A METRIC CHARACTERIZATION OF HILBERT SPACES

JINSIK MOK

1. Introduction

The aim of this paper is to present a characterization of Hilbert spaces in terms of the lengths of four sides and two diagonals of a parallelogram. The most fundamental theorem in this direction is due to Jordan and von Neumann [3] and rests on the parallelogram identity:

THEOREM 1. A Banach space X is a Hilbert space if and only if

$$|x + y|^2 + |x - y|^2 = 2|x|^2 + 2|y|^2$$

holds for all x and y in X.

This theorem has been generalized considerably in various directions. Here is one example. In a Hilbert space, the length of a diagonal of a parallelogram is uniquely determined by the lengths of the sides and the other diagonal: $|x+y| = \{2|x|^2 + 2|y|^2 - |x-y|^2\}^{1/2}$, for all x and y in X. In fact, this property characterizes Hilbert spaces:

THEOREM 2. A Banach space **X** is a Hilbert space if and only if there exists a function $\Phi: R_+ \times R_+ \times R_+ \to R_+$ such that

$$|x+y| = \Phi(|x|,|y|,|x-y|), \quad \text{for all } x,y \in \mathbf{X}.$$

This theorem is due to Aronszajn; see [1, p. 36] for the proof. An immediate consequence of the theorem of Jordan and von Neumann is the following reduction to the two-dimensional space:

Received May 19, 1994.

1991 AMS Subject Classification: 46C15.

Key words and Phrases: Parallelogram identity, Hilbert space.

THEOREM 3. A Banach space X is a Hilbert space if and only if every two-dimensional subspace of X is a Hilbert space.

2. Main result

If **X** is a Hilbert space, then for any x, x', y, and y' in **X** satisfying $|x| \le |x'|$ and $|y| \le |y'|$, either $|x + y| \le |x' + y'|$ or $|x - y| \le |x' - y'|$ holds:

$$|x + y|^{2} + |x - y|^{2} = 2|x|^{2} + 2|y|^{2}$$

$$\leq 2|x'|^{2} + 2|y'|^{2}$$

$$= |x' + y'|^{2} + |x' - y'|^{2}.$$

(In particular, if |x| = |x'|, |y| = |y'|, and |x - y| < |x' - y'|, then $|x + y| \ge |x' + y'|$.)

Now the natural question is: Does this property characterize Hilbert spaces? The answer is given affirmatively in the following:

THEOREM 4. Suppose that **X** is a Banach space. If for any x, x', y, and y' in **X** satisfying $|x| \le |x'|$ and $|y| \le |y'|$, either $|x + y| \le |x' + y'|$ or $|x - y| \le |x' - y'|$ holds, then **X** is a Hilbert space.

3. Proof of Theorem 4

We shall prove the converse: If X is not a Hilbert space, then there are four points x, x', y, and y' in X such that

(1)
$$|x| = |x'|, \qquad |y| = |y'|,$$

(2)
$$|x-y| < |x'-y'|$$
, and $|x+y| < |x'+y'|$.

We shall consider two distinct cases: Case (i): **X** is not strictly convex, Case (ii): **X** is strictly convex. In either case, we can assume, by Theorem 3, that the dimension of **X** is equal to two.

Case (i): Suppose that X is not strictly convex. (Thus X is not a Hilbert space.) Then its unit sphere S_X contains a line segment. Let

 ℓ be the maximal line segment in S_X in the sense that if ℓ' is a line segment in \mathbf{X} containing ℓ strictly, then ℓ' is not contained in S_X . Write $\ell = [x_0, y_0]$ and let $\epsilon_0 = |x_0 - y_0|$. Let $x' = x_0$ and $y' = \frac{x_0 + y_0}{2}$. Then |x' + y'| = 2 and $|x' - y'| = \frac{\epsilon_0}{2}$. Pick $x \in \ell$ and $y \in S_X \setminus \ell$ so that $x \neq x_0$, x is very close to x_0 , and $|x - y| < \frac{\epsilon_0}{2}$. (We want to have x and y separated by x_0 .) We claim that |x + y| < 2. If |x + y| = 2, then [y, x] is contained in S_X and lies on the extension of $[x_0, y_0]$. So $[x_0, y_0]$ is strictly contained in $[y, y_0]$ that is already contained in S_X :

$$[x_0,y_0]\subsetneq [y,y_0]\subset S_X$$
.

This contradicts the maximality of $[x_0, y_0]$. Therefore there exist four points x, x', y, and y' in S_X so that

$$|x - y| < |x' - y'|$$
 and $|x + y| < |x' + y'|$.

This completes the proof of Case (i).

Case (ii): Suppose that X is strictly convex but is not a Hilbert space. By Aronszajn's theorem, there exist four points x, x', y'', and y' in X such that

$$|x| = |x'|, \quad |y''| = |y'|,$$

 $|x + y''| = |x' + y'|, \quad \text{but} \quad |x - y''| < |x' - y'|.$

Here, it is easy to check that $x \neq 0$, $y'' \neq 0$, and $x \neq -y''$. We shall show that there is a point y near y'' satisfying (1) and (2).

Now focus on the point x + y''. Let C_1 be a sphere of radius |x + y''| centered at 0 and C_2 a sphere of radius |y''| centered at x:

$$C_1 = \{ z \in \mathbf{X} : |z| = |x + y''| \},$$

 $C_2 = \{ z \in \mathbf{X} : |z - x| = |y''| \}.$

Let ℓ_1 be a supporting line to C_1 at x + y'' and ℓ_2 a supporting line to C_2 at x + y''. Since **X** is strictly convex, $x \neq 0$, $y'' \neq 0$, and $x \neq -y''$, ℓ_2 can not be a supporting line to C_1 . (Here the underlying idea is: **X** is strictly convex if and only if, for any x, y in S_X with

Jinsik Mok

 $y \neq \pm x$, ℓ_x can not be parallel to ℓ_y where ℓ_x denotes any supporting line to S_X at x and ℓ_y denotes any supporting line to S_X at y.) Hence $\ell_2 \cap \{z \in \mathbf{X} : |z| < |x+y''|\}$ contains a nontrivial line segment. Since ℓ_2 is a supporting line to C_2 , there exists a point z in C_2 , arbitrarily close to x+y'', with |z| < |x+y''|. Let y=z-x. Then |y|=|y'| and |x+y| < |x'+y'|. Since z is arbitrarily close to x+y'', so is y to y''; we can select y so that |x-y| < |x'-y'|. This completes the proof of Theorem 4.

References

- D. Amir, Characterizations of Inner Product Spaces, Operator Theory: Advances and Applications. Vol. 20, D. Reidel Publishing Company, Boston, 1986.
- V. I. Istrăţescu, Inner Product Structures, D. Reidel Publishing Company, Boston, 1987.
- 3. P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. Math. 36 (1935), 719-723.

DEPARTMENT OF MATHEMATICS, SUN MOON UNIVERSITY, ASAN 337-840, KOREA