A REMARK ON p-ADIC q-BERNOULLI MEASURE

HAN SOO KIM, PIL-SANG LIM AND TAEKYUN KIM

I. Introduction

Throughout this paper \mathbb{Z}_p , \mathbb{Q}_p and \mathbb{C}_p will denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p , respectively. Let v_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-v_p(p)} = p^{-1}$. We set $p^* = p$ for any prime p > 2 and $p^* = 4$ for p = 2.

Let $\bar{f} = [f, p^*]$ be the least common multiple f and p^* , and \mathbb{Z} the rational integer ring.

We set

$$\mathbb{Z}_{\bar{f}} = \lim_{\leftarrow} \mathbb{Z}/\bar{f}p^n \mathbb{Z} \quad \text{for} \quad n \ge 0,$$

$$\mathbb{Z}_{\bar{f}}^* = \bigcup_{\substack{0 < a < p\bar{f} \\ (a,p)=1}} a + \bar{f}p \mathbb{Z}_p,$$

$$a + \bar{f}p^n \mathbb{Z}_p = \{x \in \mathbb{Z}_{\bar{f}} | x \equiv a \pmod{\bar{f}p^n}\},$$

where $a \in \mathbb{Z}$ lies in $0 \le a < \bar{f}p^n$.

When we talk q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{Q}_p$. If $q \in \mathbb{C}$, we normally assume |q| < 1. If $q \in \mathbb{C}_p$, we normally assume $|q-1|_p < p^{-\frac{1}{p-1}}$, so that $q^x = e^{x \log q}$ for $|x|_p < 1$. Carlitz's q-Bernoulli numbers $\beta_k = \beta_k(q)$ [1] can be determined inductively by

$$\beta_0 = 1$$
, $q(q\beta + 1)^k - \beta^k = \begin{cases} 1 & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases}$

Received June 2, 1994.

1991 AMS Subject Classification: 10A40.

Key words: p-adic number, p-adic q-Bernoulli measure, Bernoulli number.

This paper was partially supported by TGRC-KOSEF and Jangjun Research Institute for Mathematical Science.

with the usual convention of replacing β^k by β_k .

Let [x] be denoted by $[x] = [x:q] = \frac{1-q^x}{1-q}$.

For any positive integer N,

$$\mu_q(a + \bar{f}p^N \mathbb{Z}_p) = \frac{q^a}{[\bar{f}p^N]}.$$

is known as a distribution on $\mathbb{Z}_{\tilde{f}}$ [2].

In the p-adic case [2], Carlitz's q-Bernoulli numbers $\beta_k = \beta_k(q)$ are represented by a q-analogue of Witt's formula and some properties are investigated.

In the complex case [1], the Carlitz's numbers $B^k(q) = B_k(q)$ are determined by

$$B_0(q) = 1$$
, $(qB(q) + 1)^k - B_k(q) = \begin{cases} 1 & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases}$

with the usual convention of replacing $B_k(q)$ by $B^k(q)$ [1],[5]. These numbers $B_k(q)$ induce Carlitz's numbers $\beta_k(q) = \beta_k$.

Note that $B_k(q) \to B_k$ as $q \to 1$. In this paper, we assume that $q \in \mathbb{C}_p$ with $|1-q|_p < p^{-\frac{1}{p-1}}$, so that $q^x = e^{x \log q}$ for $x \in \mathbb{Z}_p$. In [2], the p-adic q-Bernoulli polynomials $B_k(x:q)$ are represented by

$$\int_{\mathbb{Z}_p} [x+t]^n q^{-t} d\mu_q(t) = B_n(x:q)$$

Let K be a field over \mathbb{Q}_p . Then we call a function μ a K-measure on $\mathbb{Z}_{\bar{f}}^*$ if μ is finitely additive function defined on open-closed subsets in $\mathbb{Z}_{\bar{f}}^*$, whose values are in the field K. Any open-closed subset in $\mathbb{Z}_{\bar{f}}^*$ is disjoint union of some finite intervals $I_{a,n} = a + p^n \bar{f} \mathbb{Z}_{\bar{f}}$ in $\mathbb{Z}_{\bar{f}}^*$, where $a \in \mathbb{Z}$ prime to \bar{f} , and therefore a K-measure μ is determined by its values on all the intervals in $\mathbb{Z}_{\bar{f}}$. Let $\mathbb{Q}^{(f)}$ denote the set of all rational numbers, whose denominator is a divisor of $\bar{f}p^n$ for some $n \geq 0$.

In this paper, we shall prove a q-analogue of the Nasybullin's lemma and construct a p-adic q-Bernoulli measure to obtain a p-adic q-L-function.

II. q-analogue of Nasybullin's lemma

First, we wil prove a q-analogue of Nasybullin's lemma.

THEOREM 1. Let R be a K-valued function defined on $\mathbb{Q}^{(f)}$ with the property; there exist two constansts $A,B \in K$ such that

$$\sum_{k=0}^{p-1} R(\left[\frac{x+k}{p}:q^p\right]) = AR([x:q]) + BR([px:q^{\frac{1}{p}}]),$$

$$R([x+1:q]) = R([x:q])$$

for any number $x \in \mathbb{Q}^{(f)}$. And let $\rho \neq 0$ be a root of the equation $y^2 = Ay + Bp$. Then there exists a $K(\rho)$ -measure μ on $\mathbb{Z}_{\bar{f}}^*$ such that

$$\mu(I_{a,n}) = \rho^{-n} R(\left[\frac{a}{p^n \tilde{f}} : q^{p^n \tilde{f}}\right]) + B \rho^{-(n+1)} R(\left[\frac{a}{p^{n-1} \tilde{f}} : q^{p^{n-1} \tilde{f}}\right])$$

for any interval $I_{a,n}$.

Note that if $q \to 1$, then the above Theorem 1 is Nasybullin' lemma [4].

Proof. It is sufficient to show that

$$\sum_{k=0}^{p-1} \mu(I_{a+p^n \bar{f}k,n+1}) = \mu(I_{a,n}).$$

Indeed,

$$\begin{split} \sum_{k=0}^{p-1} \mu(I_{a+p^n \bar{f}k,n+1}) \\ &= \rho^{-(n+1)} \sum_{k=0}^{p-1} R([\frac{a+p^n \bar{f}k}{p^{n+1} \bar{f}} : q^{p^{n+1} \bar{f}}]) \\ &+ B \rho^{-(n+2)} \sum_{k=0}^{p-1} R([\frac{a+p^n \bar{f}k}{p^n \bar{f}} : q^{p^n \bar{f}}]) \end{split}$$

Han Soo Kim, Pil-Sang Lim and Taekyun Kim

$$\begin{split} &= \rho^{-(n+1)} \sum_{k=0}^{p-1} R([\frac{k + \frac{a}{p^n f}}{p} : (q^{p^n f})^p]) \\ &+ B \rho^{-(n+2)} \sum_{k=0}^{p-1} R([\frac{a}{p^n \bar{f}} + k : q^{p^n \bar{f}}]) \\ &= \rho^{-(n+1)} A R([\frac{a}{p^n \bar{f}} : q^{p^n \bar{f}}]) + \rho^{-(n+1)} B R([\frac{a}{p^{n-1} \bar{f}} : q^{p^{n-1} \bar{f}}]) \\ &+ B \rho^{-(n+2)} p R([\frac{a}{p^{n-1} \bar{f}} : q^{p^n \bar{f}}]) \\ &= \rho^{-(n+2)} (\rho A + p B) R([\frac{a}{p^n \bar{f}} : q^{p^n \bar{f}}]) + \rho^{-(n+1)} B R([\frac{a}{p^{n-1} \bar{f}} : q^{p^{n-1} \bar{f}}]) \\ &= \rho^{-n} R([\frac{a}{p^n \bar{f}} : q^{p^n \bar{f}}]) + \rho^{-(n+1)} B R([\frac{a}{p^{n-1} \bar{f}} : q^{p^{n-1} \bar{f}}]) \\ &= \mu(I_{a,n}). \end{split}$$

Thus

$$\mu(I_{a,n}) = \sum_{\substack{b \pmod{p^{n+1}\bar{f}}\\b \equiv a \pmod{p^n\bar{f}}}} \mu(I_{b,n+1}).$$

This proves our assertion because any open-closed subset is a disjoint union of some finite intervals, as already remarked above.

