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I. INTRODUCTION

The high cost of congestion caused by, inci-
dents is a serious challenge to real-time traffic
management in urban areas, Incidents are a
major cause of urban congestion, and they
require rapid remedial traffic management
actions to ensure traffic safety and prevent seri-
ous accumulation of congestion. Incident-
induced congestion is of particular concern for
traffic adaptive control systems currently being
tested as a part of Intelligent Transportation
Systems (ITS). Successful operation of such
systems heavily relies on their ability to rapidly
detect incidents and effectively respond to inci-
dent-induced delays.

During the last two decades considerable
research was dedicated to development of auto-
matic incident detection algorithms and respon-
sive control management for freeways, .More
recently (since the mid 1980s), similar research
efforts have been initiated for arterial streets:
however, relatively little work has been done on
the arterial side because of differences between
the freeway and the artenal streets. Freeways
have directed access points, uninterrupted flow,
minimal median and marginal friction and fewer
geometric constraints, On the other hand, arte-
nals feature a variety of traffic controls, turning
movements, relatively easy rerouting of vehicles
during incident conditions, characteristically more
variable data, and, therefore, a more complex
and challenging environment for incident detec-
tion (Khan et al, 1994).

The detection of traffic incidents in an urban
arterial street is of more importénce to traffic

management and control than to traffic safety
since the lower operating speeds on arterial
streets are less likely to result in severe multiple
collisions (Bell et al, 1988). As an integral part
of traffic surveillance and control, automatic inci-
dent detection systems enable the traffic control
center to minimize the response time and take
essential actions before the incident-induced con-

gestion spreads throughout the network.
1. Research Initiatives

When incorporated in a real-time traffic
adaptive control system, the incident detection
system can serve as an advisory module for the
control system., The normal reaction of a control
system to congestion on an intersection approach
is increasing green time by sacrificing other less
congested approaches to minimize delay and
maximize traffic movements; however, when
this congestion is caused by the incident, this
type of control may not be appropriate, There
is a need for special control strategies for inci-
dents. These strategies must be developed and
implemented so that they are responsive to the
characteristics of inadents including ther loca-
tions, severity, and the overall pattern of the
incident effect.

An incident detection algorithm designed to
detect an incident based on the traffic conditions
resulting from the incident would not only iden-
tify the incident location and severity, but also
naturally indicate what adverse effects the
detected incident has created, The control sys-
tem can utilize this incident information to acti-

vate the appropriate control actions in response
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to the incident. Existing incident detection algo-
rithms were not designed for real-time traffic
adaptive control systems where the incident
detection model must connect to other system
components including the signal controller.
Thus, human operators must be involved
between incident detection and any control
actions in response to the incident, which takes
substantially more time,

The most critical and common limitation in
most existing incident detection methods is that
they require threshold values to differentiate sig-
- nificant or unusual changes from trivial or usual
variations in traffic conditions. The threshold
values dictate the detection capabilities of the
incident detection methods. Identifying an
appropriate threshold value is a important prob-
lem n implementing these methods: however,
these pre-defined crisp values can create a
boundary condition problem (eg, a measured
value on the boundary can draw two different
conclusions) and do not have the capability of
adjusting themselves to changing traffic flow
conditions, Additionally, threshold-based incident
detection methods are not capable of compensat-
ing for errors during data acquisition and trans-
fer (ie, a small error when the system is oper-
ating in a condition near the threshold value can
result in wrong conclusions).

A capacity-reducing incident affects not only
the location of its occurrence, but also adjacent
locations as long as traffic demands to and from
the mcident location exist.  Any incident within
the network results in a unique pattern of dete-

rioration in operating conditions near its location

of occurrence. Incident detection logic that takes
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into account this pattern captures the system-
wide incident effects and, therefore, achieves
rhore reliable detection and provides credible
advisory information concerning the control strat-
egy in response to the incident,

Diamond interchanges connect a freeway and
the crossing arterial streets to serve the traffic
entering and exiting the freeway. Due to the
complexity of traffic movements within the
nterchange and increasing demand, many urban
diamond interchanges are experiencing serious
congestion, The two closely spaced traffic sig-
nals with high volume turning traffic makes for
a challenging control environment, Developing a
real-time, multi-modal, traffic adaptive inter-
change control system is a research objective of
the Texas A&M ITS Research Center of
Excellence. This objective requires an innovative
research effort to integrate a variety of technolo-
gies into a single control system that will
(Texas
Transportation Institute, 1993). Incident detec-

tion is an essential component of the control

improve traffic performance

system because incidents in congested inter-
changes require special attention, They can
easlly paralyze traffic movements and cripple the
control in the interchange with its effects rapidly
propagating through the freeway and adjacent
streets, The tunely and accurate detection of
incidents and deployment of appropriate control
strategies would provide significant benefits in
reducing vehicle delay and maximizing
vehicle/person movements in the diamond inter-
change area (Lee, 1995).
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2. Research Objectives

The objective of this research is to develop a
real-time incident detection model for urban dia-
mond interchanges. The development of the
algorithm is based on fuzzy logic which has
been recognized as a viable solution approach for
systems with uncertainty or approximate reason-
ing, especially for systems whose mathematical
model is difficult to derive (Munakata et al,
1994). This approach overcomes the boundary
condition problem inherent in conventional
threshold-based algorithms, The model captures
system-wide Incident effects utilizing multiple
measures for more accurate and reliable detec-
tion. The model is a component module of a
real-time traffic adaptive diamond interchange
control system. The model is designed in such
a way that it is readily scalable and expandable
for larger systems of arterial streets,

Il. METHODOLOGY

1. Definition of Incidents

Prior to introducing the new incident detection
algonithm, it is necessary to clearly define the
specific meaning of incidents supported by this
research. As pointed out by Khan and Ritchie,
incidents generally refer to any problems on the
surface street that require the attention of an
operator or result in an operator formulating a
response (Khan et al, 1994). Lane blockages
are an important subset of such problems. This
research focuses on detecting lane-blocking inci-

dents including mid-intersection blockages, Not
all lane-blocking incidents, however, are equally
important from the control perspectives, For
example, an incident under very low volume
conditions would not cause serious operational
problems although it may require some actions
for safety: therefore, lane blockages with signifi-
cant magnitude of effects are of primary con-
cem 1n real-time traffic adaptive control systems,
For this research, an incident is defined as
any lane-blocking event which degrades the
performance of an arterial street such that the
traffic signal control system should adjust its
operation. The incident detection algorithm
developed through this research is capable of
detecting lane-blocking incidents when their
effects are manifested by certain patterns of
deterioration in traffic conditions and, thereby,
require adjustments in signal control strategies,

2. Modeling Approach

This research utilizes fuzzy logic and its appli-
cation concepts to design major components of
the incident detection algorithm. The incident
detection model detects incidents by observing
abnormal traffic conditions resulting from the
incident, The abnormal traffic conditions are
manifested as abrupt changes in traffic measures
(detection variables). These measures include:
maximum queue length, speed, occupancy, and
turning movements measured at each intersec-
tion approach of the diamond interchange. The
model looks for abrupt changes in each measure
by comparing the current values against the

past five minute average values. This compari-
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son process was modeled by fuzzy logic. The
model identifies the incident location by compar-
ing the actual incident patterns against plausible
hypothetical (expected) incident patterns and
dentifying the location associated with the best-
matching pattern. This matching process was
designed using fuzzy logic,. The logic for detec-
tion of incident termination was also based on

fuzzy logic.

3. Dévelopment of the Fl}zzy
Inference Engine

A fugzy inference routine serves as the main
engine of the incident detection algorithm.
Simulation runs were conducted to obtain ‘traffic
data required to determine membership functions
and accompanying rule bases. A microscopic
arterial street simulation model, TexSIM, was
used for simulation. The TexSIM model was
developed as a part of the research conducted by
the Texas A&M ITS Research Center of
Excellence, TexSIM has a capability of simulat-
ing various types of incidents and generating a
variety of output. The simulated real-time traffic
condition In a typical urban diamond interchange
expressed in terms of various traffic measures
was the basis for definition of the fuzzy member-
ship functions and rules. The simulation results
for normal and incident conditions were examined
to determine the membership function categories
and corresponding rules required to describe vari-
ous possible states of the system.

1) Membership Functions
A membership function is represented as an
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X-Y plot with the X-axis representing the input
variable and the Y-axis the degree of member-
ship. The membership function assigns the
degree of membership (ranging from 0 to 1) to
an input value when found within its coverage
along the variable axis, The resulting membership
functions are illustrated in Figures 1, 2, and 3. -

2) Rule Bases

The rule bases consist of a set of rules
(statements) that describe the relationship
between inputs and the consequences (outputs).
In this research, rule bases describing normal and
abnormal traffic conditions were constructed for
each measure. Depending upon the number of
partitioned input subspaces, different numbers of
rules are required for each traffic measure
employed. Figures 1, 2, and 3 include the rule
bases for each measure along with the member-
ship functions,

3) Fuzzy Inference Procedure

Let A(x), B(y), and C(z) denote the mem-
bership functions of fuzzy set A, B, and C,
respectively. Fuzzy sets A and B are subsets of
the input set X (percent change) and the input
set Y (average), respectively, Fuzzy set C is a
subset of the output set Z (traffic conditions in
location 1). In general, the fuzzy inference rules
can be described as follows:

If xis Arand y is By, then z is Cx,

If xis A2 and y is By, then z is Cx,

If xis Aw and y is Bn, then z is G,

Note that all the rules have the same conse-
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Avomﬁo Queup Length

(AVGQUE)
(Large.1)
Large I
(30.1) Abnormal
(26.1)
Medium
(8.
(4.1)
Small -
(0.1) i
(160.0) Percent Increase
in Queue Length
(PIQUE)
(0.1 (18.1) (28.9)  (47.1) (53.1) (140.1)  (160.1) (Large.!)
Small Medium Large Vcry'Largc
Normal Rule Set Abnormal Rule Set
Rule 1: AVGQUE is Small AND PIQUE is Small, Ruie 1:  AVGQUE is Small AND PIQUE is Very Large,
then Location / is Normal (w,) then Location / is Abnormal (w,)
Rule 2: If AVGQUE is Small AND PIQUE is Medium, Rule 2: If AVGQUE is Medium AND PIQUE is Large,
then Location I is Normal ( w,) then Location / is Abnormal ( w,)
Rule 3: f AVGQUE is Small AND PIQUE is Large, Rule 3: If AVGQUE is Medium AND PIQUE is Very Large,
then Location / is Normal ( w,) then Location / is Abnormal ( w4)
Rule4:  IfAVGQUE is Medium AND PIQUE is Small, Rule 4:  IfAVGQUE is Large AND PIQUE is Medium,
then Location / is Normal ( w4) then Location / is Abnormal ( w3)
Rute 5: if AVGQUE is Medium AND PIQUE is Medium, Rule 5; If AVGQUE is Large AND PIQUE is Large,
then Location I is Normal ( wg) then Location [ is Abnormal ( wg)
Rule 6: i AVGQUE is Large AND PIQUE is Small, Rule6:  IFAVGQUE is Large AND PIQUE is Very Large,
then Location / is Normal ( wg) then Location / is Abnormal { wg)
where /= 1A, 1B, 1C, 2A, 2B, 2C where /= 1A, 1B, 1C, 2A, 2B, 2C

FIGURE 1 Fuzzy Membership Functions and Rules for Queue Len_gth (QUE)
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——
Percent
Decrease

hosts

(2] 2] o2 ey

Very Small Small

Norma) Rule Set

If AVGSPD is Small AND PDSPD is Very Small,
then Location / is Norma! ( w,)

i AVGSPD is Small AND PDSPD is Small,

then Location / is Normal ( wz)

if AVGSPD is Small AND PDSPD is Medium,

then Location / is Normal ( w.

if AVGSPD is Small AND PDSPD is Large,

then Location / is Normal (w,) -

if AVGSPD is Medium AND PDSPD is Very Small,
then Location [ is Normal ( w5)

if AVGSPD is Medium AND PDSPD is Small,

then Location / is Normal ( wg)

f AVGSPD is Medium AND PDSPD is Medium,
then Location /is Normal ( w;)

if AVGSPD is Large AND PDSPD is Very Small,
then Location / is Normal (wa)

f AVGSPD is Large AND PDSPD is Smal,

then Location / is Normnal (w9)

Iif AVGSPD is Very Large AND PDSPD is Very Small,
then Location / is Normal (ww)

where /= 1A, 1B, 1C, 2A, 2B, 2C

Medium

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 5:

Rule 6:

Large

Abnormal Rule Set

if AVGSPD is Medium AND PDSPD is Large,
then Location / is Abnormal ( w1)

If AVGSPD is Large AND PDSPD is Medium,
then Location / is Abnormal ( ‘"2)

If AVGSPD is Large AND PDSPD is Large,
then Location / is Abnormal ( w3)

If AVGSPD is Very Large AND PDSPD is Small,
then Location / is Abnomnal ( wg)

W AVGSPD is Very Large AND PDSPD is Medium,
then Location / is Abnormal ( ws)

