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1. Introduction

In an attempt to solve the multiple link free-
way problem, recently G. F. Newell (1993a,
1993b & 1993c) has developed a ‘“Simplified
Theory of Kinematic Waves in Highway Traffic "which
is based on the theory of “kinematic waves”
described originally by Lighthill and Whitham in
1955. An important simplifying assumption of
his theory is that relationship between traffic
flow and density on a freeway can be approxi-
mated by a triangular flow, ¢, versus density, &,
relationship, (A detailed description of the simpli-
fying assumption is presented in Section 2.2)
Newell's simplified theory avoids the computa-
tional difficulties of the Lighthill-Whitham theory
by working with cumulative traffic counts
instead of flows, and by assuming the triangular
g-k relationship. Newell's model is capable of
predicting the multi-destination traffic flow pat-
terns at any freeway junction or other location
of interest. Also, his model gives the analyst the
considerable advantages of knowing the cumula-
tive vehicle counts that leave the freeway at
each exit ramp junction, Another important
feature of Newell's theory is the ability to pre-
dict when a queue from a downstream bottle-
neck backs up to specific upstream location, In
fact, such queueing propagation information is
very useful for traffic engineers in selecting effi-
ciént freeway traffic control schemes, Newells
model promises to be a simple and plausible
model as an evaluation and analysis tool for
freeway traffic flow.

The objective of this paper is twofold: first, to
develope a computer algorithm, which can pro-

duce numerical results for traffic flow conditions
in reasonable computation times, in order to
mechanize the graphical procedures of Newell's
theory, and second, to facilitate the application of
his theory for freeway traffic operation/control
purposes, The computer algorithm includes the
procedures for extracting information about free-
way traffic flow such as the total travel time,
total delay, traffic density, and the location of
the tail of a queue. These procedures are based
on Newel's simplified theory. In describing the
theory, equation from Newell's three papers
(19932, 1993b & 1993c) are referred to by their
number in those papers, preceded by the letter
N and a hyphen, e. g, N-II-3 refers to equation

3 in Newell's second paper.

2. The Theory

Based on the analogy between traffic flow
and a real fluid, Lighthil and Whitham (1955)
and Richards (1956) developed a hydrodynamic
(Kinematic Waves) theory of traffic flow. The
key postulate of this theory is that there is a
functional relation between traffic flow and den-
sity {concentration), where traffic flow is defined
as the rate at which vehicles pass some point,
and traffic density is defined as the number of
vehicles per unit length of the roadway. At a
macroscopic level, the traffic flow is the average
vehicle speed (space mean speed) multiplied by
the traffic density, i. e, ¢ = kv! this relation-
ship is often called the fundamental law of traf-

fic flow,

21 Wave Pace
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Newell's simplified theory ‘is based on the
“concept of waves in traffic. A traffic wave (here-
after referred to as a wave) is defined as a
curve joining points on the time-space plane
which have the same flow, ¢, and density, k.
When changes in flow and density occur, the
wave can be thought of as carrying such
changes through the stream of vehicles,

The ‘pace” (the reciprocal of the “velocity”) of
the wave relative to the road can be determined
as follows, In Newells theory, it is assumed
that the g-krelationship might vary with location,
X, but not with time, ¢, so

k(x, 1) = k¥(g(x t), x)
or (N-11)
q(% 1) = q*{k(x, 1) x)
for some given relations k* or ¢ * From
equation (N-L1) and the conservation equation
(equation of continuity) for traffic flow,

2 kx tVat+a gxtya x= ( (N-12)

the following partial differential equation for
g(x,t) can be derived:

w(gx)2 gxtVa t+2 g(xt)2 x=0Q (N-1.3)
where w(g x) is defined -as

wg x) =2 k¥g x)/2 q
For the reason outlined in the next paragraph,

w(q, x) — which will be very important in the
_analysis that follows — is'called the “wave pace”
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See Haberman(1977) for additional details about
the derivation of equation (N-13).

To see why w(g x) is called the wave pace,
suppose that the flow is measured by a moving
observer and the position of the observer is
described by a function x#). The flow measured
by the observer presumably depends on both
location and time, so rewrite g(x(t)¢). The rate
of change of this flow as the observer moves

along the road is

dq(x@ Mx=[dt/dx][a qx(t)t)/2 t]+
2 q(x(tht)/> x oY)

Comparing equation (1) with equation (N-
13), it can be seen that an observer moving at
the pace

dt/dx=w(gx) (N-14)

will not see any change in g(x(t) 1), o is —
by definition — moving along a wave, It fol-
lows that the wave's pace must also be w(g, x)=
2k*q x)y2q This is the basis for the notion of
a wave and its velocity or pace,
It is very important to notice that the pace of
a wave carrying a flow, ¢, at location, x
dvdx=w(g x)= 2 kg, x)/2 g, (2)

can be interpreted as the slope of the tangent
to the g¢-k relationship at x, as ilustrated in
Figure 1 (Haberman, 1977), The figure shows
that when the density, &, is less than the critical
density, k- (corresponding to the capacity, #), the
pace of a wave is positive and when k is
greater than kc the pace of a wave is negative,

The negative wave pace indicates that the
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wave moves In a direction opposite to the direc-
tion the vehicles are moving. Waves can there-

fore be propagated either forward or backward

at the pace given by equation (N-14)

It is common on a congested highway to

Density, &
k;

wave pace

wave pace

H Flow, g

Figure 1: The wave paces

observe a chain reaction being triggered by a
downstream driver applying his/her brakes, thus
causing the drivers upstream to apply their
brakes. The brake lights, which indicate distur-
bances (changes) in traffic, appear to move
backward, whereas the vehicles are moving for-
ward. This example demonstrates that waves
can move backward while the vehicles are

moving forward.

2.2 An Important Simplifying Assump-
tion of the Theory
Recent research (Banks, 1989: Hall et al,

1992; Koshi et al, 1983) has suggested a g«
relationship which consists of two more or less
linear branches at low and high density values
corresponding to the uncongested and congested
flow regimes, respectively, Newell (1993b) sim-
plifies this idea to an assumption that the rela-
tion between traffic flow and density on a free-
way can be approximated by a triangular g-k
relationship as ilustrated in Figure 2: this is an
important simplifying assumption of his theory.

The triangular ¢-k relationship shown in

Figure 2 leads to only two constant wave paces,



Density, k
0
slope = -w
kc ------------------------ '
slope = u :
H Flow, q

Figure 2: A triangular flow and density rela tionship

u » 0 for the uncongested regime where the
density is less than the critical density, k, and -
o (where @ » 0) for the congested regime of
density between the critical density and jam
density, k. (Newell uses uo as the forward
wave pace and - as the backward wave
pace. the subscript has been dropped to simplify
some of the expression that will appear later,) It
is important to know that having two wave
pace does not mean that Newell's theory allows
only two speeds on freeways., The forward
wave pace equals the critical density divided by
the capacity (i e, u = k /#). This wave pace
is equal to the pace of vehicles moving at the
free-flow speed, since the slope of the triangular
gk curve for the uncongested flow regime of
Figure 2 is identical to the reciprocal of the free-

flow speed. The backward wave pace is equal’

to ~tki- k//#.  In the remainder of this paper, it

is always assumed that k* and g* in equation
(N-11)

2.3 Other Basic Definitions, Assump-
tions and Key Equations

2.3.1 The Numbering of Station

Each junction of an entrance or exit ramp
with a freeway is defined as a “sation”. In
addition to the ramp junctions, any point
between successive ramps where the capacity is
reduced due to a lane drop can also be defined
as a station. Once all the stations have been
defined, number i € {0, 1, 2, . . } are assigned
to them in consecutive order, beginning with
station 0 at the upstream end of the freeway.
The location of station i is represehted as point

x, measured from station 0, with x1 ¢ x. We
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do not distinguish between the beginning and
end of a ramp taper, so both merges and
diverges are modelled as occurring at a point,

that is at x
2.3.2 Assumptions

To make Subsection 234 through 2.35 easier
to understand, three other assumptions made in
Newell's theory are presented here. First,
Entrance ramp vehicles have prionty at the
merge point, so they do not experience delay
when entering a freeway. Secondly, the travel
time of any vehicle in the roadway section (%
xi+1) at time ¢ is independent of its origin or
destination; thus, vehicles exiting at x+ have
the same travel time from x to x+1 as through
vehicles passing x+1 at the same time. Thirdly,
in any section (x, x+1), the critical density, ki),
the jam density, ki), and the capacity, #,
remain constant and consequently, the forward
wave pace, #, and the backward wave pace, -,
in the section are also constant,

The first assumption seems to be an oversim-
plification of the traffic situation at the junction.
However, the assumption is usually correct if
there is an adequate merging lane for the ramp
vehicles entering the freeway, though there may
be some traffic friction. Tt would be easy to
modify the model to allow more complex queue
disciplines if the analyst knew how to describe
them, With respect to the second assumption,
macroscopic models use the average speed of
vehicles in the traffic stream in order to simulate
the movement of the vehicles. This simulation is

usually reasonable for freeway traffic flow

because the travel time of vehicles travelling in
the section between two successive ramp junc-
tions is mainly dependent upon traffic conditions
on the section rather than mutual interference
(e. g, lane changing) between the vehicles, As
outlined in Subsection 231, the freeway must
be divided into homogeneous sections in terms of
geometry conditions and capacity: this is neces-
sary to ensure the validity of the third assump-

tion,
2.3.3 Cumulative Traffic Counts

In determining the cumulative traffic count at
any location, it is convenient to pretend that an
observer at each freeway location numbers vehi-
cles consecutively as they pass the observation
location, starting from the passage of the same
reference vehicle at every location, It is tem-
porarlly assumed that no vehicles enter or leave
the freeway, so that the imaginary observers at
every location assign the same number to each
car and define Mx #) as the cumulative number
of vehicles which pass location x by time ¢
The cumulative count Mx, #) is then equal to the
number of the last vehicle to pass the count
location x before time ¢ and the vehicle’s number
does not change as it moves,

If we draw the curve MN(x ¢) in a three-
dimensional (N, x, 7) space, Mx t) will actually be
a step function since a vehicle count is an inte-
ger, but in hydrodynamic traffic flow models,
the curve is “smoothened” in order to define a
flow g(x t) as the derivative dN(x, £)/dt of the
curve, From the Mx, t)-curve, the traffic density
and flow can also be evaluated (Makigami et al,
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1971; Newell, 1982) as

kx t)=-aN(x tVax
and (N-16)
qlx t)= 2 Nix, tyat.

The change in Mx t) along a wave with
pace dt/dx = w can be determined by

AN =(aNax)dx+(aN/at)dt = -kdx +
qw=(-k + gwdx . (N-18)

2.3.4 Propagation of a Forward Moving Wave

If there is no congestion, the cumulative
count Mx, t) at location x at time ¢ can be
determined from the cumulative count Mxi-, #)
at location x-r.  According to the assumption
that the free flow speed is not a function of
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flow and time, Mx; t) = Nxes, (% - xir)uer), since
(= Xer)ua is the free-flow travel time from xi
to x, Figure 3 graphically explains the determi-
nation of N(x, #). In the figure, the jth vehicle
passes x- at time # and arrives at downstream
location x at time # =t + (X - x-1)u-, Since this
is true for every i, the Mx; t)-curve can be
determined by horizontally translating the Max-
i}curve by a time displacement equal to the
free-flow travel time between x~ and x. This
graphical procedure (hereafter referred to as the
“forward wave propagation rule”) will be used
in Section 4 to evaluate the cumulative number
of vehicles which would arrive at x if there was

no congestion in the roadway section (x-1, xi).

