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a(8,s)-CONTINUOUS FUNCTIONS

E. HATIR AND G.I. CHAE

1. Introduction

In this paper, spaces will always mean topological spaces and f :
X—Y denotes a function from a space X into a space Y. For A C
X, the closure of A and the interior of A will be denoted by CH{A)
and Int(A), respectively. A is said to be a-open [8] (resp. preopen
[7], semiopen (5] and regular open) if A € IntClnt{A) (resp. if A C
IntClHA),if A C ClInt(A), and :f A = IntCIl(A)). The complement of an
a-open (resp. a preopen, a semiopen and a regular open) set is called
a-closed (resp. preclosed, semiclosed and regular closed). The family
of a-open (resp. open, preopen, semiopen and regular closed) sets of
X will be denoted by aO(X) (resp. 7(X), PO(X), SO(X) and RC(X)),
and the family of a-open (resp. open, preopen, semiopen and regular
closed) sets of X containing z, by aO(X,z) (resp. 7(X,z), PO(X,z),
SO{X.,x} and RC(X,z)).

The set aCl{A) = {x € X: ANTU # B, for cach U € aO(X,2)} is
called the a-closure of A, and p € X is said to be in the 8-semiclosure
of A (simply, p € 6sCI(A)) if C{V) N A #£ §, for each V € SO(X,z).
It is shown that z € §sCI(A) iff A N R # 0 for each R € RC(X). A
filterbase V is said to s-accumulate to z [4] (simply, € 6-ad,V) iff =
€ 0sCKF), foreach Fe VIfEFNR #£ @, foreach R € RC(X)and F €
V. V is said to s-conveige to @ [4] iff there 1s an F € V such that F C
R for cach R € RC(X). V is said to a-accumulate to z [4] iff z € CF)
foreach F € V4] iff VA F # @ for each F € V and V € aO(X).

A function f 1 X — Y is said to be (4, s)-contmuous {4] (resp. weakly
a-continuons [9]) if for each @ € X and each V € SO(Y ,{(z)) (resp. V
€ 7(Y,f(2)), thereis a U € 7{X,z) (resp. aO{X,#)} such that f(U) C
CHV). f: X—=Y is said to be a-continuous (6] (resp. semi-continuous
[5]) if for each V € 7(Y), f~1{(V) € aO(X) (resp. SO(X)).
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This paper gives a new class of function called an a(8, s}-continuous
function which is a generalization of (8, s)-continuous function, and its
properties are then related.

1. a(8, s)-continuous functions

DEFINITION 1. A function f: X—Y is said to be a(f, s)-continuous
if for each = € X and each V € SO(Y ,f(z)), there exists a U € aO(X,z)
such that f(U) C CYV). The graph Gy of f : XY, given by Gs(x)
= {{x,f(z)) | for each 2 € X}, is said to be a(#, s)-closed with respect
to XxY if for each (2,y) € G, there existsa U € aO(X,z) and a V €
SO(Y,y) such that f{(U) N CHV) = @.

THEOREM 2. For f: X — Y, the following are equivalent :

(1) f is a4, s)-continuous.

(2) f: (X,a0(X)) > (Y,7(Y)) is continuous.

(3) fla-adV} C 8-ad, f(V) for each filterbase V on X.

(4) f(aCl{A)) C f(8Cl.(A)) for each A C X.

(8) «aCl(f~Y(B)) C f~1(8Cl,(B)) for each BC Y.

(8) f~1(B) is a-closed in X for each @-semiclosed subset B of Y.

(7) For each R € RC(Y f(z)), there is a U € aO(X,z) such that
f(U)C R

Proof. The proof 1s straightforward and is thus ommited.
LEMMA 3. [1] aCl(A) = A U ClInt(A) for any set A of a space X.

THEOREM 4. For f : X — Y, the following are equivalent:

(1) f is a(8,s)-continuous.
(2) f(ClIntCl(A)) C 6-Cl(f(A}) for each A C X.
(3) CiIntC)f*(B)) ¢ f~Y(6-Cl,(B)) for each BC Y.

Proof. 1t follows immediately from Theorem 2 and Lemma 3.

It follows from the above definition that every (4, s)-continuous
function is «(#, s)-continuous and every a(#, s)-continuous function is
weakly a-continuous, but the converses may not be true, in general, as
shown by Example 5 and 6.
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EXAMPLE . Let 1y = {X, §, {c}} and 7, = {X, @, {a}, {b}, {a,b}}
be topologies on X = {a,b,c}. Define f: (X,r;} = (X,m;) by the identity.
Then f is a{#, s)-continuous (thus a-continuous and semi-continuous),
but not (8, s)-continuous.

EXAMPLE 6. Let X = {ab,c}, 7(X) = {X, 0, {c}} and Y = {a,b,c,d}
and 7(Y) = {Y, 9, {a}, {d}, {a,d}, {b,d}, {a,b,d}}. Define f: X > Y
by f(a) = b, f(b) = ¢, and f(c) = d. Then f is weakly a-continuous
and semi-continuous, but not a(#, s)-continuous.

From the above examples, a8, s)-continuous functions are indepen-
dent of a-continuous and semi-continuous. A function f: XY is
defined to be #-irresollute if for each € X and V € SO(Y,f(z)), there
1s a U € SO(X,2) such that f(ClU)) c CI(V).

THEOREM 7. Let f : X—=Y and g : Y—Z be functions.

(1) If f is a(8, s)-continuous and g is §-irresolute, then their com-
position gof is a8, s)-continuous.

(2) If f is a-continuous and g is (8, s )-continuous, then their com-
position gof is a(#, s)-continous.

THEOREM 8. Let f - X—Y is a(,s)-continuous and A C X. If
either A € PO(X) or A € SO(X), then the restriction fla : A=Y is
a{f, s)-continuous.

THEOREM 9. Let Gy : X — XxY be the graph function of f :
X=Y. If Gy is a{8, s)-continuous, then f is a(8, s)-continuous.

Proof. Let @ € X and V € SO(XXY,f(2)). Then XxV € SO(XxY,
Gy(x)). Since Gy is a{8,s)-continuous, there exists a U € aO(X,z)
such that G;(U) C Cl{XxV) = XxCUV). Thus f(U) c CI(V).

A space X is (8, s)-Hausdorff (7] if for any v,y € X, = # y, there
exist U,V € SO(X) such that x € U, y € V and CI(U) N CI(V) = §,
and a-Hausdorff (1] if for any 2,y € X, z # y, there exist U,V € aO(X)
such that » e U,y e Vand U NV =0,

THEOREM 10. If f : X—Y is an «(#, s)-continuous injection and Y
1s (8, s)-Hausdorff, then X is a-Hausdorft.

Proof. Let x1, z» be any distinct points of X. Then f(x1) # f(z2)
and there exist V1,Vy € SO(Y) such that f(z,) € Vi, f(z2) € V; and
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Cli(V1) n CI(Vy) = 0. Since f is a8, s)-continuous, there exist open
sets Uy € aO(X,xy, Uz € aO(X,a2) such that f(U,) ¢ Cl(U,) for i =
1,2. Therefore, U; N Uy = B. Thus X is a-Hausdorff.

THEOREM 11. If f : XY ia an a(8, s)-continuous and Y is (8, s)-
Hausdorff, then the graph Gy of f: X—>Y is a-closed in XX Y.

Proof. Let (2,y) ¢ Gy. Theny # f(x). Since Y is (6, s)-Hausdorft,
there exist disjoint W,V € SO(Y) such that f(a2) € W,y € V and
CHW) N CV) = @. Since f is o8, s)-continuous, there exists a U €
o O(X,r) such that f(U) C CI(W) Therefore, f{U) N CY{V) = §. Thus
Gy is a{#, s )-closed

A space X is called S-closed [11] if every semiopen cover of X has
a finite proximate subcover, and a-compact [3] if every a-open cover
of X has a finite subcover. A subset A of X is called S-closed relative
to X [10] if for every cover {V, | V, € SO(X), o € V} of A, there
exists a finite subset V, of V such that A C U{Cl{(V,) | « € V}, and
a-compact relative to X [3] if for every cover {V4 | Vo € aO(X), & €
V1 of A, there exists a finite subset V, of V such that A C U{V, | &
€ Vo)

THEOREM 12. If f : X — Y is an {6, s)-continuous and A is a-
compact relative to X, then f(A) is S-closed relative to Y.

Proof. Let A he a-compact relative to X and and V be a semiopen
cover of f{A). Foreach a € A, there is a semiopen set V, € V such that
f(a) € V,. Since f is a(#, s)-continuous, there cxists a U, € aO(X,a)
such that f(U,) C Cl{V,). So the collection {U, | f(U,) € CHV,,
a € A} forms an a-open cover of A. Since A is a-compact, there is a
finite subcollection {Ua,, Uayyeeory U, } such that A C UPU,,. Thus
we have f(A) C fUrU,,) = Ulf(U,, ) C U'ClV,, ). Hence V has a
finite subeollection {Cl{V, ) | i = 1,2, ..,n} which covers f(A). Thus
f(A) is S-closed relative to Y.

A function f: X-=Y is said to be weakly irresolute if for each z
€ X and each V € SO(X, f(2)), there exists a U € SO(X,z) such that
f(U) Cc CI{V). The identity in Example 5 is not semi-continuous, but
it is weakly irresolute, and f in Example 6 is semi-continuous, but not
weakly irresolute. They are thus independent. We have the following
being similar to {9, Theorem 4.10].
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THEOREM 13. Let Y be (8,s)-Hausdorff and f; : X — Y be weakly
irresohite If f, : X — Y 1s a{8, s)-continuous and if fi = f; on a
dense subset of X, then fi = f» on X.

Proof. Let fy be a(8, s)-continuous and A = {x € X | f1(z) = fa(z)}.
Suppose that ¢ € X—A. Then fi{z) # fo{2) and there exist V,, V, €
SO(Y) such that fi(z) € Vi, fo(z) € Vy and CI(V;) n Cl(V2) = 0.
Since f; is weakly irresolute and fs is a(#, s)-continuous, there exist
a U; € SO(X,x) and U; € aO(X,x) such that fi{U;} C Cli(Vy) and
f2(Uz) € CI(V,). Therefore, we have z € U; N U, € SO(X) [8] and
(Ui nU3)NAB Since Uy N Uz # 8, Int(U; N Us) # B and Int{TU; N
Us) N A # 0. On the other hand, since f; = fbon D, D C Aand X =
CI(D) ¢ Cl{A) This contradicts. Thus A = X and f; = f, on X.

A space X is said to be a-irreducible if every pair of nonempty a-
open subsets of X has a nonempty intersection. A space X is said to
be semi 8-irreducible if the closure of every pair of nonempty semiopen
subsets of X has a nonempty intersection.

THCOREM 14. Let f : X — Y be a4, s)-continuous surjection. If
Y 1s semi @-irreducible, then X is e-irreducible space.

Proof. Suppose that Y is not semi #-irreducible. Then there are
nopempty UV € SO(Y) such that C{U) N Cl(V) = &. Since f is
a(8. s)-continuous and surjective, theie exist nonempty G,H € «O(X)
such that f(G) C CY{U) and f(H) C Cl{V). Hence we have G C
FHCHU)and H < f7H{CYV). So G NH = ). X is not a-irreducible.
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