N A4,)), where 4, N4, = §( £ 7)

=1

{‘411}(:2.\ z,jx]_"_)__,~~A » 12,
For y' € F', we denote ||y il (A), the g-semivariation of 'y on 3,
as

n

l1lle(4) = supyepe D gy n(ANA4,)), A€ .

=1
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We say that 4 € 3 is p-null if |y} (A) = 0 for each y’ € F'. A function
f3 H — E will be called g-measurable if there exists a sequence { f.} of
simple functions converging p-a.e to f. A sequence {f,.} of functions
of H into converges in ¢-semivariation to f if for each €,§ > 0, there
exists 19 such that {|uflo({s € H; |fa(s) — f(s)|l =2 6}) < €if n > no.
If ||pf{g{An) — O for every sequence {A,} in 3, A, — @, then the
sequence {f,} converges to f in g-semivariation. So it is clear that
N2, Brn =8 where B, = U2, 4, and it follows that {ju];(Bn) — O
and that [|ifi,(A4.) — 0.

DEFINITION 1.2. If A € 3, we denote the characteristic function

of A by x4. By a ) -simple function f on H with values in E, we shall
designate a function of the from

n
f = Z TyX Ax
n=1

where v, € 4, A, € and 4,N A, =0z #3), 1,73=12,-,n

2. Integration with respect to operator-valued measures

DEFINITION 2.1. Let g; Y. — L{E, F) be an operator-valued mea-
sme and f be a function from H into E. We say that f is p-integrable
over A € ) if

(1) For each y' € F, the integral [, f(s)y'p(ds) exists (in the
sense of [8],[9])

{2) There exists an element y4 € F, y4 = fA f(s)u(ds) such that
for all y' € FY we have y'(ya) = [ f()y'u(ds).

Since F is a locally convex-Hausdorff space, the integral is unique

whenever it exists. It follows that every simple function is p-integral
and the integral of such a function is given by

| #eIntds) = Y- wAn e,
‘ =1
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LEMMA 2.2. [4]If f; H — E isy'p-integral, then | [, f(s)y'p(ds)| <
L4 1 F($)My' 1el(ds) for each A € 3 and if f is a bounded p-integrable,
then

o [ Heu(ds)) < fllnllull(A) for A € 3,

where || f||lg# = supsen|f(s)|.
THEOREM 2.3. Let {f,} be a sequence of y' u-integrable functions
which ’

(1) {fn} converges pointwise to f on H with respect to measure

s

(2) |fal < g for each n, where g; H — E is a y' u-integrable func-
tion such that lim, [, |lgllly'sl(ds) = O uniformly in y' €
F', A, — b(as n — o).

Then f 1s y'u-integrable and

tim [ F)utds) = jA (o) u(ds)

uniformly for A€ Y.

Proof. For € > 0, let B, = {s € H;|fa(s) — f(3)] > €lg(s)|]} — N,
where N = {s € H;lim, f,(s) # f(s)}, 4n = UZ,B, € 5. Clearly
Ap = B (as n — o0). So p(lim,A,) = lim, u{A4,) =0.

Now it checked that

o [ (F5) = Fuloutds) < supyemgl [ (F(6) = Fulo'uts)
A A-A,
tsupyengl [ (J(6) = falo)y'u(ds)
<e o)l
A-A,

+2supyeny [ Jo()ly'ulds) or all

ANA,
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Thus

" /A Fuls)ulds) — [A Fom(s)a(ds))
< esupyepo / Ha(s)ily'ul(ds)

A-A,

+ 2511pyf632 /

lg{s Iy 1l ds)
A, :

+esupyeny [ llo(o)liv'ul(ds)

+ 2supy e B? ] [lg()l |y 1el(ds) for all m,n.
AnA

m

Since supyens fana, 19(5)lv'l(ds) = O(as n — o0), the sequence
{f»} is Cauchy uniformly with respect to A € 3~ . If lim,, [, fa(s)p(ds)
=94, then by applying the dominated convergence theorem we have

y'(ya) = lim, / fr(s)y'u(ds)
A
= [A f(8)y'u(ds) for each 4 € Z

THEOREM 2.4. Let F be sequentially complete and the q-semivaluation
of yt is continuous at §. If f; H — E is a bounded measurable function,
then f is p-integrable.

Proof. Since {f,} is a bounded measurable function, there exists a
sequence {f,} of simple functions such that {f,} converges pointwise
to f an T and || fu||lg < §f]ly for all n.

For each € > 0, let B,, = {s € H;{|f(s) — fa(s)ll = €} and A, =
U, B,, then 4, — 8 (as n — o0), limp(A,) = p(limA,) = 0. So for
y' € F’ there exists a positive integer ng such that |y'ul( An)e for all
n > ng.
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It follows that

IRECRESIES
<[ M- folu@ + [ 1) - ey ues)

ANA,

< ely' il(A — An) + 2My' ul(A N A)
< e(|y' ml(A — Ap) + 2M) if n > ng, where M = sup,ex|f(s)l.

Thus f is y'u-integrable and lim, [, f(s)y'u(ds) = f, f(s)y'n(ds)
for each ' € F'. Thus Q(fA fn(s),u'(ds) - fA fm(3)f-‘(ds)) < €(nﬂl‘q(A“
An )+ 200 + el (A — Ap) + 2M) for all n,m 2 ng.

Thus the sequence {f,} is Cauchy uniformly for 4 € 3. So it
follows that every bounded measurable function is p-integrable. If
J4 fn(s)u(ds) converges to y4 in F, by applying the dominated conver-
gence theorem it then follows that y4 = [, f(s)u(ds) =lim, [, fa(s)u(ds).
So every bounded measurable function is g-integrable if F' is sequen-
tially complete.

LEMMA 2.5. [4] Let p be an operator measure on 3, and {fn} a se-
quen ce of p-integrable functions which { f, } converges to f pointwise on

, and {j Fa($)u{ds)} is Cauchy for A € 5. Then f is p-integrable
andf fs)plds) = lim, f, fo(s)p(ds) uniformly for A € 3.

THEOREMN 2.6. If F is sequentially complete and f;H — E isy' -
integrable and lim, fA" 1 FCs)l’ pl(ds) = O uniformly and A, — 8.

Then f is u-integrable if and only if there is a sequence {fn} of
bounded measurable functions which converges pointwise to f and

{f4 fa(s)u(ds)} is Cauchy uniformly for A€ ..

Pmof Every u-integrable functions is g-measurable. For each n, let

= {s € H;|f(s)| £ n} and f,, = fxa,. Then {f,} is a sequence

of bounded integrable functions converging to f and ([, fa(s)p(ds)) is
Cauchy uniformly for 4 € ) .

Conversely let 4, = {s € T|||f(5) — fa(s)|| = €}. For every ¢ >0
and there exists ny such that

' ul(Ax) <€ for n>mng, ¥y € F'.
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It follows that
[4||f(8)—fn(3)||Iy'ﬂl(dS) < M+ pll(A—A4r)), where M = supsen|f(s)l.

So ¢(f4 fa(8)ulds) = [ frm(s)p(ds)) < e|lullg(A — Ar) +[[pllo(A -
Am) + 2M) which shows that {{, fn(s)u(ds)} is Cauchy for A € ¥,
Since F' 1s sequentially complete,

y'(ya) = limn/ Fa(8)y u(ds) = / F(s)y u(ds) fory' € F'
A A

Then, by lemma 2.5

/ f(3)u(ds) = limn/ fu(s)pu(ds) for 4 € Z
A A

3. Representation of weakly compact operators

In this section, we assume that H is Hausdorff topological space and
2 is o-algebra of all compact subsets of H. Let E and F be locally
convex Hausdorff spaces.

Let C(H, E) be the space of all continuous functions from H into
E endowed with the usual uniform norm. The topology for C(H, E) is
generated by the semi norms {¢}g, ¢(f) = sup{q(f(s));s € H}.

The lnear operator T;C(H,E) — F is continuous if and only if
there exists a painng (p,¢) such that [T, ., = sup{q(T(f}) p(f) £
1}, p € {q}E, g € {¢}F.

DEFINITION 3.1. An operator-valued measure p; Y, — L{E, F) said
to be of bounded (p, ¢)-variation on A € 5 for a continuous semi-norm
plg) on E(F)if {q(352, u(A4)2.); 4, N4, =0 ( #3), ple,) < 1}is
bounded and we define the (p,¢)-variation of p on 4 € 3, {|lgll(p.q) =
supyene{d(32_ 'l A2y € FY, p(z,) < 13.

DEFINITION 3.2 A measure p: Y. — L(E, F) is said to be regular
for each ¢ > 0, E € 3 there is a compact set 4 and an open set B
such that A C E C B and ||¢}},(B -~ A) < ¢, ¢ € {q}F.
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LEMMA 3.3. [5] Let E and F be topological spaces and a linear op-
erator T; E — F is weakly compact. Then the following are equivalent.
(1) T" maps E" into F,
(2) If F' is equipped by the Mackey topology M(F',F) and E'
with the strong topology B(E', E), then T' is continuous.

THEOREM 3.4. If T is a continuous weakly compact from C(H, E)
into F'. Then there exists a unique operator-valued measure p: y_, —

L(E, F) such that
(1) The E’-valued measure y'j on Y, defined by y'ji(A) = pyr(A)
is regular, and y' — y'u is linear continuous for y' € F’.
(2) T(f) = [, f(s)(ds) for each f € C(H,E).
(3) I T is (p, q)-related, then |jpllp,qy = sup{g(T(f);[[fll, < 1}
for p € {4} &, ¢ € {P}F Nlellip.gy = I TNip.n-
(4) v'=T"y, for eachy' € F'
Conversely if i Y — L(E, F) is a measure which satisfies (1), then
the operator T by (2) is weakly compact from C{H, E) into F which
satisfies (3) and (4).

Proof. UT;C(H, E) — F is weakly compact, then T maps C(H, E)"
into F'. Define u(A);E — F by p(A)r = T"(x12)" foreach A€ ..
Consequently it follows that for ' € F' and x € E,

{*) y'u(A)e = y'(T"(xa2)") = (T'y' ) xaz)" = py(A)z.

Thus v'u = T'y = py and ¢(p(A)z) < |ul(A)g(z) shows that
#{A); E — F is contimous. Since T;C(H,E) — F is continuous,
there is ¢ € {q}g such that [T}, < o0,¢ € {¢}r. Then for
f€C(H,E),p(f) <1, we have

< five> =< f,TY > 1< <THY > | < HToa-

Thus we have {|¢|lp.0) < 1T (p.0)-

On the other hand we have f” fls)p(ds) = T"(xaf)' € F and
Sy f(s)lds) = T"(f) = T(f) from the above statement (*). For
feCHE), ¢(fy £1and ¢ € BY, WT(f)| = | [ fls)y'u(ds)| <
i 1lly < Mirllogy- Thus [T 0y < Bitllp.g)- Finally, the uniqueness of
¢ is an immediate consequence of the condition (2).
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Conversely, let i be L(E, F')-valued measure with y'u € reabu(3, E'),
the space of all regular E'-valued measures of finite variation on 3.
To prove the compactness of T, consider any bounded set V = {f €
C(H,E), f(H) C E} in C(H,E) and let V denote the convex bal-
anced hull of the set W = {} 7 z,u(A4,);2, € E,A,NA, =0 (G #
7),p(,) €1} C E. Then W is bounded in E. Clearly W is convex
and balanced hull. From (4) W is weakly compact. It follows that
the polar W?° in 1V is a neighborhood of zero in F' for the Mackey
topology M(F', F). For y' € W0 and f € C(H,E),||f|ls <1, we have

ly'(3°7_, #(A)x,| < 1. This implies that |y’ [y f(8)u(ds)] < 1. Thus
| < Ty, f>|=|< ¢y Tf >| <1 which prove that T'y' € V°.

So T'(1V°?) C V?® and consequently T" is continudus with respect to
M(F',F). Hence T is weakly compact.
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