If AVGSPD is Very Large AND PDSPD is Large,
then Location / is Abnormal ( wg)

where /= 1A, 1B, 1C, 2A, 2B, 2C

FIGURE 2 Fuzzy Membership Functions and Rules for Speed (SPD)
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Average Occupanc
(AvGbcc)y Py
tagd
Very Large
Normal
o
a
Large
[<2]
=]
Medium
2}
(2]
Small
Percent
Increase in
Occupancy
(P1OCC)
o0 ® [%21] @) <) =) e 22 £00) (22
Very Small Small Medium Large Very Large
Normal Rule Set Abnormal Rule Set
Rule 1:  AVGOCC is Small AND PIOCC is Very Small, Rule 1:  HAVGOCC is Small AND PIOCC is Very Large,
then Location / is Normal ( w1) then Location / is Abnormal ( w1)
Rule2: I AVGOCC is Small AND PIOCC is Smal, Rule2:  AVGOCC is Medium AND PIOCC is Large,
then Location / is Normal ( w,) then Location / is Abnormal ( ‘"2)
Rule3:  KAVGOCC is Small AND PIOCC is Medium, Rule3:  IfAVGOCC is Medium AND PIOCC is Very Large,
then Location / is Normal ( w,) then Location / is Abnormal ( w,)
Rule 4:  If AVGOCC is Smak AND PIOCC is Large, Rule 4: f AVGOCC is Large AND PIOCC is Medium,
then Location / is Normal (w,) then Location / is Abnormal (wg)
Rule 5: #f AVGOCC is Medium AND PIOCC is Very Small, Rule 5: If AVGOCC is Large AND PIOCC is Large,
then Location / is Normal ( wg) then Location I'is Abnormal ( wg)
Rule 6: If AVGOCC is Medium AND PIOCC is Small, Rule 6: If AVGOCC is Large AND PIOCC is Very Large,
then Location / is Normal ( wg) then Location / is Abnormal ( wg)
Rute 7: if AVGOCC is Medium AND PIOCC is Medium, Rule 7: #f AVGOCC is Very Large AND PIOCC is Small,
then Location / is Normal ( wy) then Location / is Abnommal ( wy)
Rule 8: AVGOCC is Large AND PIOCC is Very Small, Rule 8:  IfAVGOCC is Very Large AND PIOCC is Medium,
then Location / is Nommal ( wg) then Location / is Abnomal ( wg)
Rule 9:  IfAVGOCC is Large AND PIOCC is Smal, Rule9: IfAVGOCC is Very Large AND PIOCC is Large,
then Location / is Normal ( wg) then Location / is Abnormal ( wg)
Rule 10: i AVGOCC is Very Large AND PIOCC is Very Small, Rule 10:  if AVGOCC is Very Large AND PIOCC is Very Large,

then Location / is Nomal ( wyq)

where /= 1A, 1B, 1C, 2A, 2B, 2C

then Location / is Abnormal ( w4q)

where /= 1A, 1B, 1C, 2A, 2B, 2C

FIGURE 3 Fuzzy Membership Functions and Rules for Occupancy (OCC)
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"(b) Abnormal Condmon

P e

FIGURE 4 Fuuy Inference Procedure

auent z is Ck, For all the rulés, the consequent
is either traffic condifions at location / (z) are
Normal (C1) or traffic conditions at location /
(z) are Abnormal (C2). Therefore, two distinct
rule sets and accompanying inferences are
required to represent the nomdlity and abnor-
mality of traffic conditihs at location / Figure 4
lustrates the fuzzy iﬁferenoe'pr’hcedure for these
two instances,

For the inferefice 6n normality of tfafﬁc con-
ditions, the rules can be expressed as follows:

If x is A and v is By, then the condition of
location / (z) is Normal (C1).

If xis Ar and v is By fhén the condition of
location / (z) is Normal (Cv).

If x is Am &fid y is B, then the Gondifiont of
location / (z) is Normal (Cv).

Now, let the input be x=% and y=y,, First,
the edthpatibility between the input and each of

the anteoedent conditions of rules is determlned
In genera], the compatibility for antecedent x is
Ais denoted as A(x). Since the anteoedent is
two—dunenswnal, the compatibility is determined
as: .

= Ai(x) XHB,',(Y")

w1 =
w2 = A2(x0) X Ba(y,)
wi = Am(xo) X Bn(yo)

where i = the number of the rule

The mference result for the 1th rule is wi,
where Ci=10, The complete mferenoe result z'
is oonstructed from Equatxon (1). The value of
7 represents the grade of normality of location /
and i deﬁned as the degree of matching (m)
betwesn the mput data (the current traffic con-
dlthl’l) and the inference rules (necessary condi-
tions) for normality of location /
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_ g(a,.-xc.n g(m;xcz)

z°=p, gw,-+ gm;
_},1%% oo W
oy it 2y 0;
= g‘”i (¢ =1, X{y‘-+ gw,: D
where,

m = number of partitioned input spaces repre-
senting the normal condition (=number
of the normality rules),

n = number of partitioned input spaces repre-
senting the abnormal condition (=num-
ber of the abnormality rules),

# = degree of matching for the location /

compatibility value from the ith rule from

the normality rule base, and

compatibility value from the jth rule from

the abnormality rule base,

Wi

Wi

For abnormal conditions, the rules are as fol-
lows:

If x is A1 and v is By, then the condition of
location / (z) is Abnormal (Cz),

If xis A2 and y is By, then the condition of
location / (z) is Abnormal (Cz),

If xis Am and v is Bn, then the condition of
location / (z) is Abnormal (C2).

The compatibility is determined as:
wt = Ai(x) X Bily,)
w2 = Az(xe) X Ba(y,)

Wi = Am(x) X Baly,)
where, j = the number of the rule

The inference result for the jth rule is w; C,
where C:=10. The complete inference result 2’
is constructed from Equation (2). The value of
2’ represents the grade of abnormality of location
/ and is the degree of matching (m) between
the input data (the current traffic condition)
and the inference rules (necessary conditions) for
abnormality of location /

) 2 (wxCy+ g(mixcz)
N P4 w;+ lz:(u,-

g(wfxcz)

P
= gwi GC=1, gwﬁ gwiz 1)

0
=y

- G=0 (2)

Il. DESCRIPTION OF THE INCIDENT
DETECTION MODEL

The incident detection model utilizes various
measures as its input since those measures can
be obtained through the extensive surveillance
system (ie, loop detectors or video image pro-
cessing unit) bult as a part of the real-time
traffic adaptive control system. The algorithm
consists of four major component modules: (1)
normality inference module, (2) incident location
inference module, (3) incident. severity assess-
ment module; and (4) incident termination
inference module.

The normality inference module examines the
nomality of traffic conditions to determine the
possibility of incident occurrence, The incident
location inference module confims the incident

occurrence and determines the incident location,
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The incident severity assessment module deter-
mines the severity of the confirmed incident
through a more detailed examination of a select-
ed measure. The incident termination inference
module monitors traffic conditions after the inci-
dent is detected to determine whether or not
the incident is cleared.

The component modules are mtegrated and
run sequentially as a single system. Running
once every minute, the algorithm continuously
observes traffic conditions in the intersection area
and identifies conditions indicating the occurrence
of incidents. I an incident is detected, the algo-
rithm, upon completion of its run, reports the
incident location and severity as the final results,
If an incident is not identified during any infer-
ence procedure, the algorithm returns to the
beginning of the process and waits for the next

run,
1. Normality Inference Module

1) Normality Inference

The normality inference module assumes that
if every approach in the network is normal in
terms of queue length, then traffic conditions in
the network are normal. This assumption is a
basis for a set of propositions describing neces-
sary conditions for normality of traffic conditions
(eg., queue length at Approach 1 is normal
AND queue length at Approach 2 is normal
AND ..). The module compares real-time data
against these propositions: to determine how well
they match (degree of matching). The mem-
bership functions and rules to be used for infer-
ence are shown in Figure 1. The inference pro-
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cedure for normal conditions introduced in the
previous section can be directly used with the
following substitutions:

x = AVGQUE, Ai.Am = small medium,
large,

y = PIQUE, Bi..B: = small, medium, large,
very large,

z = condition of location / and

Ci = normal,

The degree of matching resulting from the
inference represents the grade of normality of a
location. The inference is performed for all
intersection approaches in the network. Then,
the module seeks the approach possessing the
minimum value among the degrees of matching
for all approaches. This approach is presumably
the one that was most affected by the incident,

If the degree of matching for the most
affected approach falls under a pre-defined deci-
sion value (ALPHAL), the module classifies the
approach for further examination during subse-
quent time intervals. If the degree of matching
for the approach is smaller than the decision
value during the next two time intervals, the
module concludes that an incident is possible
near that approach and activates the incident
location inference module, This triple checking
routine was designed to filter out random fluctu-
ations of traffic measures under normal condition,

2) Case Classification

" The normality inference module provides an
indication of the lkely locations of an incident
{plausible incident locations) to scale down the
problem. If an incident is possible, the module

determines the plausible incident locations and
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passes the information to the incident location
inference module. This procesé is referred to as
case classification in this research, For the ease-
classification process, the most affected approach
number identified during the normality inference
must be provided along with information on
network linkages. Information on network link-
ages is static data in tabular form defining the
geometric relationship between approaches in
terms of origin, destination, and the required
type of turn (e.g, left, through, right).

Given the most affected approach number,
the incident must be located at one of the fol-
lowing locations: (1) the most affected approach
itself. (2) mid-intersection, or (3) one of the
departing legs of the intersection. This process
is universally applicable not only for diamond
interchanges, but also for any arterial street net-
work as long as linkages between intersections

and approaches are configured and provided..

2. Incident Location Inference
Module

This module examines the plausible locations
of the incident to confirm the incident occur-

rence and identify the location of occurrence.