2.3.5 Propagation of a Backward Moving Wave

A backward wave moves from x+/ to xi

.

Cumulative Count

Time, ¢

Figure 3: A forward moving wave propaga- tion.
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within a congested freeway section (% x:r) with
the wave pace w = -wi = (ki) - kVg where k >
ke(i). From equation (N-18), with this pace,

dN/dx = -k + qw=-k-qui =-k-qlk(i)}-kyq =
-k -kii)+ k= -ki1). (3)

Figure 4 shows a part of the N(x t)-curve,
and graphically explains the change in the
cumulative count N(x, t) in the section (xi

xies)along a backward wave, The backward

wave passes X+ at time tl, then traverses the
distance dx = dt/wi and reaches point xwsdxat
time t+dt In this figure, the dashed curve
between ponts 1 and 3, which is a portion of
the trajectory of the backward wave in the
three-dimensional (N, x, t) space, connects two
cumulative counts MNxi+r-dx, t;+dt) and N(xwi, ),
If the dashed curve between points 1 and 3 is
projected onto the c(x t) plane, the projection will
be a straight line, The slope of the straight line
is equal to the backward wave pace, d¥/dx=wi

Cumulative Count

X, -dx
Xy

NG -dx, ) /2

t,+dr
Time

7
Location

Figure 4: A bockward moving wave propagation

Figure 5 is obtained by projecting the curves
N(xi+1-dxt) and N(x1t) in Figure 4 onto the (N, 1)

plane. These two curves can be approximated

by a straight line for an infinitesimal dt. In this .

figure, the horizontal displacement, @idx, between
points 1" and 2’ is equal to the backward wave
propagation time from X+ to Xii-dx. The verti-

cal displacement, dN = Nxi+i-dx, ti+dt) - N(xie,
t1), between points 2 and 3’ is equal to k(idx
according to equation (3). The kfi)dx represents
the number of vehicles which can be presented
between xs-dx and x+r at jam density. From
the figure, it can be seen that the cumulative
count at location xir-dx at time #r+dtf, N(xui-dx,
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t+dt), can be determined by translating point
Nxier, 1) horizontally by a displacement edx and
vertically by a displacement k{i)dx, This transi-
tion can be done for every point on the N, £)-
curve. Hence the entire N(x, #)-curve or at least
some piece of it can be constructed by trandat-
ing the curve Mxi+1, t1) as follows.

Suppose that the queue from xi+1 backs up
to some location X =xw-Ax between x and xi
at time t =t + (xie1-x)wi, Since it has been
assumed that k(i) and -e are constant in the
section (x, xi+1), dN/dx remains constant along the
backward wave moving from X+ to x, according
to equation (3). Thus, the difference between
the cumulative traffic counts at x and x+;, AN
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=M>x 8- M, t1), can be determined by multi-
plying dNdx = k(i) by Ax, Hence, Mx t)=
N+, 1) + (x-x)k(i). Since -& is constant in
the section, the projection of the curve between
N(x, t) and N, #1) onto the (x ¢ plane is a
straight line and its slope is -@, Thus, the value
of Mx t) can also be determined by translating
the Mo, t1) horizontally by a displacement (xi+i-
x)a and vertically by a displacement (xir-x)kgi),
This graphical method (hereafter referred to as
the “backward wave propagation rule”) will be
used for the determination of the cumulative
number of vehicles at x and xw if the queue

from xis reaches x in Section 4.

Cumulative Count

Lo\

ftde Time, ¢

Figure 5: The change in N(x, t) along a backward wave in a three-dimensional (N, x, t) space,
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3. Input Requirement and the Results of the
Computer Algorithm

In addition to the given time-dependent ori-
gin-destination (O-D) flows, Ai(t), the following
information are required for the input of the

computer algonthm:

(1) the speed for the uncongested flow:

{2) the capacity:

{3) the jam density:

(1) the locat}on of each station (ramp junc-
tion) . and

(3) the number of lanes on the freeway sec

tions,

The first three parameters are important
determinants of the triangular g-k relationship.
The forward wave and backward wave paces
are determined from these three parameters.

The results of the computer algorithm include
the following information about the traffic flow
patterns and queueing on the freeway during a

specific time period:

- The cumnulative number of vehicles which
would arrive at each station in the absence
ofcongestion.
- The cumulative number of vehicles which
can pass each station.
- The cumulative number of vehicles which
leave the freeway at each exit ramp.
- The total travel time and total delay incurred
by all vehicles that travelled on each freeway
section between two successive ramp junc-

tions or on the entire freeway sections.

- The outline of the congested region, queue
length or the location of the tail of a queue,

on the freeway system.

Beside the above information, the average
traffic density on each freeway section at any
particular time can be written to the output file
if the analyst desires it,

4. Evaluation of Traffic Flow Pattems

Newell(1993b) uses a ‘moving time coordi-
nate system” in his graphical method. In the
moving time coordinate system, an imaginary
observer at each location not only measures the
cumulative traffic count from the passage of
some reference vehicle travelling at the forward
wave pace, but also the time relative to the
passage of this vehicle, However, in this paper.
Newell's graphical procedures and the computer
algorithm are described by using the “real time
coordinate system” instead of the moving time
coordinate system. The reason for this is that it
seems convenient for understanding the algo-
rithm to deal with the problem as taking place
in the real time coordinate system,

This section consists of three subsections:
Subsection 4.1 illustrates the graphical and com-
puter procedures for evaluating traffic flow pat-
terns at each “station” on a deliberately simple
system with no ramps. In Subsection 42. we
consider a system which has an entrance ramp
at one of the stations and Subsection 4.3 deals

with a system having an exit ramp.