III. On q-Bernoulli functions

Let $B_m(x:q)$ be the *m*th *q*-Bernoulli polynomials and let $P_m([x])$ be the *m*th *q*-Bernoulli functions, that is,

$$P_m([x]) = B_m(x:q)$$
 for $0 \le x < 1$.

For any real x, we easily see that $P_m([x+1]) = P_m([x])$. Note that

$$\lim_{n \to 1} P_m([x]) = P_m(x),$$

where $P_m(x)$ is the usual Bernouli functions.

As is known [2], for any real number x

$$[p]^{m-1} \sum_{i=0}^{p-1} P_m([\frac{x+i}{p}:q^p]) = p_m([x:q]).$$

Thus the function $P_m([x])$ satisfied the property of q-Nasybullin's lemma with constants $A = [p]^{1-m}$, B = 0. Then $\rho \neq 0$ is equal to $[p]^{1-m}$, as $\rho^2 = A\rho + Bp$ reduces simply to $\rho^2 = [p]^{1-m}\rho$.

Therefore we obtain the following result.

THEOREM 2. Let the function $\mu_m = \mu_{m:q}$ be defined on $I_{a,n}$ by

$$\mu_m(I_{a,n}) = [\bar{f}p^n]^{m-1}P_m([\frac{a}{\bar{f}p^n}:q^{\bar{f}p^n}]).$$

Then μ_m is a $\mathbb{Q}_p(q)$ -measure on $\mathbb{Z}_{\bar{f}}^*$.

Let χ be a primitive Dirichlet character modulo \bar{f} . Then the generalized q-Bernoulli number is defined in [2] by

$$\begin{split} B_{k,\chi}(q) &= \int_{\mathbb{Z}_f} \chi(x) q^{-x} [x]^k d\mu_q(x) \\ &= [\bar{f}]^{k-1} \sum_{q=0}^{\bar{f}-1} \chi(a) B_k(\frac{a}{\bar{f}} : q^{\bar{f}}). \end{split}$$

We can computer a q-analogue of the p-adic L-function of Kubota-Leopoldt by the following p-adic q-Mellin-Mazur tranform [2] with respect to μ_m .

Let

$$L(\mu_m, \chi) = \int_{\mathbb{Z}_{\bar{f}}^*} \chi(a) d\mu_m(a)$$

$$= \lim_{\rho \to \infty} \sum_{\substack{a \pmod{p^{\rho} \bar{f}} \\ a \in \mathbb{Z}, (a, \bar{f}) = 1}} \chi(a) \mu_m(I_{a, \rho}).$$

Han Soo Kim, Pil-Sang Lim and Taekyun Kim

Since the character χ is constant on the interval $I_{a,0}$,

$$\begin{split} L(\mu_m, \chi) &= \sum_{a \pmod{\bar{f}}} \chi(a) \mu_m(I_{a,0}) \\ &= \sum_{a \pmod{\bar{f}}} \chi(a) [\hat{f}]^{m-1} P_m([\frac{o}{\bar{f}}:q^{\bar{f}}]) \\ &= B_{m,\chi}(q) - \chi(p) [p]^{m-1} B_{m,\chi}(q^p), \end{split}$$

where $B_{m,\chi}(q)$ denotes the *m*th *q*-Bernoulli number containing χ . Therefore we obtain the following result. For $m \geq 1$,

$$\frac{-1}{m}L(\mu_m, \chi\omega^{-m}) = \frac{-1}{m}(B_{m,\chi\omega^{-m}}(q) - \chi\omega^{-m}(p)[p]^{m-1}B_{m,\chi\omega^{-m}}(q^p))$$
$$= L_{p,q}(1-m,\chi).$$

References

- L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math.J. 15 (1948), 987-1000.
- T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu. J. Math. 48 (1994), 73-86.
- H. S. Kim, P. S. Lim and T. Kim, On p-adic differentiable functions, Pusan. Kyoungnam Math. J. 10 (1994), 329-337.
- Ju. I. Manin, Periods of cusp forms and p-adic Heck series, Math. USSR. 21 (1973), 371-398.
- H. Tsumura, A note on q-analogue of the Dirichlet series and q-Bernoulli numbers, J.Number Theory. 39 (1991), 251-256.

DEPARTMENT OF MATHEMATICS, COLLEGE OF NATURAL SCIENCES, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA