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A METRIC CHARACTERIZATION
OF HILBERT SPACES

JINSIK MOK

1. Introduction

The aim of this paper is to present a characterization of Hilbert
spaces in terms of the lengths of four sides and two diagonals of a
parallelogram. The most fundamental theorem in this direction is due
to Jordan and von Neumann [3] and rests on the parallelogram identity:

THEOREM 1. A Banach space X is a Hilbert space if and only if
2+ y? + |z — y[* = 2|2 + 2|y/?

holds for all * and y in X.

This theorem has been generalized considerably in various directions.
Here is one example. In a Hilbert space, the length of a diagonal of a
parallelogram is uniquely determined by the lengths of the sides and
the other diagonal: |z +y| = {2|z]|? +2|y|? — |z — y|*}!/2, for all  and
y in X. In fact, this property characterizes Hilbert spaces:

THEOREM 2. A Banach space X is a Hilbert space if and only if
there exists a function ® : Ry x Ry x Ry — R, such that

le + y| = (||, |y|,|z — y|), forall r,y€X.

This theorem is due to Aronszajn; see [1, p. 36] for the proof. An
immediate consequence of the theorem of Jordan and von Neumann is
the following reduction to the two-dimensional space:
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THEOREM 3. A Banach space X is a Hilbert space if and only if
every two-dimensional subspace of X is a Hilbert space.

2. Main result

If X is a Hilbert space, then for any z, ', y, and y' in X satisfyin
I Y Y ymg
lo] < |&'] and |y| < |y'|, either |z + y| < &'+ y'| or o —y| < lo' — o]
holds:
e+ yl” + | —yl* = 2a]* + 2y[*
< 2] 4 21y P
— I‘r’l + y/|2 + |II . y/l‘zl

/

ly'|, and |r — y| < |&' — 3’|, then

I

(In particular, if |z| = |2'], |y]
e +yl 2 [e" +y'])
Now the natural question is: Does this property characterize Hilbert

spaces? The answer 1s given affirmatively in the folowing:

THEOREM 4. Suppose that X is a Banach space. If for any @, x', y,
and y' in X satisfying |v| < |o'| and |y| < |y'|, either |v 4+ y| < 2" + ¢/
or |r —y| < |r' —4'| holds, then X is a Hilbert space.

3. Proof of Theorem 4

We shall prove the converse: If X is not a Hilbert space, then there
are four points &, r', y, and y' in X such that

) lef ="l =
, and |z 4yl < |+

N

1
(2) v —yl < o' =y

We shall consider two distinct cases: Case (i): X is not strictly conve
x, Case (i1): X is strictly convex. In either case, we can assume, by
Theoren 3, that the dimension of X is equal to two.

Case (i): Suppose that X is not strictly convex. (Thus X is not a
Hilbert space.) Then its unit sphere Sy contains a line segment. Let
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¢ be the maximal line segment in Sx in the sense that if ¢ is a line
segment in X containing ¢ strictly, then £ is not contained in Sx. Write
¢ = {79, yo] and let ¢y = |z¢ — yo|. Let ' = z¢ and y’ = %@ Then
|2 + ¥'| = 2 and |2’ — y'| = L. Pick z € £ and y € Sx \ ¢ so that
T # ro, x is very close to g, and |z — y| < £ .(We want to have  and
y separated by ry.) We claim that |z + y| < 2. If [« + y| = 2, then
[y, #] is contained in Sx and lies on the extension of [zg,y]. So [z, yo]
is strictly contained in [y, yo] that is already con tained in Sy:

[0,y0] € [¥,90] C Sx.

This contradicts the maximality of [z¢,yo]. Therefore there exist four
points x, z’, y, and ¥’ in Sx so that

lr —yl < |a' —¢'| and |z +y| <z’ +y).

This completes the proof of Case (i).

Case (ii): Suppose that X is strictly convex but is not a Hilbert
space. By Aronszajn’s theorem, there exist four points z, ', ", and
y' in X such that

lz| = &'}, 1y"] = |y],

lz+y"| =" +¢', but |z—y"|< ' -y

Here, it is easy to check that z # 0, y" # 0, and ¢ # —y"”. We shall
show that there is a point y near y” satisfying (1; and (2).

Now focus on the point z + y"”. Let C; be a sphere of radius |z + y"|
centered at 0 and Cy a sphere of radius |y"'| centered at z:

Cr={zeX:jz|=|c+¥y"|},
Co={zeX:|z—z|=1y"]}.
Let ¢, be a supporting line to Cy at z + y"” and ¢, a supporting line
to Cp at x + y". Since X is strictly convex, 2 # 0, y"’ # 0, and

r # —y", {3 can not be a supporting line to Cy. {Here the underlying
idea is: X is strictly convex if and only if, for any r, y in Sy with
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y # . {; can not be parallel to {, where ¢, denotes any supporting
line to Sx at z and ¢, denotes any supporting line to Sx at y.) Hence
€N {z € X : |z] < [z +y"|} contains a nontrivial line segment. Since
€y is a supporting line to Cy, there exists a point z in Cp, arbitrarily
close to & +y", with |z] < |z +y”|. Let y = z — z. Then |y| = |’| and
lz +y| < |&' + y'|. Since z is arbitrarily close to = + 3", so is y to y";
we can sclect y so that [z — y| < |2’ — y'|. This completes the proof of
Theorem 4.
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