41 A System With No Ramps
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To begin the analysis, the following notation
is defined:

A(x,t) =The cumulative number of vehi-
cles which pass upstream location-
Xt by time - (Xi- Xiduit,
so wil arrive at x by time t if they
are not delayed by congestion in
section (xr, x);

and

D(x, t) =The cumulative number of vehi-
cles which passed x by time t.

It should be noted that A(x, t) does not
include vehicles that would have reached x by
time t If there were no queueing anywhere, but
fail to do so because they lost time in a queue
upstream from x-1. Furthermore, if there is con-
gestion in section (x-1, x), A(x t) does not
indicate the number of actual arrivals at x, but
the number that would have arrived if there
were no congestion in the section (x1, x). It is
also important to notice here that if there is no
congestion in the section (%1, x), then D(s, t)
is equal to the value of N{(x, t) which is deter-
mined by the forward wave pace propagation
rule: however, if there is congestion in the sec-
tion (%1, x), D(x, t) is equal to the value of
N(x, t) which is determined by the backward
wave propagation rule,

Both the graphical and computer procedures
start at station 1, and work downstream. The
traffic flow pattern D(x, t) at station 0, the
upstream end of a system, must be known.
Practically speaking, this means that station 0
must be a place that never becomes congested,
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though it might run at capacity. The last sta-
tion n could be one that runs at the capacity,
so there can be congestion in section (xw, xi).
However, there must be no congestion down-
stream of station n. It is convenient to assume
that the freeway is empty at the initial time &
and that vehicles start entering the freeway at
every on-ramp at #. The above noted conditions
and assumptions are applied in the analysis that
follows and throughout the remainder of this
paper.

4.1.1 The Graphical Procedure

To begin, suppose that the flow passing each
station is not constrained by the capacity of the
station, This is a temporary assumption to make
the graphical procedure for determining the
cumulative departure count easier to understand;
it will be relaxed in the next paragraph. In the
first step, the cumulative amrival curve A(x, t)
at station 1 is determined by moving the
known D(x, t)-curve horizontally by a time
displacement equal to the free-flow travel time
from station 0 to 1, (¥ - x)w according to the
forward wave propagation rule, In the absence
of congestion, the cumulative departure curve,
D(x, t) at station 1 is equal to the curve A(x,
t). After evaluating the curves A(x;, t) and
D(x1, t), the graphical method evaluates the
A{x, t) and D(x, t) curves in the same man-
ner for every station i ) 1.

Consider now a queueing situation where the
flow passing some x > % is constrained by the
capacity at x, #i. Figure 6 shows a graphical
construction of the curve D(x, t) at x In the
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figure, the flow reaching x is equal to the curve A(x t). However, after time #, D(x;, t) is
capacity #i for the first time at time #, so until

that time the curve D(w, t) is the same as the

determined by drawing a straight line of slope
of #:i tangent to the curve A(x, t) at time #.

D(x,., 1)

Cumulative Count

(=X, uy §

------ 3
Q(xi’ t)
2

queueing
delay

LY P I e 4

Time

Figure 6: A graphical construction of the curve D(x, t).

It is important to notice here that in the con-
ventional deterministic queueing analysis, the
vertical distance,

Qlx, t) = Alx, t) - D(x, t), (4)

between points 2 and 3 in Figure 6 is
thought of as the number of vehicles in the
queue in section (xs, x) at time t However,
Q(x, t) simply represents the difference between
the cumulative number of vehicles which have
already passed x- by time t - (% - x)u, but
have not yet passed x by time t due to con-
gestion in the section (x-, x), and the cumula-
tive number of vehicles that have actually

passed xi by time t, Thus, Q(x, t) is not the
“real physical queue”, which is the number of
vehicles between the tail of the queue and loca-
tion x, but a “point queue” (or “vertical stack
queue” or "standing queue”), the queue which
would exist if all queued vehicles were stored in
a vertical stack at x rather than lined up along
the roadway.

In Figure 6, it 1s assumed that vehicles do
not pass each other, so the horizontal distance
between points 1 and 2 is the queueing delay
for a vehicle which arrives at x at time t. The
vertical difference, D(x, t) - D(x, t), between
points 2 and 4 represents the number of vehi-
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cles which have passed x, but have not yet
passed xi ; it is the total number of vehicles on
the roadway section (xw, %) at time t, including
vehicles in the queue as well as those that have
not yet joined the queue.

The queue formed at x will grow as long as
the oncoming flow to x exceeds the capacity i
at x In this situation, one must check if or
when the queue from xi backs up to xs in
order to determine the actual departure curve
D(xe, t) at %, This check can be accomplished
by a translation of the D(x, t)-curve, according
to the propagation rule of the backward wave.
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Figure 7 shows a graphical construction of the
D(x, t)-curve, In the figure, the D(x, t)-curve
between points 1 and 2 is first translated hori-
zontally by a time displacement equal to the
backward wave propagation time from x to X/,
(% ~ xi)@ir; the translated D(x, t) curve is
represented by the dashed curve between points
3 and 4. That curve is now translated vertically
by (6 - x)ki(i-I) to give the dashed curve
between points 5 and 6 (hereafter referred to as
the final tranglated D(x, t) curve).

