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ON THE EDGE INDEPENDENCE
NUMBER OF A RANDOM (N,N)-TREE

J. H. CHO AND Moo Ha Woo

1. Introduction

In this paper we study the asymptotic behavior of the edge indepen-
dence number of a random (n,n)-tree. The tools we use include the
matrix-tree theorem, the probabilistic method and Hall’s theorem. We
begin with some definitions. An (n,n)-tree T is a connected, acyclic, bi-
partite graph with n light and n dark vertices (see [Pa92]). A subset M
of edges of a graph is called independent(or matching) if no two edges of
M are adjacent. A subset S of vertices of a grapl is called independent
if no two vertices of S are adjacent. The edge independence number of a
graph T is the number 3;(T) of edges in any largest independent subset
of »dges of T. Let T'(n,n) denote the set of all (7, n)-trees with n light
vertices labeled 1, ..., n and n dark vertices labeled 1, ..., n. We give
['(n,n) the uniforin probability distribution. Our aim in this paper is
to find bounds on 3,(T) for a random (n,n)-tree T in I'(n,n).

The matrix-tree theorem originated in the work of Kirkhoff (see
Moon [M70] p.42) and relates the number of spanning trees of a la-
beled graph to the adjacency matrix. We now apply the theorem to
a simple but important family of graphs. Consider a graph, denoted
G(V1,V,, V3, Vy), whose vertex set V' is partitioned into four nonempty
sets:

‘/f:‘/']U‘/IQUV3UV4

The edge set of G(V, Va, Va, Vy) consists of all edges joining vertices of
Vi to vertices of Va, vertices of V, to vertices of V3 and vertices of V3
to vertices of Vj.
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COROLLARY 1.1. The number of spanning trees of G(V;, V. Vs, Vi)
18
(n1 +n3)" " g + ng)™  Infinle,

where n; = |Vi| fori =1 to 4.

This formula can be established by applying row and column oper-
ations to calculate a cofactor of the required matrix. It can also be
realized as a corollary of a very broad result of Knuth [Ku68] on gen-
eralized Prifer codes.

The probabilistic method was first applied to graphs by Erdés [Erd7],
who pioneered its use with so many innovations that it may be more
proper to call it the Erdés method (see [AISE92]). Here we sketch only
the portion of the method that we require. For background on prob-
ability theory for a discrete sample space, one cau consult [AISE92],
[Bo85] or the appendix of [Pa85].

THEOREM 1.1 (MARKOV'S INEQUALITY). Let X > 0 be a random
variable and let t > 0. Then
E(X)

(1.1) P(X 2 1) < ——.

On setting t = 1 in inequality (1.1), we have
(1.2) P(X >1)< E(X).
If X is non negative and integer valued, we also have
(1.3) P(X=0)4+P(X>1)=1,
In our applications, the sample space always consists of graphs with
at least n vertices and the random variable X counts certain types of
subgraphs. It follows from (1.2) and (1.3) that if

E(X)—>0asn — oo,

then
PIX>1)—0
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and
P(X=0)—>1

and we say “almost all graphs have no such subgraph”. Suppose the
sample space consists of (n,n)-trees and X counts sets of vertices which
are undesirable, i.e. “bad sets”. If we show FE(X) — 0, then we say
“almost all trees have no bad sets” .

In a graph T, a nonempty subset U; of V(T'), the vertex set of T, is
said to be matched to a subset Uy of V(T), which is disjoint from Uy,
if there exists an independent edge set M of T such that each edge of
M is incident with a vertex of U; and a vertex of U, and every vertex
of Uy is incident with an edge of M, as is every vertex in Uy. Let U be
a nonempty subset of V(T') and its neighborhooc N(U) denote the set
of all vertices of T adjacent with at least one element of U. Then the
set U is said to be nondeficient if

IN(S)] = 15],
for every nonempty subset S of U. The next theorem attributed to
Hall[Ha35] allows us a useful corollary.

THEOREM 1.2. Let T be a bipartite graph with partite sets V; and
Va. The set Vi can be matched to a subset of V, if and only if V; is
nondeficient.

COROLLARY 1.2. Let T be a bipartite graph with partite sets Vj
and V3 and let d be a positive integer. Then

(1.4) Bi(T) > |1l —d
if and only if

(1.5) IN(S)| = |S]| - d,
for any subset S of V;.

Proof. Construct a bipartite graph Ty from T by adding d new ver-
tices to Vo and all possible edges between Vi and the set of d new
vertices. Then the theorem is applied to 7,. O
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2. Edge independence number for (n,n)-trees

Our aim is to determine bounds for 3, for almost all (72, n)-trees in
[(n,n). Of course, we always have the upper bound

ﬁ] S n,

for all trees in I'(n,n). To find a lower bound we go back to Corollary
1.2. Let S be a subset of V] of cardinality k. We call § a bad k — sct if

for a given positive integer d. Let Xy be the nuriber of bad sets in
['(n,n). To show there is a matching of cardinality |V;] — d for almost
all trees in ['(n,n), we may show

E(X4) — 0asn— oco.

Now let A4 be the set of all trees in I'(n,n) for which a specified set of
k hight and n — (k — d — 1) dark vertices are independent. Then |A4] is
the number of spanning trees of G(Vy, V4, Vi, Vy) in Corollary 1.1, with
WVil=n—(k=d-1),|Va] =n—k,|Vza] =k —d—1and |V4| = k. By
Corollary 1.1,

(2.6) |Aq| = nlnm R ipthmd=0=1 _ pyn—th=d=D)p g 1),

Since T'(n,n) is a sample space with the uniform probability distribu-
tion, P(Ag) is the ratio of |A4| to [T'(n,n)|. Hence

(2.7) P(Ag) = n" 43 (n — k)RR (L g )R 2

and
S n n
(2.8) E(X,) = Z (J(hd“l)P\Ad).
d+1<k<n

where (}) is the number of ways of choosing k light vertices and (k—:;—l)
1s the number of ways of choosing & — d — 1 dark ones.
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Also because of symmetry in n — k and k —d - 1 in the formula (2.7)

for P(A4) and in (2.8) for E(X,4), we have the following upper bound
for E(X4).

eo  Bxo<z Y (5 )Pas

d+1<k<(n+d+1)/2

Next we simplify (2.9) using Stirling’s formula for n!, and the result is

(2.10) E(X)) = 0O(1)n""¢ > a,
d+1<k<(n+d+1)/2

where
(2.11) ay = (n—k)d+1/2(k_d_1)d+1/2/(n_k+d+1)n—k+d+3/2kk+1/2.
To see the behavior of the series, we investigate the ratio, a;1/a; and

find that the series increases all the way to the very last term, which is
ag,, where

(2.12) ko = |(n+d+1)/2).

Now the sum in (2.11) is bounded by the product of the last term and
the length of the sum. Hence we have

(2.13) E(Xq) = 0(1)n""4n - d)a,,

where the factor (n — d) is contributed by the length of the sum. On
the other hand,

(2.14) Ay — O(l)a(n+d)/2.
Next we want to determine d as a function of n, so that,
(2.15) E(X4) — 0asn — oo.
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Then we can say “almost all (n,n)-trees have ar. independent set of
order at least n — d” . This idea is also expressed by saying almost all
(n,n)-trees T have

(2.16) M(T)>n—d

Naturally the function just mentioned should be as small as possible.
We set

d = an,

o]
—
~1

where « is a positive constant, and we will try to determine « as small
as possible so that (2.16) holds. Note that the right side of (2.17) is
not necessarily an integer. We often use non-integral quantities where
we ought to round up or down. It should be clear that such deviations
do not affect the validity of the results.

And a bit of algebra shows that

(2.18)  apnyayyz = O(L)n~ "ot 2(21=(1 _ )27 /(1 4 a)' o),

Substituting (2.14) and (2.18) in the equation (2.13), we find that the
upper bound for the expectation takes the following simple form:

(219)  E(Xi) = O(1)(2' (1~ a)?/(1 4 a)' )",

Since we want the right side of (2.19) to approach to zero as n — oo,
we just need to solve the inequality

(2.20) 271 = ) < (1 + a)'te,

A simiple numerical calculation shows that it is sufficient to choose
(2.21) a = .27974.

These observations are summerized in the following theorem.

124



On the edge independence number of a random (n,n)-tree

THEOREM 2.1. For almost all (n,n)-trees T, the edge independence
number p1(T') satisfies the inequality:

(2.22) .72026n < B1(T) < n.

Our exact calculations in [ChP95] indicate that the expected value
of 3 is about
(.4385---)2n = (.8770-- - )n.

The latter number is in the middle of the interval described in Theorem
2.1. We suspect that the limit of the expected value of f;/n exists and
is approximately .875 ... and that the value of 3, for almost all (n,n)-
trees is even more closely concentrated about the asymptotic value of
the mean than the interval of Theorem 2.1. The next step requires
improvement of both upper and lower bounds in both equations (2.22).
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