ON A CLARY THEOREM

EUNGIL KO

1. Introduction

In this paper we shall generalize a Clary theorem by using the local spectral theory; If $T \in \mathcal{L}(\mathbf{H})$ has property (β) and A is any operator such that $A \prec T$, then $\sigma(T) \subseteq \sigma(A)$.

Let \mathbf{H} and \mathbf{K} be separable, complex Hilbert spaces and $\mathcal{L}(\mathbf{H}, \mathbf{K})$ denote the space of all linear, bounded operators from \mathbf{H} to \mathbf{K} . If $\mathbf{H} = \mathbf{K}$, we write $\mathcal{L}(\mathbf{H})$ in place of $\mathcal{L}(\mathbf{H}, \mathbf{K})$.

An X in $\mathcal{L}(\mathbf{H}, \mathbf{K})$ is called a quasiaffinity if it has trivial kernel and dense range. An operator S in $\mathcal{L}(\mathbf{H})$ is said to be a quasiaffine transform of an operator T in $\mathcal{L}(\mathbf{K})$ if there is a quasiaffinity X in $\mathcal{L}(\mathbf{H}, \mathbf{K})$ such that XS = TX. (notation; $S \prec T$)

An operator T in $\mathcal{L}(\mathbf{H})$ is said to satisfy the single valued extension property if for any open subset U in \mathbb{C} , the function

$$z - T : \mathcal{O}(U, \mathbf{H}) \longrightarrow \mathcal{O}(U, \mathbf{H})$$

defined by the obvious point wise multiplication is one-to-one where $\mathcal{O}(U,\mathbf{H})$ denotes the Fréchet space of \mathbf{H} -valued analytic functions on U with uniform topology. If, in addition, the above function z-T has closed range on $\mathcal{O}(U,\mathbf{H})$, then T is said to satisfy the Bishop's condition (β) . The paper is divided in three sections. In section two, we give some preparatory material on the local spectral theory. In section three, we generalize a Clary theorem.

Received March 22, 1994.

¹⁹⁹¹ AMS Subject Classification: Primary 47B20; Secondary 47A11.

Key words: Local spectral theory, Bishop's property (β) , Hyponormal.

This work was partially supported by GARC.

2. Preliminaries

Let **X** be a complex Banach space. An operator $T \in \mathcal{L}(\mathbf{X})$ is called invertible if there exists $S \in \mathcal{L}(\mathbf{X})$ such that TS = ST = I. S is denoted by T^{-1} . The resolvent set of T is denoted by $\rho(T) = \{z \in \mathbf{C} : T - zI \text{ is invertible}\}$. The spectrum of T is denoted by $\sigma(T) = \mathbf{C} \setminus \rho(T)$.

Now we wish to introduce a generalization of spectrum and resolvent sets of an operator T. If T has the single valued extension property, then for any x in X there exists a unique maximal open set $\rho_T(x) (\supset \rho(T))$ and a unique X-valued analytic function f defined in $\rho_T(x)$ such that

$$(z-T)f(z) = x, \qquad z \in \rho_T(x).$$

Moreover, if $F \subset \mathbf{C}$ is a closed set and $\sigma_T(x) = \mathbf{C} \setminus \rho_T(x)$, then

$$X_T(F) = \{ x \in \mathbf{X} : \sigma_T(x) \subset F \}$$

is a linear subspace (not necessarily closed) of **X** and obviously $X_T(F) = X_T(F \cap \sigma(T))$.

Listed below are some basic facts about $\sigma_T(\cdot)$, see [CF].

- 2.1 Proposition. Let T in $\mathcal{L}(\mathbf{X})$ be an operator having the single valued extension property. Then
 - (1) $F_1 \subset F_2$ implies $X_T(F_1) \subset X_T(F_2)$.
 - (2) $\sigma_T(x) = \phi$ if and only if x = 0.
 - (3) $\sigma_T(Ax) \subset \sigma_T(x)$ for every $A \in \mathcal{L}(\mathbf{X})$ with AT = TA.
 - (4) $\sigma_T(x(z)) = \sigma_T(x)$ for every $x \in \mathbf{X}$ and $z \in \rho_T(x)$.
- 2.2 PROPOSITION ([MP], LEMMA 5.2). If T in $\mathcal{L}(\mathbf{H})$ has property (β) , then $H_T(F) = \{x \in \mathbf{H} : \sigma_T(x) \subset F\}$ is a closed subspace for every closed set F in \mathbb{C} .
- 2.3 Proposition ([CF], Proposition 3.8, page 23). If $T \in \mathcal{L}(H)$ has property (β) , then

$$\sigma(T|_{H_T(F)}) \subset \sigma(T) \cap F.$$

Recall that $T \in \mathcal{L}(\mathbf{H})$ is called hyponormal if $TT^* \leq T^*T$, or equivalently, if $||T^*h|| \leq ||Th||$ for every h in \mathbf{H} .

- 2.4 THEOREM ([MP], THEOREM 5.5). Every hyponormal operator has property (β) .
- 2.5 Proposition ([Ko], Proposition 2.5). Let $T \in \mathcal{L}(\mathbf{H})$ be hyponormal, and let A be any operator in $\mathcal{L}(\mathbf{H})$ such that $A \prec T$. Then A has the single valued extension property.