1) Hypothetical Incident Patterns

Incidents can occur anywhere within the
interchange area, Each incident location would
have different effects on traffic conditions within
the interchange resulting in unique patterns of
changes in various measures, Hypothetical pat-
terns of incident effects that are likely to result

from each incident location can be developed

based upon experts’ knowledge and simulation of

incidents. ‘The hypothetical -pattern for an inci-

dent location consists of a series of propositions
describing the necessary conditions to be satisfied
in order to assure the mcident-occurrence in that
location, These propositions (ie., netessary con-
ditions) are represer'lted'by the condition descrip-
tions of various measures at intersection
approaches affected by the incidént (eg., the
occupancy at Approach 1 is abnormal AND the
queue length at Approach 2 is normal AND ).

Every time the location inference module is

activated, it examines all plausible incident loca-
tions near the most affected approach. The
hypothetical patterns for the plausible incident
locations must be mutually ‘exclusive to avoid
confusion. The hypothetical ‘igeidfent patterns
given a plausible incident location can be gener-
ated by universally applicable logic. Given a
plausible incident location, the unique pattern of
incident effects pertaining only to that incident
location is determined. The pattern is character-
ized by changes in various measures manifested
at certain locations. The general comncept for the
pattern generation is as follows:

8 The most affected approach itself: Since the
incident is on the most affected approach,
the most affected approach itself must be
ABNORMAL, and other approaches feeding
traffic into the same intersection are in
NORMAL condition.

m  Mid-intersection: Every approach to the
intersection (all links whose downstream
node number is the intersection node num-
ber) must be ABNORMAL.

® Departing legs: The approach adjoining the
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departing leg is NORMAL, and all other
approaches feeding traffic into the departing
leg must be ABNORMAL,

2) Location Inference

The module performs inference through. one-
by-one comparisons between the current data
and each proposition in the hypothetical pattern
of a plausible incident location, The current
data used for the inference are the average val-
ues for three minutes during which the incident
possibility was examined by the normality infer-
ence module, Based on the past five minute
average and the current three minute average
data, the percent change in each measure is cal-
culated.

The inference procedure involves both normal-
ity and abnormality inferences introduced in the
previous section. That is, if a proposition of the
hypothetical pattern advocates normality of a
location (eg., queue length at Left A is nor-
mal), then Equation (1) and Figure 4(a) are
employed for inference: whereas, if abnormality
is advocated (eg, queue length at Left A is
abnormally increased), then Equation (2) and
Figure 4(b) are used. Depending on which
measure is involved in the proposition, appropri-
ate substitutions are required for variables x, v,
z, and fuzzy subsets At,.,Am, Bi,..Bs, Ci and G
for fuzzy inference.

The results from the inference are weighted
and averaged across the columns (traffic mea-
sures) and rows (locations) in the pattern table
to determine the overall degree of matching
between the actual traffic condition and the
hypothetical pattern. All traffic measures
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(columns) are equally weighted. Locations
(rows) are weighted in proportion to their feed-
ing volume into the plausible incident location.
This process is repeated for the hypothetical pat-
terns of each plausible incident location to deter-
mine which one matches best with the current
traffic condition. The best match is further
considered to ascertain that the degree of
matching is satisfactory. If the degree of
matching is satisfactory, having a value greater
than the decision value ALPHAZ2, the incident
is confirmed and its location of occurrence is
identified.

3. Incident Severity Assessment
Module

This module assesses the severity of the inci-
dent confirmed by the preceding two modules,
The severity information must be provided in a
form the control system can utilize to formulate
new control strategies in response to the incident.
Traditionally, incident severity is reported as the
number of lanes blocked due to the incident. In
many instances, however, incidents do not cause
complete loss of a lanes functionality in process-
ing vehicles as scheduled by the lane assignment
and the signal timing unless the incident is
located very close to the stop bar. The lanes
with the incident may be capable of serving
some vehicles entering the intersection. That is,
some of the vehicles that switched lanes
upstream of the incident would return to their
original lanes after they pass the incident site if
the space between the incident site and the stop
bar is sufficient. Furthermore, when the inci-
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dent is detected in the middle of or at a depart-
ing leg of the intersection, the lanes of the
affected approaches are not physically blocked
although some of their functionality might be
lost. Therefore, information such as the lane is
blocked would not be beneficial to determine
control actions in response to the incident.

Depending upon the amount of traffic return-
ing to the original lanes, the percent reduction 1n
volume distribution on the lane can be deter-
.mined as: 100X (AVGLVD - current lane vol-
ume distribution) / AVGLVD. The percent
reduction indicates the part of a lanes functional-
ity currently lost due to the incident. To assess
the severity of an incident, the module deter-
mines the percent reduction in volume distribu-
tion for the lanes of the incident-affected
approaches identified by the location inference
module,

4. Incident Termination Inference
Module

This module monitors traffic conditions after
the incident is detected to verfy termination of
the incident. Upon receiving the current data,
the module re-examines abnormality of the most
affected approach identified by the normality
inference module 'to look for a significant
decrease in the degree of matching. The queue
length (QUE) and speed (SPD) measures are
used for inference. The decreased (lower)
degree of matching means that the current con-
dition is less compatible with the necessary traf-
fic conditions to assure that the incident effects

persist,

If the degree of matching decreases below a
sufficient level (decision value, ALPHA3) during
three consecutive 1 minute time intervals, the
module concludes that the incident effects no
longer exist, and declares termination of the inci-
dent,

IV. INCORPORATION OF THE INCIDENT
DETECTION MODEL INTO A REAL-
TIME CONTROL SYSTEM

The incident detection model developed in this
research was incorporated into a real-time traffic
adaptive diamond interchange control system
currently being developed as a part of the
research conducted by the Texas A&M ITS
Research Center of Excellence,

The control system monitors and responds to
real-time traffic conditions through an automated
optimization process for green times and lane
assignments. The control system will also be
capable of granting signal priority to transit
vehicles and heavy vehicles, Incident detection
is one of the functions that the control system
provides.

The controller system architecture for labora-
tory development includes video imaging equip-
ment, a Versa-Module Eurocard (VME) bus
computer system and software, a standard
National Electrical Manufacturers Association
(NEMA) controller and signal hardware, a sim-
ulator resident on a microcomputer, fiber optic
lane assignment signing, and sensing and com-
munications capabilities, Figure 5 illustrates the
system architecture of the diamond interchange
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control system. The field camera unit captures
the real-time video image of the diamond inter-
change, and sends the signal to the video image
processing unit, SSI (Smart. Sensor Interface).
The video image processing unit collects: and
analyzes the video image to generate traffic data
In a usable form, and passes the data to the
data base in the main system (VME) through
The data base
stores the data and releases them when request-

the serial communication unit,

ed by other system components.

The PASSER III Optimization Manager
receives data from the data base, and performs
analyses to determine the optimal signal timing
strategy and lane assignment for the current
traffic condition, Then, the optimal control

strategy is recommended to the controller man-
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ager. The controller manager examines whether
or not the recommended strategy is feasible
under the current control scheme, If it is feasi-
ble, the controller manager adjusts the NEMA
controller with the recommended signal settings,

The dotted lines in the figure represent tem-
porary systern links required for the earlier phase
of the research because some system compo-
nents including video image processing units are
currently under development. The simulator
substitutes for the cameras, image processing
unit, signal lights, and the physical system of
the diamond interchange,

The incident detection model is functionally
integrated and effectively communicates with ‘
other system modules of the control system,

The incident detection module: resides within the

PASSER NI
Optimization
Manager
(P3OM)

R

Y

Lane
Assignment

FIGURE 5 System Architecture of the Diamond Interchange Conﬁ'ol System



152 Journal of Korea Transportation Research Society Vol. 14, No. 2, 1996

main system and communicates with the data
base and optimization manager.

It receives data required for incident detection
from the data base. When an incident is
detected, the incident detection module generates
an incident report containing the time of detec-
tion, location of the incident, and severity infor-
mation,  The incident report is then sent to the
data base for storage of historical incident data.
At the same time, the incident information is
reported to the optimization manager so that an
appropriate control strategy in response to the

incident can be determined.

V. EVALUATION OF THE INCIDENT
DETECTION MODEL

The prototype incident detection model was
applied to an actual diamond interchange to
investigate its performance. The model perfor-
mance was evaluated off-line using simulated
traffic data generated by TexSIM.

1. Study Design

The study site used for performance evalua-
tion was the First Street and IH 35 diamond
interchange in Austin, Texas. The geormetric
configuration of the interchange is typical of
urban diamond interchanges in Texas, It con-
sists of two signalized intersections, two one-way
frontage roads which serve the traffic demand
on and off the freeway, and a crossing arterial
street. Figure 6 illustrates the network configu-

ration of the diamond interchange system.

Incidents at various locations within the inter-
change under three different volume conditions
(representing light, medium, and heavy volume
conditions) were simulated for evaluation, For
each volume condition, incidents were simulated
at 12 different locations within the interchange
with 3 different severity levels. One incident
was simulated during each one hour simulation
run; therefore, the total number of simulation
runs was 102 requiring 102 hours of simulation
time,

2. Model Performance

Performance of the incident detection model
was evaluated using three major measures that
are typically used to assess the performance of
incident detection algorithms: detection rate, false
alarm rate, and mean time to detect. Shown in
Table 1 are the performance measures calculated

for each volume level and incident severity level.

1) Detection Rate

Table 1 summarizes detection rates of the
model determined for each volume case and
severity. The model detected 74 incidents
among the total of 102 incidents: therefore, the
detection rate of the model was determined to
be 73 percent. The detection rates increased
from 62 percent for light volume conditions to 79
percent for heavy volume conditions, The dif-
ference in detection rate between medium and
heavy volume conditions (77 versus 79 percent)
was not as large as the difference between light
and medium volume conditions. The detection

rate was higher when the inadent was more
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severe: 42 percent for 1 lane blocked, 86 percent The model produced 34 false incident deci-
for 2 lanes blocked, and 93 percent for 3 lanes sions (false alarms) among a total of 6120 deci-

blocked. .. sions: therefore, the false alarm rate of the
model was determined to be 056 percent, As
2) False Alarm Rate shown in Table 1, the false alarm rate tends to

TABLE 1 Performance of the Proposed Model

Performace
Measures Volume Case | 1 lane blocked | 2 lanes blocked | 3 lanes blocked overal
| light 17 . 75 100 62
; Detection Rate medium 50 92 : 90
| (%) heavy 58 92 %
overall 42 86 93
light 0 0 0
False Alam medium 069 097 042 0.74
Rate (%) heavy L1 069 083 093
overall 060 - 056 050
. light 65 44 43
Mean Time to redium 40 2 38
Detect heavy 12 38 34
(minutes) overal 14 1 39
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increase as volume level increases: 0, 0.74, and
093 percent for light, medium, ahd heavy vol-
urnes, respectively, For nearly all of the false
alarms, the model immediately reported their
termination because the random fluctuations that
caused false alarms disappeared shortly after
they were detected.

3) Mean Time to Detect

The mean time to detect was 4.1 minutes.
As shown in Table 1, the mean time to' detect
decreases as volume level increases: 4.6, 40, and
37 minutes for light, medium, and heavy vol-
umes, respectively, Under higher volume condi-
tions, incident effects develop faster because the
interchange experiences a higher level of conges-
tion under normal conditions: therefore, 1t took
less time for incident effects to reach the level
that the model can detect. The mean time to
detect was shorter when the incident was Vmore
severe: 44, 41, and 39 minutes for light, medi-
um, and heavy volumes, respectively. The
impact of more severe incidents on traffic condi-
tions is greater: therefore, congestion buids up
more rapidly to reach the level that the model

can detect,

VI. CONCLUSIONS

This research was a pioneering effort in
applying fuzzy logic to the arterial streét incident
detection problem. The following conclusions
can be drawn from the results of this research:
® The incident detection- model was tested

under a laboratory setting, and its perfor-

mance was encouraging in terms of detec-
tion rate, false alarm rate, and mean time to
detect. The model developed by this
research is a prototype model that runs
under a simulated real-time environment:
therefore, the model should be properly vali-
dated and calibrated to be deployed in the
field as a component of a real-time traffic
adaptive control system. The model was
designed for (but, not limited to) paired
intersections typified by urban diamond
interchanges. Calibration will be required for
the model to be operative for larger systems
that involve more signalized intersections.

® The model addresses technical difficulties
inherent in existing algorithms including the
threshold problem, modeling of input vari-
ables, and filtering of random fluctuations.
The model captures overall incident effects
on the network using multiple data for accu-
rate incident detection, and features improved
real-time capabilities. These benefits were
made possible by applying fuzzy logic.
Therefore, it can be concluded that fuzzy
logic would be a promising approach for
developing an artenal street incident detection
model,

VI. RECOMMENDATIONS FOR FUTURE
RESEARCH

This research was an initial attempt to devel-
op a fuzzy logic based incident detection model
for arterial streets. Further research is recom-
mended to enhance the model as follows:
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® The model was developed based on off-line
data generated by a simulation model. The
model should be calibrated and validated in
the field using real-time traffic data in an
actual diamond interchange to confirm its
benefits,

8 Fuzzy systems, including the model devel-
oped by this research, are not capable of
learning and tuning their membership func-
tions and fuzzy rules. The model can be
enhanced for learning capability through
hybrid system approaches such as fuzzy-
neural or fuzzy-genetic algorithms,

® A study is recommended to assess incident
information needs for a real-time traffic
adaptive control system to determine effec-
tive control strategies in response to the inci-
dent. The proposed model can be refiried to
provide the specific incident information

required by the control system,
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