By conservation of the number of cars, the

Cumulative Count

/
V4 ”6
/ -

‘ -
5 . -7 Dx.,, 1)

7
7/

-

/
7

7 (x-x. )k (i-1)

L/

bl

t-(x-x )w,, 4

' D(x,, 1)
) - -
l(
t ; -
“ Time

Figure 7: A graphical representation of the backward wave propagation,

cumulative number of vehicles which passed at
any location should be the same when viewed
from either side. Thus, if the tail of the queue
from x is located exactly at point xs at time t,

two curnulative number of vehicles — one from

the forward wave moving from x2 to xv and
the other from the backward wave moving
from x to %+ — should be equal. In Figure 7,
the final translated D(x, t) curve is above the
arrival curve A (xi, t) at time t. This indicates
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that the queue from x has not yet reached xw
at time t, so the flow passing x at time t is
not constrained by the queue from x The end
of an existing queue passes % at time # when
the curve A(xs, t) intersects the final translated
D(x, t) curve. In fact, the queue at x: is the
continuation of the queue from x One unique
feature of Newell's traffic flow model is that the
model divides a big queue which forms at a
bottleneck into little point queues at each station
within the congested region. In this manner,
Newell's model takes into account the effect of
a physical queue on the determination of traffic
flow patterns upstream at the bottleneck regard-
less of the length of the queue. From time &,
the curve A{xi, t) is above the final translated
D{(x, t) curve, This indicates that the flow pass-
ing x at time # is constrained by the queue
extending upstream from x;, though the flow is
less than the capacity at xr. Thus, the actual
departure curve at x., D(xa, t), from # is deter-
mined by the final translated D(x, t) curve,
which is the smaller of the candidate values
implied by the final translated D(x, t) curve
and the curve A(x, t). Note that to the left of
time & the actual departure curve D(xs t) at X
is equal to the arrival curve A (%, t).

When the curve A(xu, t) again drops below
the final trandated D(x, t) curve, it indicates
that the queue from x no longer extends past %
1, so the flow passing x is no longer constrained
by the queue, After that time, the curve A{x,
t) will determine the actual departure curve D(x
1, t) at xu. This is not illustrated in Figure 7.

4.1.2 The Computer Procedure

Since it has been assumed that the freeway
is empty at the initial time t = 0, the cumula-
tive counts A(x t) and D(x, t) at the initial
time t for every 1 are zero. The departure
counts D(x, t) at x for all discrete times t €
{w+ kr,k = 0,1, 2 ..} where tis a time
increment chosen by the user, are known.
From the “given” D(x, t), the computer algo-
rithm evaluates the cumulative counts A(x t)
and D{x, t) at time t = n +7 for stations i =
1 to n (the last station) where A(x t) > 0,
then A(x, t) and D{x, t) at t = # + 27 for i
= 1 to n where A(x, t) ) 0, etc. by the proce-
dure that follows.

The computer procedure for determining A(x
t) is perhaps best understood by looking at
Figure 8 which shows the cumulative vehicle
counts at x and x. In the figure, dark filled
squares indicate which are known and the
empty square indicates the target point which is
to be determined. Since the algorthm employs
an assumption that traffic flow within each time
increment is constant at each “station”, the
cumulative count curves are piece-wise linear.
The arrival count, A(x, t), at x is equal to the
number of vehicles which passed upstream loca-
DA t) =

D(xs, t-(x- x)u)., However, the free-flow

tion xs by time t - (x- Xxer)ue

travel time (xi- x)ur is not generally an integer
multiple of the time increment, t. Therefore,
the count D(x, t-(x- x./)uss) identified by point
1 in Figure 8 is an intermediate value between
the cumulative counts at xis at two discrete
times ta and & +t, where # is the last time
point t - kr before time t-(x- x)ur,

In order to evaluate such increment values,
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the computer algorithm employs a linear inter-

polation:

Alx t) = Dxy, &) + [D{x, tert) -
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D(xi, ta) ][ At/7] (5)
where
Ar= (n + 1)t- (6~ xD)u

as shown in Figure 8 and

.
= .
3 D(x,.,, 1)~
@ -’
P .
2 .
Rt . . n
o — AT —— -
=) -
£ 15 - nt- >
3 Ll (x-x,_ ) 4y ——>
@) - A |-) i-1 A(x,, t)
.’ :
; I, I+t t
Time

Figure 8: The cumulative traffic counts at X and x.

n = the integer part of [ (- xir)ut/7]

which is the number of time increments
within the free-flow travel time from x. to x.
It is important to notice here that n has memo-
ry implcations for the computer program: in
order to determine A(x, t), the computer pro-
gram must store temporarly at least n + 2
data points of D{x, &) within the time period
from t+ = t - (n + 1) to t. In Figure 8, for
example n = 4 and there are six data points of
D(xis, t) within the time interval [t t]. The
time increment v is most likely to be less than

or equal to one minute, It can be expected that

the accuracy of the computer algorithm would
be dependent on the value of 7. If 7 is small (e,
g, 15 seconds), the accuracy of the estimated
results from the computer output should be
high. However, smaller values require more

computations and, since n is larger for a smaller

value of r, more memory space. It is, therefore,

necessary to identify an appropriate ¢ in terms
of balancing the accuracy of the output and the
computational efficiency of the computer algo-
rithm. In essence, t should be chosen in order to
capture any possible surges in the armrivals and
departures at any time at any station. To iden-

tify an appropriate 7, the accuracy of the algo-
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rithm’s results and computational efficiencies for
different s must be compared.

This subsection now focuses on the determi-
nation of the cumulative counts of vehicles
which passed x by time t, D(x, t). Before pro-
ceeding any further, it should be noted that the
computer algorithm takes into account the fol-
lowing three possible conditions under which the
actual departure count D(x, t) at station 1 can
be determined:

(1) the flow passing x is constrained by the
capacity'at X, Mi.

(2) the flow passing x is constrained by a
queue which backs up to xi from xir:
and

(3) the flow passing x is constrained by nei-
ther the capacity at x nor a queue

extend from X,

Under condition (1), D{x, t) is the cumula-
tive departure count evaluated at the immediate
previous time t -t plus the number of vehicles
that can pass x at cgpacity during the time
period (t -7, t):

D(x, t) = Dy, t - 7) + @, (6)
This cumulative departure count will be called
the first departure count. The second departure
count, under condition (2), can be evaluated by

the propagation rule for backward waves as

D(x, t) = D(xr, t - (erx)w) +
(- 1)k (1), (7)
where (xo.x)w is the backward wave propa-

gation time from X to x This time is not gen-

erally an integer multiple of the time increment,
7, 50 D(xs, t - (x- x)@) must be determined
by a linear interpolation between the cumulative
departure counts at xiv just before and after
time t - (%~ x)o, The first term of the right
side of equation (7) is related to the horizontal
trandation of the curve D(x, t) in the graphical
construction of the backward wave propagation
rule and the second term is related to the verti-
cal trandation, Equation (7) gives the same
value for the cumulative traffic count as the one
obtained by the graphical procedure except for
minor inaccuracy due to linear interpolation,
However, in order to use eguation (7), the time

increment T must satisfy the following condition:

r < min[ (e, 1 =0,1,...,n-1]. (8

Under condition (3), the curnulative departure
count at x by time t, D(x, t), is equal to the
cumulative arrival count A(x, t). This depar-
ture count will be called the third departure
count,

In order to determine the actual departure
count at each station, the computer algorithm
always evaluates the possible departure counts
under conditions (1) and (3), but not always
the departure count under condition (2). If
there was no congestion on the roadway section
(%, xs) at time t - 7, the actual cumulative

departure count is

D(x t)=min{A{x t), D(x t - )+ #it]. (9

since D{x. t) will be subject to only the con-
straints, D(x t) < A(x t) and dD(x, t)/dt <
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#, However, if there was congestion in the
section (x xe) at time t - 7, the algorithm
evaluates all three possible departure counts and

then determines the actual cumnulative count as

D(x. t) = min[A(x t), D(x t -7) +pur,
D, t-(xr- x)e)+(x- xki() ], (10)

42 A System With an Entrance Ramp

Traffic flow patterns at time t should be dif-
ferent just upstream and downstream from a
ramp junction located at x if there are vehicles
entering or exiting the freeway at station i, To
consider a system which has an entrance ramp
at station i the following additional notation is
defined:

Ai(t) = the cumulative number of ramp
vehicles which enter the freeway at station
by time t .

X' = the location just upstream of the
ramp at x .

and

x* = the location just downstream of the

ramp x.

As pointed out earlier, however, merges and
diverges are modelled as occurring at a point, so
xi" and x* do not have values different from
xi. the purpose of - and + is to indicate
whether the associated cumulative traffic counts
are upstream or downstream of the ramp.
Clearly the downstream arrival count can be

obtained by simply adding the ramp count to
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the upstream count:
Alw, t) = Aluy, t) + Ai(t), (11)

Since it has been assumed that the ramp
vehicles pass x with no delay, a similar relation-

ship also holds for the departure flows,
D, t) = D(x, t) + Ai(t), (12)

and the point queue at station x is the
“queue” of through traffic:

Qs t) = A, t) - Dl ) = Alx O

L]

- D(x, ). (13)

From equation (12), it can be noted that the
service rate for through flow, D{x, t), varies
with time, though the capacity of the bottleneck
is assumed to be constant over time, Thus, in
the model, the effect on through traffic of time-
dependent ramp flows at a bottleneck is similar
to having a time-dependent capacity at the
bottleneck,

The graphical and computer procedures for
determining A (x, t) and D(x*, t) are the same
as those for A(x, t) and D{(x, t) described in
Subsection 41. After A(x, t) and D(w, t)
have been evaluated by either the graphical or

“computer procedure, A(x*, t) and D(x, t) can

be obtained from equations (11) and (12),
respectively,

If there is congestion in the roadway section
(%1, x), the on-ramp flow at x will cause a
decrease in the flow passing x which, in turn,

affects the time when a queue from x might
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back up to x as wel as the travel time from
xir to % Therefore, a check whether or ‘-not the
queue has back up to xs must be conducted
using the departure curve, D(x, t), at x,
according to the backward wave propagation
rule.  If the final trandlated D(x, t) curve is
below the amival curve, A(xs t) at time t at
xiit, the actual departure value, D(x., t) wil be
determined by the final translated D(x, t)
curve. The computer algorithm evaluates all
three possible departure counts, A(xr, t), D(xr,
t -t) + gt and DOw, t-(e- xr)ar +(- %)k
). The actual departure count D(xr', t) is

determined as the smallest among them.

Determination of Multi-destination Flow Pattern

“Given” time-dependent origin-destination
(O-D) entry flows can be stratified by destina-

tion as

Ai(t) = the cumulative number of vehicles
which enter the freeway at station
i by time t destined for an exit at
% {j > 1) or beyond.

Ay(t) - Aj(t) is the number of vehicles-
entering the freeway at station i by time t des-
tined for an exit at x.

The follwoing analysis focuses on the deter-
mination of the cumulative counts of vehicles
that have passed every junction, also stratified
according to destination. For each 1,

Ai(x, t) = the cumulative number of vehi-
cles which pass x+ by time t

- () i1

destined for % > x or beyond, so
will arrive at x by time t if they
are not delayed by congestion in
section (xer, X,

and

Di(x t) = the cumulative number of vehi-
cles destined for x ) x or bey-
ond, which
passed x by time t,

It is assumed that the collective flow of all
vehicles that enter the freeway at xi with des-
tination % ) x or beyond satisfies all the equa-
tions previously described in this manner, inde-
pendent of the distribution of the vehicles.
Thus, equations (11) and (12) can be rewritten

as

Ajlxi*, t) = Ajls, t)+A(t) for all j > i (14)
and
Di(x", t) =Djlx, t)+A;(t) for all j > i (15)

To make the following description easier to
understand, the procedure for evaluating the
arrival curve Aj(xi, t) for i = 1 is first
described.  From the given Di(x', t) = Ao(t)
for each j > 1, the arrival curve at station 1,
Ai(x, t) for any j = 1, can be determined by
the forward wave propagation rule. The com-
puter algorithm evaluates Ai(x, t) = Dilx', t -
(xi-x0)us) for any j > 1 from equation (5) with

appropriate substitutions,  Then Aj{(x", t) for

any j > 1 can be easlly determined from Aj(x,
t) and Au(t), according to equation (14). The
same type of graphical and computer procedures
can be used to construct curve Aj(x, t) for any
i 1 from the departure curve Di(x*, t) at the
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next upstream location X, Thus, the remainder
of this section focuses on the determination of
the departure curve at any i,

It is important to notice that Di(x*, t) for j
= 1.+ 1 is the same as the aforementioned
D{(x*, t). Thus, Dii(x*, t) can be determined in
the same manner just described. After evaluat-
ing curve Dui(x, t), curve Dz+1(xi', t) can be
determined by subtracting A:(t) from the curve
Dii(x', t).  The computer algorithm evaluates
Dixi{, t) from equation (15).

Figure 9 shows a graphicai construction of
curve Di(w, t) for some j > i + 1. In the fig-
ure, traveller m who passed x: at time # passes
X at time t, regardless of his or her destination.
The horizontal separation, t - t1, between points
1 and 2 represents the travel time of traveller m
from x to x, Ti(t). The computer algorithm
evaluates the travel time Ti(t) as the time dif-
ference between time t and the time at which
the departure count, Di+s(x:r*, t), at x is equal
to Dis(x, t) at x To identify the value of
Disr{x:17, t), the algorithm compares the depar-
ture counts Dir(xi, t) and Dir(wr*, t - ko),
The count Dir(x, t) identified by point 1 in
Figure 9 is perhaps equal to an intermediate
value between the counts Diw (%1%, t) at x at
two earlier discrete times # and & +t. Here ta
is the last time t - kt when Dii(xs’, t) <
Disr(xi, t) before time t. After identifying two
counts Di+1(xer”, t) and Dii(xi1*, t+t), the
algorithm evaluates Ti(t) by the following linear
interpolation formula for any 1 > 1,

Ti(t)=(t - &) - t[Dis(x, t) - Diws

(%1, 1) )/[Dirt(is*, tatt) ~ Dini
(1", ta)]. (16)
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Since it has been assumed that all vehicles
passing x at time t have the same travel time
Ti(t) (including delay), regardless of their desti-
nation, the travel time Ti{t) plays the important
role of determining the departure curves at x,
Dix", t) and Dj(x, t) for destinations j » i + 1,
as follows.

In the analysis of a queueing problem behind

a bottleneck on a freeway, it is convenient to

_ assume that the queue discipline of the system

is FIFO (First In First Qut), which amounts to
assuming that there is no passing. In Figure 9,
a vehicle destined for % or beyond which passed
xi1 at time & is identified by point 3 on curve
Di{xr*, t). Since it passes x at time #, this is
the same vehicle as the one represented by
point 1 — vehice m. Thus, we already know
that it reaches x at time t, hence is the vehicle
at pomt 4. Therefore, point 4 must be on the
curve Di(x, t), which is the curve we are try-
ing to construct. Clearly, we can do so by the
process just described, though interpolation is
required because the count at point 3 is an
intermediate value between the cumulative
counts at x.s/* at two discrete times & and fet,
The computer algorithm evaluates it by linear
interpolation :

Dilx, t) =Di(x-r, t1) =Di(xes?, ta)+ [Di(xer?, to
+o)-Dilxr*, ) 1/[AT/r], (A7)

where At = (t - &) - Ti(t).
43 A System With an Exit ramp

Consider now a system which has an exit
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Figure 9 A graphical determination of Tit) and Di(x, t)-curve.

ramp at station i Since no vehicle can enter
the freeway at station i, Aj(x', t), Ai(x, t),
Di(x*, t), and Di(x, t) for any destination j ) i,
and Di(x, t) can be determined by the graphi-
cal or computer procedures described in Section
42 Therefore, this section treats only how to
evaluate the cumulative number of exit ramp
vehicles which leave the freeway at station 1 by
time t, Ei(t), which is not known. By defini-
tion, Di(x, t) represents the cumulative number
of vehicles that passed x destined for x or
beyond by time t, including Ei(t). Thus, if the
departure counts Di(x, t) and Dir(w, t) at x
have been evaluated, Ei(t) can be determined
by

E(t) = Dilx, t) - D', t). (18)

5. Extracting Information About
Freeway Traffic Flow

51 The Total travel Time and Total
Delay

Figure 10 shows a geometrical interpretation
of the total-travel time and total delay of all
vehicles that travelled on section (xix) during
the time interval (t-r, t). The vertical distance
between points 2 and 6, Ni(t) = Dix’, t) -
Dixi1, t), represents the number of vehicles in
the section (%, x) at time t and the vertical
distance between points 1 and 5, Ni(t-7), equals
the number of vehicles in the same section at
time t-r. Area 1-2-4-6-5-3-1 is equal to the
total travel time incurred by all vehicles travel-
ling on the section during the time interval (t-t,
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t). Since traffic flow passing each station with-
in each time increment, 7, is assumed to be
constant, this area is parallelogram and the com-
puter algorithm estimates the cumulative total

travel time on the section by time t, T(x, t), as

Tx t) = Tl t -r) + [Ni{t) - Ni(t -7)]
[z/2], (19)

where T(x, t -7) is the cumulative total
travel time on the same section by time t -t
and Ni(t) = Dixit, t) - Dix, t).

In Figure 10, the vertical distance 4-6, Q(x/,
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t) = Afx, t) - D{x, t), is the queue at time t
and the vertical distance between points 3 and
5, Qxi, t-T), Is the queue at time t-r.
Therefore, area 3-4-6-5-3 between the two
curves is equal to the total delay experienced by
all queued vehicles in the section (x, x) during
the time interval (t-7, t). The cumulative total
delay occurring on this section by time t, di(t),
can be obtained by

di{t) = di(t-7) + [Qx t) + Qlx, t-7)]
[z/2]. (20)
In the same figure, area 1-2-4-3-1 would be

Cumulative Count

k.

Time, ¢

+
1
t

Figure 10: A geometrical determination of the total travel time and total delay.

the total free-flow travel time of all vehicles
travelling on the same section during the same
time period if there were no queue at x. The
delay calculated by the second term of the right

side of equation (20) is equal to the total travel
time minus this free-flow travel time, so con-
firms to the usual definition of delay as the dif-
ference between the actual travel time and. the
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travel time in the absence of congestion.

5.2 The Location of the Tail of
a Queue

The rationale of the procedure for locating the
tail of a queue is a “shock condition”, Suppose
that a road section between xi and x contains
the tail of a queue that extends upstream from
xi, In this situation, as outlined in Section 2,
there are two ways to evaluate the cumulative
number of vehicles, N(x, t), that can pass some
point x in the section (xr, %) by time t : one
from the forward wave moving from x to %
and the other from the backward wave moving
from x to xe,  As described in Section 4.1.1, by
conservation of the number of cars, the cumula-
tive number of vehicles that passed any location
should be the same when viewed from either
side. Thus, if the tail of the queue from x is
located exactly at point x at time t, the two
values of N(x, t) obtained from the forward
wave and backward should be equal. However,
at the tail of the queue, the first derivatives of
N(x, t) are not continuous, since the flow and
density upstream of point x are different from
those downstream, This discontinuity in flow
and density is called a shock wave in the termi-
nology of traffic flow theory. If the flow-densi-
ty relationship is not triangular, there may be
other, less dramatic shock waves as well.

Figure 11 depicts two curves of the cumula-
tive vehicle -count versus location between xi
and x at some time t. The labels on the upper
Ahorizontal xaxis show the locations downstream

from x; which are related to the forward wave

moving from x to x. The labels on the lower
horizontal x-axis show the locations upstream
from x which are related to the backward wave
moving from x to xir. As an example, point X
+7/w on the upper horizontal x-axis indicates
the location downstream from xir where the for-
ward wave leaving would reach within one
time increment of length r, and point x-t/w:
indicates the location upstream from x where
the backward wave leaving x would reach
within 7 time period. The heavy dashed curve
EFGHIJ represents the cumulative vehicle
counts at different locations between X and xi
which are evaluated by the rule of the back-
ward wave propagation rule, and the solid curve
ABB‘C'CD represents the cumulative vehicle
counts determined by the rule of the forward
wave propagation, Since it has been assumed
that traffic flow passing each station for each t
time period is constant, the two curves are
plece-wise linear curves, However, it is impor-
tant to know that the slope of the curve would
not be constant between x- and x, because
traffic flows recorded at t time periods vary
with time, The two curves intersect at point K.
Thus, the location of the tail of the queue at
time t, k(t), can be determined from data B,
C,F and G.

5.3 The Traffic Density

The average traffic density is defined as the
number of vehicles occupying a unit length of
roadway at an instant time and is generally
expressed in vehicles per kiometer or vehicles

per kilometer per lane, Thus, the average traffic
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density in section (X, x) at time t, k(i), can be
calculated as the number of vehicles on the sec-
tion at time t, Di{xr*, t) - Di(w, t), divided by
the section length, x xi, and the number of

lanes on the section, Li:
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k(1) =[Di(xer* ) -Dix £) 1/[ (x-x-1)Ls]. (21
However, if the tail of a queue is located
within the section (x+, x), this average density

is not what one would find anywhere on the

Cumulative Count
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Figure 11: The location of the tail of a queue.

section, so the section will be divided into two
segments. the uncongested segment (xs, li(t))
The

traffic densities in the two segments can be

and the congested segment (L(t), x).

computed in the same manner as equation (21)
using the counts Di(xir*, t), Di(L(t), t), and
Dilai', ).

6. Summary
In order to assess the effects of physical

(geometric) improvements to a freeway system

and to devise efficient traffic control strategies,

the magnitude of the resulting change in traffic
measurements (eg., the total travel time, the
total delay) on the system must be estimated.
The great appeal of reliable freeway traffic flow
models is that they would enable analysts to
accomplish this task,

A computer algorithm which can produce
numerical results for traffic flow conditions in
reasonable computation times was developed in
this paper. The computer algorithm mechanizes
the graphical procedures of Newell's simplified
kinematic wave theory and then facilitates the

application of his theory for freeway traffic
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operation/control purposes. The algorithm

includes the procedures for extracting information

about freeway traffic flow such as the total

travel time, total delay, traffic density, and the

location of the tail of a queue. The numerical

test of the accuracy of the computer algorithm

has been performed through three numerical
examples (Son, 1996).
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