3. A generalized Clary theorem

Clary proved Corollary 3.4 (see [Co], Theorem 14.4). But we shall generalize his result by using the local spectral theory. The proof of Theorem 3.2 uses the techniques of [CF], page 55.

3.1 LEMMA. Suppose there is a quasiaffinity X in $\mathcal{L}(\mathbf{H}, \mathbf{K})$ such that XA = TX. Then $XH_A(E) \subset H_T(E)$ for any closed set E in \mathbb{C} , where $H_T(E) = \{x \in \mathbb{H} : \sigma_T(x) \subset E\}$.

Proof. Choose any x in $H_A(E)$. Then $\mathbb{C}\backslash E\subset \rho_A(x)$. Therefore, there exists a \mathbb{H} -valued analytic function f defined on $\mathbb{C}\backslash E$ such that

$$(z - A) f(z) = x, \qquad z \in \mathbf{C} \setminus E$$

Since XA = TX, X(z - A)f(z) = Xx implies (z - T)Xf(z) = Xx. Since Xf is **H**-valued analytic function defined on $\mathbb{C}\backslash E$, $\sigma_T(Xx) \subset E$. Therefore, $Xx \in H_T(E)$. Thus $XH_A(E) \subset H_T(E)$. \square

3.2 THEOREM. If T has property (β) and A is any operator such that $A \prec T$, then $\sigma(T) \subseteq \sigma(A)$.

Proof. If there is a $z_0 \in \sigma(T) \setminus \sigma(A)$, then $d_0 = \operatorname{dist}(z_0, \sigma(A)) > 0$. Put $F = \{z \in \mathbf{C} : |z - z_0| \ge \frac{d_0}{3}\}$. Then $\sigma(A) \subset F$. Note that A has single valued extension property because T has property (β) and $A \prec T$. Since $\sigma_A(x) \subset \sigma(A) \subset F$ for any x in H,

(1)
$$\mathbf{H} = H_A(\sigma(A)) = H_A(F)$$

where $H_A(F) = \{x \in \mathbf{H} : \sigma_A(x) \subset F\}$. By (1) and Lemma 3.1,

$$X\mathbf{H} = XH_A(F) \subset H_T(F)$$
.

Eungil Ko

It follows therefore $\mathbf{H} = \overline{X}\overline{\mathbf{H}} \subset \overline{H_T(F)}$. The operator T has property (β) by the hypothesis, so $H_T(F)$ is closed by Proposition 2.2. Therefore, $\mathbf{H} \subset H_T(F)$. Thus $\mathbf{H} = H_T(F)$. From Proposition 2.3,

$$\sigma(T) = \sigma(T|_{H_T(F)}) \subset \sigma(T) \cap F \subset F.$$

But, since $z_0 \in \mathbb{C} \backslash F$, z_0 does not belong to $\sigma(T)$. So we have a contradiction. Thus $\sigma(T) \subset \sigma(A)$. \square

REMARK. There exists a non-hyponormal operator which has the property (β) .

- 3.3 EXAMPLE. Let R denote the unilateral shift. Consider the hyponormal operator $T = 2R + R^*$. Then T^2 is non-hyponormal, but has the property (β) (see [Pu], Remark 2).
- 3.4 COROLLARY (CLARY THEOREM). If T is hyponormal and A is any operator such that $A \prec T$, then $\sigma(T) \subseteq \sigma(A)$.

Proof. An operator T has property (β) by Theorem 2.4. \square

Recall that $A \in \mathcal{L}(\mathbf{H})$ is called quasinilpotent if $\sigma(A) = \{0\}$.

- 3.5 LEMMA ([MP], COROLLARY 1.5, PAGE 71). The only quasinilpotent hyponormal operator is the zero operator.
- 3.6 Proposition. Let T in $\mathcal{L}(\mathbf{H})$ be hyponormal, and let A be any operator in $\mathcal{L}(\mathbf{H})$ such that $A \prec T$. If A is quasinilpotent, then A is the zero operator.

Proof. The proof is clear by Corollary 3.4 and Lemma 3.5. \square

REMARK. Proposition 3.6 can not be extended to an operator which has the property (β) .

3.7 EXAMPLE. If T is a scalar operator, then T has the property (β) . By Theorem 3.2, T is a quasinilpotent, scalar operator. By [CF], T is nilpotent. Therefore, A is not a zero operator.

On a Clary theorem

References

- [ABFP] C. Apostol, H. Bercovici, C. Foias, and C. Pearcy., Quasiaffine transforms of operators, Michigan Math. J 29 (1982), 243-255.
- [CF] I. Colojoară and C. Foias., Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- [Co] J. B. Conway, Subnormal operators, Pitman, London, 1981.
- [Ko 1] Eungil Ko, Subscalar and quasisubscalar operators, Ph.D. thesis, Indiana University (1993).
- [Ko 2] Eungil Ko, On a quasiaffine transform of quasisubscalar operators, Comm. Korean Math. Soc. 9 (1994), 831-836.
- [MP] M. Martin and M. Putinar, Lectures on hyponormal operators, Birkhauser, Basel-Boston, MA, 1989.
- [Pu] M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385-395.

DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA