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SOBOLEV ORTHOGONAL POLYNOMIALS AND
SECOND ORDER DIFFERENTIAL EQUATION II

K. H. KwoN, D. W. LEE, AND L. L. LITTLEJOHN

1. Introduction

Recently many people have studied the Sobolev orthogonal polyno-
mials, that is, polynomials which are orthogonal relative to a symmetric

bilinear form ¢(:,-) defined by

N
(1.1) $(pq) = (0 v = Z/p('“)(x)q(”(m)duk,
k=0 R

where each duy 1s a signed Borel measure on the real line R with finite
moments of all orders. For the brief history on this subject, we refer to
the survey article Ronveaux [13] and Marcelldn and et al [10].

For N = 0, Bochner [1] classified orthogonal polynomials relative to
(+,-)o satisfying a second order differential equation of the form

(1.2) by(z)y"(z) + £1(x)y'(2) = Anyi),

which are now called the classical orthogonal polynomials (see also [7]).

For N = 1, Kwon and Littlejohn [8,9] found necessary and sufficient
conditions on coeflicients £3(x) and ¢,(z) for a sequence of polynomials
{Pn(2)}22, to be orthogonal relative to Sobolev inner-product (-,-);
and to satisfy a second order differential equation of the form (1.2) and
then they showed that, up to a real linear change of variable, there
are eleven such distinet Sobolev orthogonal polynomials including six
classical orthogonal polynomials.
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In this work, we find necessary and sufficient conditions for a se-
quence of polynomials {P,(x)}52, satisfying the differential equation
(1.2) to be orthogonal relative to Sobolev inner product (-, In, N >0,
and then classify all such Sobolev orthogonal polynomials when N = 2.

2. Preliminaries

All polynomials throughout this work are assumed to be real polyno-
mials of a real variable r ; the space of all such polynomials is denoted
by P. We shall denote the degree of a polynomial 7 & P by deg(w), with
the convention that deg(0) = —1. By a polynomial system (PS), we
mean a sequenceof polynomials {¢,(z2)}32, with deg(¢,) =n (n > 0) ;
in this case {¢n(x)} 32, form a basis for P. We call any linear functional
o : P — R a moment functional and denote its action on a polynomial
7 by (o, 7). With this action, any moment functional o defines a sym-
metric bilinear formon P x P by the formula (o, pq) (p,q € P).

We say that a moment functional o is quasi-definite (respectively,
positive-definite) if the moments

Op = (o,2™) (n>0)
of o satisfy the Hamburger condition
(2.1) An(o) :=det[o;4;]7 ;2o # 0 (respectively, An(0) > 0)
for cach n > 0.
More generally for any symmetric bilinear form ¢(-,-) on P x P, we
call the double sequence

¢m,;1 = ¢(z™,z") (m and n > 0)

the moments of ¢(-,-) and say that ¢(-,-) isquasi-definite (respectively,
positive-definite) if

(2.2) Ap(¢) = detg;;]7 ;=0 # 0 (respectively, An(¢)>0)
for each n > 0.
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LEMMA 2.1. A symmetric bilinear form ¢(-,-) on P x P is quasi-
definite (respectively, positive-definite) if and only if there are PS {P,
(2)}2, and real constants K, # 0 (respectively, K, > 0) forn > 0
such that

(2.3) (P, Pr) = K 0mn (m and n > 0).

Morcover, in this case, each P,(x) is uniquely determined up to a non-
zero constant multiple.

Proof. Assume that é(-,-) is quasi-definite. Define a sequence of
polynomials by

Po(T) =1
and
(2.4)

®0,0 $0,1 ¢o,n

P10 $11 .- Pin
Poz) :=[An_1(¢)] " det ; : » : (n>1).

¢n—l,0 d’n—l,l s ¢n—1,n
1 T x"

Then {P,(r)}2, is a monic PS and we have (2.3) with

Ky = An(8)/An_1(¢)  (n 22 0),
where A_,(¢) = 1. Now let {P,(2)}22, be another PS satisfying
(2.5) 0(Pp, Py) = Knbpmn  (m and n > 0),

where K, # 0. Since {Pn(z)}2%, is a PS, for each n > 0 we may write
P,(r) as
Pu(x) = Cy,Pj(z)
j=0

for some real constants Cp ; (7 = 0,1,...,n) with Cp, n # 0. Then, for
any k = 0,1,...,n — 1, we have, by the orthogonality (2.3),

_ n N

0= &(Pp, Pr) = Z Cn,jo(Pj, P) = Z CrnjK;bjx = Ch k Kk
=0

J=0
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so that Cpx = 0. Hence we have P Pp(z) = Cp nPp(x). Conversely,
assume that there is a PS {P,(z)}2, qatlsfymg (2.3). We may assume
that each P,(r) is monic so that {P, I)}n o is the unique monic PS
satisfying (2.3). Writing Pp(x) = Y_[_ CPe* (C = 1), we see that
the condition (2.3) ise qmvak nt to

(26) Z ¢m,kcl? = ¢(_[7"'Pn(;r)) = ¢(Pm(m)» Rl(‘l)) - I\’no‘mn
k=0

forn >0and m =0,1...., . Since for any fixed n > 0 the simulta-
neous (‘quatlons (2.6) haw a unique non-trivial solution {CRYi_y we
have A, (é) # 0 (n > 0). Finally, we have that K, > 0 for n > 0if and
only if A,,(gb) >0forn>0 0O

By various representation results like Boas' monient theorem [2] or
Duran’s generalization [3] of Boas’ Theorem, any moment functional o
will have an integral representation of the form

(o,7(r)) = / n{x)doy(x) (m(z) € P),
JR

or

(o,7(x)) = A?r(;r)wda‘)d;r (r(z) € P),

where go(r) is a function of bounded variation on R (so that doy is, In
general, a signed Borel measure on R) and w,(z) is a C®-function of
the Schwartz class. With these representations, the symmetric bilinear
form given in (1.1) can be written as

N
(2.7) $(pa) = (PN =Y (o), pM ),

k=0

where o) are moment functionals. As we shall see, it is more advanta-
geous for us to use this abstract notation involving moment functionals
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instead of using one of the above integral representations of moment
functionals.

In case the symmetric bilinear form ¢(:,-) in (2.7) is quasi-definite
(respectively, positive-definite), we call a corresponding PS {P,(x)}22,
in Lemma 2.1 a Sobolev-Tchebycheff polynomial system (STPS) (re-
spectively, a Sobolev orthogonal polynomial system (SOPS)) of or-
der N relative to ¢(-,-). When N = 0, we simaply call {P,(z2)}52,
a Tchebycheff polynomial system(TPS) or an orthogonal polynom)al
system (OPS) relative to () and say that o) is an orthogonalizing
moment functional of {Pp(x)}5,.

Since a PS is a basis for P, any PS {¢n(2)};2, determines a mo-
mentfunctional ¢ (uniquely up to a non-zero constant multiple), called
a canonical moment functional (see [11]) for {¢n(7)}5%q, by the condi-
tions

(2.8) (o,¢0(x)) #0 and (o,¢.(x)) =0 (n>1).
Note that if a PS {P,(2)}5Z, is a TPS relative to o, then o must be
a canonical moment functional for {P,(z)}52,

LEMMA 2.2. Suppose that the symmetric bilinear form ¢(-, ) in (2.7)
is quasi-definite and let { P,(z)}5%, be an STPS relative tog(-, ) Then
0(0) must be a canonical moment functmnal for { Pp(x)}2%,. In partic-

ular, (o), 1) # 0.

Proof. This follows immediately from the orthogonality (2.3) by tak-
mgm=0. O

Now we introduce some formal calculus on moment functionals. For
a moment functional ¢ and a polynomial 7(z), we let o', the derivative
of o, and 7o, multiplication of ¢ by a polynomial, be the moment
functionals defined by

(o', p(x)) = (o, p'(2))  (p(z) € P)
and

(m(x)o,p(z)) = (o,m(z)p(z))  (p(z) € P).
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It is then easy to obtain the following Leibnitz rule for any morment
functional o and polynomial (z) :

(2.9) (n(x)o) = n'(2)o 4+ n(x)o’.

LEMMA 2.3. Let o be a moment functional and () a polynomial,
Then

(1) ¢ = 0 if and only if o' = 0.

(i1) If o is quasi-definite and w(z)o = 0, then 7(z) = 0.

Proof. (i) If o = 0, then (¢',2") = —n(o,2™1) = 0 for any in-
teger n > 0 so that ¢’ = 0. Conversely, if ¢’ =: 0, then (o,2") =
(o, n‘“(:r”‘H)’) n+]l (U 2"ty = 0 for any integer n > 0 so that
o=0.

(ii) Assume that o is quasi-definite and 7o = 0. Let {P,(r)}, be
a TPS relative to o, satisfying the orthogonality condition (o, P, P,)

= Kpbpmn (m and n > 0) with K, # 0. Write n(z) = Z/iv:o Cr Pr(z),
where N = deg(n) > 0 and Cy # 0. Then we have

N
0= (7!'(.‘1‘)(7, PN> = ZCk<0"PkPN> =Ny,
k=0

so that Cy = 0, which is a contradiction. Hence n(x) = 0. O

3. Polynomials satisfying second-order differential equa-
tions

Consider a second order differential equation of rhe form
(3.1) Llyl(x) = la(x)y"(z) + €1(2)y'(z) = Ay(x),

where (3(x) and ¢,(z) are real-valued functions independent of the pa-
rameter n and A, is a real constant depending on n. S. Bochner [1]
observed that if the differential equation (3.1) has & PS {P,(x)}22, of
solutions, then its coefficients must be of the form

(3.2)

)=tz (i=1,2); An=nln—1by by (n>0),
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where ¢;; are real constants with €%, + 2, # 0. From now on, we
always assume that the coefficients of the differential equation (3.1) are
the ones given in (3.2).

DEFINITION 3.1. (Krall and Sheffer [6]) The differential expression
L[] in (3.1) is called admissible if A,, # A, for m # n.

By direct calculation, it is easy to see that the differential equation
(3.1) has a unique monic polynomial solution of degree n for each integer
n > 0 except possibly for a finite number of values of n and for those
exceptional values of n, there will be either no polynomial solution of
degree n or infinitely many monic polynomial solutions of degree n to

(3.1).
LEMMA 3.1. For the differential equation (3.1), the following state-
ments are equivalent.

(1) L[ ] is admissible ;
(i1) A _n(rz—l)(22+n€11740forn21;
(ii1) F“¢{ —nly |n=0,1,...};
(iv) For each n > 0, the dxﬂ'erenmal equation (3.1) has a unique
monic polynomial solution of degree n.

Proof. See Lemma 2.2 in [9]. O

DEFINITION 3.2. (Krall and Sheffer [6]) A PS {Pn(z)}32, is called
a weak Tchebycheff polynomial system (WTPS) if there is a non-trivial
moment functional o such that

(3.3) (0, PPy =0 for m#n.
In this case, we say that {P,(z)}52, is a WTPS relative to o.

If {Pn(x)}32, is a WTPS relative to o, then ¢ is a canonical moment
functional of {P ()52, and (o, P2(.r)) may or may not be zero for
n > 1 (but {(o,P%(r)) # 0). We now discuss the orthogonality of
polynomial solutions of the differential equation {3.1).

LEMMA 3.2. If the differential equation (3.1) has a PS {¢.()}n%0
of solutions, then any canonical moment functional o of {¢n(z)}5%,
must satisfy

(3.4) (6:(x)0) — 1(x)o = 0,
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which is equivalent to the recurrence relation
(3.5)
(nla2 +011)0ny1 + (11 +010)0n +nlag0n_y =0 (n20; 0y =0),

where {0,}52, are the moments of 0.
Proof. See Lemma 3.3 in [8]. O

We call the functional equation (3.4) the weight equation for the
differential expression L[] in (3.1), while (3.5) is called the moment
equation for L[] (in the L?-sense).

REMARK 3.1. The weight equation (3.4) or equivalently, the mo-
ment equation (3.5) has at most two linearly independent solutions. It
1s now ecasy to see that the weight equation (3.4) has only one linearly
independent solution (which may or maynot be quasi-definite) if the
differential expression L[-] in (3.1) is admissible.

PROPOSITION 3.3. If the differential equation (3.1) has a TPS {P,
(z)}52, of solutions, then L[] is admissible.

Proof. See Proposition 3.5 in [8] [

Whether the differential operator L[-] is admissible or not, polyno-
mial solutions of (3.1) have certain orthogonality. To be precise, we
have the following.

PROPOSITION 3.4. Let L[] be the differential expression in (3.1). If
L[p] = Ap and L[g] = pq for some p, ¢ € P and distinct real numbers
and ji, then

(o,pq) =0

for any solution ¢ to the weight equation (3.4). In particular, if L[] is
admissible and { Po(2)}32., is a PS of solutions to (3.1), then {P,(x)}2,
is a WTPS.

Proof. The first part of this proposition is a special case of Propo-
sition 4.4 below with o) =0,k = 1,2,--- | N. The second part then
follows immediately since the weight equation has only one linearly
independent solution when L[] is admissible (see Remark 3.1). [
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THEOREM 3.5. The differential equation (3.1) has a TPS of solutions
if and only if the weight equation (3.4) has only one linearly independent
solution o which is quasi-definite.

Proof. See Theorem 3.9 in [8]. O

THEOREM 3.6. Assume that the differential equation (3.1) has a PS
{Pn(r)}7%, of solutions. If {Pn(x)}%, is not a TPS, then for any
solution o of the weight equation (3.4), there is an integer m > 0 such
that

(o,P2}y =0 forall n>m+ 1.

Proof. See Theorem 3.12in [8]. O

4. Necessary and sufficient conditions and classifications

We first obtain necessary and sufficient conditions for an STPS rel-
ative to ¢(-,-) in (2.7) to satisfy a second-order differential equation
(3.1), of which the coefficients are given by (3.2).

LEMMA 4.1. For N 41 moment functionals oy, k = 0,1,--- N, and
an mteger j, let

e+ ) -ess -0, )
k

) .
(]) (k4 k+5-1) (k)

n _(k=j3)
fz”(k)

+
2 :
- [(kj 1) + (J_ " ])]FW::)—HI) _ [(f) +(Ir+j)(§)]£§a":)~j+1)y

where (:) =0ifb<Oora<b Then Ay =0forj<0andj>k+2
and

k+74+10k\  (k—j+D -
(41) Ak‘]' = m (j)Ak,k—:l fOI‘ ("i..” 0 S ] S .l-

Proaof. 1t is easy to check by differentiating and rearranging the sum-
mation. []

143



K. H. Kwon, D. W. Lee, and L. L. Littl-john

THEOREM 4.2. For a symmetric bilinear form ¢(-,-) in (2.7), the
following statements are cquivalent.

(1) The differential expression L[], given in (3.1), is symmetric on
polynomials relative to ¢(-,-), that is,

(4.2) #(L[pl.q) = é(p, L[q]) (p.g € P).

(1) For k = 0,1,--- N, the moment functional Tk satisfies the
functional equation

(4.3) C{a)o(y = [(k = 1)(x) + O (x)]ow, = 0.

(1) The moments of ¢(-,-), oy, k =0,1,--- |V, given by ¢mn :=
o(r™. x"), of, = (o). 2"), (m and n > 0), satisfy the equa-
tions

N
(4.4) Smn = Y _(m.k)(n kyofrm2k,
k=0

(4.5) [(r0 +2K)Con + (1)) i3t + (0 + k)lar + €r0)of,, + nlyon! =0,

where B = 0,1,--- N, (a,b) = a(la—1)--(a — b+ 1), and
74 = 0 for n < 0.
Furthermore if ¢(-,-) is quasi-definite and {P,(r)}%., is an STPS
relative to ¢(-, ). then statements (i), (ii), (iii) are all equivalent to
(iv) {P(r)}p2, satisfies the differential equation (3.1).

Proof. (1) < (ii) : It is casy to check the following identities : for p,
ge P

N N
$(Lpl.q) =D (o). L(p)¥g'*) Z( DML (¢M o) M, p)
k=0
and
N N
o LlaD) = Y (o0, P M LIg™M) = 3 (-DM(Lig) Do) p),
k=0 k=0
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where L*[] is the Lagrangian adjoint of L|-] defined by
L*[y)(x) = (€2(2)y(x))" = (br(z)u(2))'.

Hence, the equation (4.2) is equivalent to
N

(4.6) Z(“l)k{L“L[(q(k)U(k))(k)] ~ (Lgd®ouw) P} =0 (¢ P),
k=0

which, when written out and simplified, yields, for all ¢ € P,

N k ’i k41 L +1 ‘

k=0 J=0 j=0
k+2 k41 A
k+2 (k—j+2) gkt k+1 (k =i+ (k+j)
+2 ( i )F (k) -2 j )F‘ !
j=0 7=0

Z( ) (k N (k+])+g(k (e, qu)(k+]1+0(k N (trq )(k+j)}]

1=0
N k42

Z ZA’“ q(k+])

k=( ]0

2N+2 , N 2N+1 , N

=Y (Z("l)kAk,m—k)q(m) = > (Z(“‘l)kAk,m—k)q(m)
m=0 “k=0 m=0 “k=0

where Ay ; are the same as in Lemma 4.1. In the last two equalities

above, we used the fact that Ay ; = 0 for j < 0 and j > & + 2. Hence,

the statement (i) is equivalent to

(4.7)

min(m,N)

N
0= Z(“‘l)kAk,m——k = Z (=1)*Agm—s
k=0

k=[%]
min(2r,N) k__2r+1 koy 4(2k=2r41) . e
ker (DS (T ) A s i mo=2ris even

k en(2r+1,k) k2r42 ( k (2k—27)
(=1 A1 + ko (=D 3= o) Abkrr s

ifm==2r+1is odd
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for m = 0,1.--- 2N + 1, where we use (4.1). By Lemma 2.3 (i), we
can see inductively that the equations in (4.7) are equivalent to

(4.8)
Arkar = 2| G0l — (k=D () + 0 (x)ogy | = 0. k= 0,1 N,

(i1) « (i11) : The equation (4.4) follows from the definition of &(-,-).
The equation (4.5) is just a restatement of the equation (4.3) in terms
of the moments of (). Finally assume that {P,(z)}2%, is an STPS
relative to a quasi-definite symmetric bilinear form ¢(-, -).

(1) = (iv) : Since L[P,](:r) is a polynomial of degree < n, we may-
write

LIP.) L Co ;P
j=0
for some real constants Crnj1=0,1.....,n. Thenfork =0,1.. . ,n-1
Cou k& Pr, Py) = L Cuj$( Py, Pi) = ¢(L[P], Pi) = o( P, L[P4]) = 0

1=0

since L{Pi)(xr) is a polynomial of degree < k. Hence, Cy, 4 = 0 for k =
0,1...., n — 1 and so L{P,](x) = C,, o, Pal(x) = X\, Py() by comparing
the coeficients of r™ on both sides.

(iv) = (i) : If L[P,] = A\, P, for every integer 7. > 0, then we have
for all integers m and n > 0

(L{P,,,l, [)"] - q*)( P""L[P'"]) = (’\m - /\n)¢( Pnn Pn) - 0

We now have (4.2) by linearity since {P,(z)}2%, i+ a basis for P. U

We call the functional equations (4.3) the Sobolev weight equations
for L{-] relative to ¢(-,-) and the equations (4.5) are called the Sobolev
moment equations for L[] relative to ¢(-, ).

As an immediate consequence of Theorem 4.2, w have the following
generalization of Krall's theorem for classical orthogonal polynomials
corresponding to the case N = 0.
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COROLLARY 4.3. Let ¢(-,) be a symmetric bilinear form given in
(2.7). Then there is an STPS {P,(x)}, relative to ¢(-,-), which
satisfies the differential equation (3.1) if and only if

(1) @(-,-) is quasi-definite
and
(ii) for each k, the moments {(f("k)};‘ozo of oy, satisfles the Sobolev

moment equation (4.3).

Proof. This follows immediately from Lemma 2.1 and Theorem 4.2. (]

REMARK 4.1. If we differentiate (3.1) with respect to r and set
yF(r) = 2(r), k=1,2,--- N, then we obtain second-order differential
equations :

(4.9)  Milzl(x) = la(0)2"(2) + (kly(2) + €1(2))'(2) = prnsr=(a),

where fiayx = Apyx — kO (x) — ﬂkz—_ll%'(z) It is interesting and useful
to note that the equations (4.3), are the weight equations for M[],
k=1,2,--- N, in the L%-sense.

REMARK 4.2. When (;(x) = 0, the differential equation (3.1) re-
duces to the first-order equation

(i1 + €)Y (x) = nlyyy(x)

which can have a PS of solutions only when £;; £ 0. In this case, the
Sobolev weight equations (4.3) become

(fn.’l‘-{'—Fl())G'(k):—‘O for ]C:(),].."']V,
of which the general solutions are
oy = ck0(x + l10/411),

where ¢i’s are constants. When these are substituted into (2.7), the
corresponding symmetric bilinear form ¢(-,-) cannot be quasi-definite.
Consequently, by Corollary 4.3, the above first-order differential equa-
tion cannot have an STPS of solutions ; in particular, it cannot have a

TPS of solutions.

Now we can prove the following which extends Proposition 3.4.
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PROPOSITION 4.4. Let L[] be the differential expr(’qsi(m in (3.1)
and let ¢(-,-) be the symmetric bilinear form in (2.7). If L[p] = Ap and
L{g} = pq for some p, ¢ € P and distinct real numbers A and ., then

#(p.q) =0

for anysolutions oy, of the Sobolev weight equaions (4.3) for b =
0,1.---N.

Proof. This follows from Theorem 4.2 and the identity

(A= )o(p.q) = 6(Ap.q) — o(p, pg) = o(Llp].q) - ¢(p, Lig]). O

THEOREM 4.5. Assume that the differential equation (3.1) has a
PS{P,(r)}22, of solutions, which is an STPS relative to the bilinear
form ¢(-,-) in (2.7). If oy, 1s quasi-definite for son.e k, then

(1) {P,(,k)(.r)};’?;k is a classical TPS relative to oy satisfying the
differential equation (4.9) ;

(i1) AM,[-] in (4.9) is adwmissible for all ¢ > k ;

(iii) For: > k. agy = c({o(a))'™ }‘(T(k) for some real constant ¢; so
that o,y = 0 or o, is quasi-definite ;

(iv) Fori < k, ({o(r)¥ oy = ¢ k) for some real constant ¢, so
that ({,{r))*7 (r(,) = () or (/ (a ))k"ia(i) i+ quasi-definite ;

(v) Foreachi >k, {P” (r)}22, is a TPS relative to o,y if o,y # 0

7

Proof. (i) We may assume that cach P, (x)is mouic. Since { P, (r)}2%,
P : . . Pt
satisfies differential equation (3.1), it follows that {—(—7%—';‘—(—:—;};_0 s a

monic PS which satisfies the differential equation given by (4.9). Let
{Q.(r)} 2=, be the monic TPS relative to oy, Since o) satisties the
weight equation given in (4.3), by Theorem 4.2, @, () satisfics the dif-
ferential equation (4.9) and so is a classical TPS. By Proposition 3.3,
the differe ntidl equation (4.9) is admnissible. Hence by Lemma 3.1, we

ok T) N
must have ‘—f”r—k—— Q.(r), n>0.
(i1) Since AMi[] has a TPS {Q.(7)}5%, of solutions, Mg[-] is admis-

sible by Proposition 3.3. Now suppose that M,[-] is not admissible for
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some 7 > k. Then by Lemma 3.1,

i(i — 1)

Ay — 20 -
+ () 5

¢)(z) =0, forsome n >1.
This implies that
iy = —(n+ 20 — 1)ly, for some n > 1.

This coutradicts that My[] is admissible (i.e. {15 ¢ {-nly, n =k, k+
1,--- ).

(ii1) Since M,[-] for + > k in (4.9) is admissible, the moment equation
associated to (4.9) is uniquely solvable by Remark 3.1. Define 6(;) =
(62(x)) ko (x), then ;) # 0 since £2(z) # 0 and oy is quasi-definite
(see Lemma 2.1). Moreover ;) satisfies the weight equation (4.3) for
k = 1. By the unique solvability, we have o¢;y = ci(€2(x)) " Fop for
some real constant ¢;. Since {P(i)k(;r) > o is a classical TPS relative

to ok, {P’,1th 1)}, ¢ > k, is also classical TPS satisfying the diff-
ferential equation (4.9). Since (f2(2))"""® o) is the unique solution
of the weight equation (4.3) corresponding to M,[] so that it must be
quasi-definite.

(iv) Since My[-] in (4.9) is admissible, the weight equation (4.3) is
uniquely solvable. By the same reasoning as i (iii) we have o) =
C,‘((’g(.l‘))k_iU(,‘) for some real constant c;.

(v) From (iii) we may assume that {Q.(x)}32., is a TPS relative to
oy if oy # 0. Since oy, satisfies the weight equation (4.3) for & = 1,
{Qn(x)}22, satisfies the differential equation (4.9) for k = 7. By the
admissibility, the differential equation (4.9) has a unique monic PS of
solutions 0

n'+1(‘T)
@nle) = (n+1,1)

which is orthogonal relative to o). 0O

As an application of Theorem 4.2 and Theorem 4.5, we now give the
complete classification of STPS’s relative to (-, )2 satisfying a second
order differential equation of the form (3.1). Denoting o), 0(1), o(2)
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in (2.7) by o, 7, w respectively and setting ogy = 0 for k > 3, we have
a symmetric bilinear form

(4.10) o(p,q) := (p,q)2 = (0, pq) + (r.p'g") + (w,p"¢") (p.geP).

In the following, we shall assume {9(2) # 0 (see Remark 4.2) and
deg(€1) # 0 (i.e..f1(x) is not a non-zero constant) since if deg(f,) = 0,
then the differential equation (3.1) has no polynomial solution of degree
one.

Concerning the symmetric bilinear form ¢(-, ) in (4.10), there arise
the following four cases :

(1) type A : o is quasi-definite ;
(i) type B : 7 is quasi-definite but o is not yuesi-definite ;

(ii1) type C: ¢ and 7 are not quasi-definite but o is quasi-definite ;

(1v) type D : 0, 7, w are not quasi-definite.

We note that the symmetric bilinear form ¢(-,-) in (2.7) can bequasi-
definite even though o, are not quasi- definite for all k = 0,1.... . N.
Indeed, Duran [4] produced the following example.

EXAMPLE 4.1. Define a moment functional o by its moments {on}2, :

70=3, oy=1, and o7, = -—- = "ol (> 2).
12 ‘+ l 0

Since Ay(o) = 0, ¢ is not quasi-definite. The moment functional r —
%b(.r) is clearly not quasi-definite. However, the bilinear form (-, )

defined by
1

d(p.q) = (o, pg) + g(ﬁ P'q")

is positive-definite. Indeed, for any 0 # p € P, we have

b : 1 /
,p) = ) d: 2p(0) + ——=p'(0)) > 0.
é(p,p) A pia)dr + (V2p(0) + 2ﬁp( ) >

Type A : o is quasi-definite. In this case, any STPS relative to
¢(.+) in (4.10) must be a classical TPS relative to o by Theorem 4.5
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and there exist, up to a reallinear change of variable, six distinct types :
Jacobi, Bessel, Laguerre, Hermite, twisted Jacobi and twisted Hermite
polynomials (see [8]), which we list below for later use. In the following
we use the notations

« « ala—1) - (a—k+1)
(0> =1 and (k) = i ,

for any complex number o and any integer k > 1.

Jacobi polynomials : Assume f,(r) = 0 has two distinct real roots.
Then, by a real linear change of variable, we may transform the differ-
ential equation (3.1) into

(4.11)
Liylx) = (1= )" (0) + (B — o) — (a4 F + 2)z]y'(+)
—n(n+a+ 3+ 1)y(x).

From Lemma 3.1, we can see that the equation (4.11) is admissible
if and only if a + 3+ 1 ¢ {—1,-2,...}. When the equation (4.11) is
admissible, it has a unique monic PS {P,(la’ﬂ)(a:) eo o of solutions, called
the Jacobi polynomials, where

(4.12)

o Mmta+4\ '~ nta\/n+p e
N > (0 i
k=0 /

n > 0. The Jacobi PS {P,(,(”ﬂ)(:r) > o 1s a TPS (respectively, an OPS)

if and only if o« + 3+ 1, o, and g ¢ {—1,—-2,...} (respectively, a and
g > -1).

Bessel polynomials : Assume {y(z) = 0 has a double real root. Then,
by a real linear change of variable, we may transform the differential
equation (3.1) mto

(4.13) Lly)(x) = 2%y"(x) + (ax + B)y'(z) = n(n + a — L)y(z).
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From Lemma 3.1, we can see that the equation 14.13) is admissible
if and only if o ¢ {0,-1,-2,...}. When the equation (4.13) is ad-
missible, it has a unique monic PS {B(a’ﬂ)(x)}n_,, of solutions given
by
(4.14)
" if =0
B("Ji) r) = 3" n ! _ T k ‘
a(x) i nfMla+n+k-1) i i3 40
Ma+2n-1) — (n—k)Ek! 3

n > 0. When g # 0, we call {B(a d)( )}, the Bessel PS. The
PS {B\™?)( ) )} ~o is a TPS (but never an OPS) if and only if o ¢
{0,-1,-2,...} and 3 # 0.

Laguerre polynomials : Assume deg(¢;) = 1. Then, by a real linear
change of variable, we may transform the differential equation (3.1)
into

(4.15) Llyl(r) = xy"(x) + (a + 1 — 2)y'(z) = --ny(x).

The equation (4.15) is admissible and so has a unique monic PS {L(na)
(z)}a%y of solutions, called the Laguerre polynomials, where

n Kk
(4.16) L) = (=1t Y (” + O‘) o s

n—k k!
k=0

The Laguerre PS {L(na)(z)};"’:() is a TPS (respe-tively, an OPS) if
and only if a ¢ {~1,-2,...} (respectively, a > —1.
Hermate polynomaals : Assume deg({;z) = 0 and ¢;; < 0. Then, by a

real lincar change of variable, we may transform the differential equation

(3.1) into
(4.17) Liyl(r) = y"(x) — 209/ (x) = —2ny( x).

The equation (4.17) is admissible and so has a unique monic PS {H,

(x)} 7%, of solutions, called the Hermite polynomials, where

n-—2k

(4.18) —n'ZU n—2k)’ T n > 0.
k=0
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The Hermite PS {H,(x)}%, is an OPS.

Tunsted Hermite polynomials : Assume deg(f2) = 0 and ¢;; > 0. Then,
by a real linear change of variable, we may transform the differential
equation (3.1) into

(4.19) Liyl(x) = y"(x) + 2zy'(z) = 2ny(z).

The equation (4.19) is admissible and so has a unique monic PS {H,
(x)}52, of solutions, called the twisted Hermite polynomials, where

[n/2] n——2k
(4.20) a(z) =n! Z e 2k)' 7 120

The twisted Hermite PS {H,,(2)}%2, is a TPS (but never an OPS). In
terms of Hermite polynomials, we have H,(z) = i"H,(—iz) (n > 0);

here 1 = /1.

Twisted Jacobi polynomials : Assume £3(z) = 0 has two complex conju-
gate roots. Then, by a real linear change of variable, we may transform
the differential equation (3.1) into

(4.21)  Lly)(x) = (1 + 22)y"(2) + (bx + )y'(x) == n(n + b — L)y(x).

From Lemma 3.1, we can see that the equation (4.21) is admissible if
and only if b ¢ {0,—1,—2,...}. When the equation (4.21) is admissible,
it has a unique monic PS {P,(,a’ﬂ)(z)}ﬁ"___o of solutions, called the twisted
Jacobi polynomials, where

(4.22)

. m+a+p 1z n+a\/n+,3 ok ,

(a,8) — __yn—k k

L G IS S () | () PR ER
k=0

n > 0, where ic = 8 —a and b = a + § + 2. The twisted Jacobi

PS {P{"x2)}>2, is a TPS (but never an OPS) if and only if b =
a+3+2¢{0,-1,-2,...}. In terms of Jacobi polynomials, we have

Py = PP (~iz) (n > 0).
Type B : 7 is quasi-definite but ¢ is not quasi- definite. From

Theorem 4.5 we have

153



K. H. Kwon, D. W, Lee, and L. 1.. Littlejohn

PROPOSITION 4.6. Assume that the differentiai equation (3.1) has
a PS {P,(x)}5L, of solutions, which is an STPS relative to the bilinear
form ¢(- -) m (4.10). If 7 is quasi-definite, then

) {APp(x)}02, is a classical TPS 1vla6w(= to - satisfying the dif-
fvrcntml equation (4.9) for k =

(i1) M,[] in (4.9) is admissible f()ri =1,2;

(M) w = cafy(r)7 for some real constants co so that w = 0 or w Is
quasi-definite;

(i) (y(r)o = ;1 for some real constant ¢, so that either {,(r)0 = Q
or {(r)e Is quasi-definite |

(v) {P/(r)}%., 1sa TPS r(‘lamw;’ to €y(x)T

n=

(vi) {Py ()} is a WTPS relative to o.

Proof. 1t is immediately obtained from Theorem 4.5 and the Sobolev
orthogonality. [

Assume that {P,(r)}7%, 1s an STPS as in Proposition 4.6 and that
o is not quasi-definite but 7 is quasi-definite. Then, by Proposition
4.6, {P,(r)}o2, is a classical TPS relative to 7 and {Pp(x)}52, is a
WTPS relative to 0. Henee, {Py,(2)}5%, is also orthogonal relative to
the Sobolev inner product,

(p.gh = (o,pg) + c(7,0'¢'),

where ¢ 1s any non-zero constant satisfying ¢ ¢ {- L};ﬂ—;—h: > 1}
This is the case which is already considered in [8] and there arc, up to
a real linear change of variable, five such STPS’s : three ]d(‘()bi types
R A L 2Rl L M ED) bt
(v # —1.-2..-.) ; onc Laguerre type {LS;”(J‘) oo 5 one twisted
(P ey

rre=l -

Jacobi type
Type C : w is quasi-definite but ¢, 7 are not guasi-definite.

PROPOSITION 4.7. Assumme that the differential equation (3.1) has
a PSP, ()}, of solutions, which is an STPS relative to the bilinear
form ¢(-.-) in (4.10). If w is quasi-definite, then
(1) {P)(xr)}o2, is a classical TPS relative to u satisfving the dif-
ferential equation (4.9) for k =
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(i1) (3(r)o = c w for some real constants ¢, so that either (3(x)o =
0 or (%(x)o is quasi-definite ;

(1) l3(x)1 = cyw for some real constants cy s that either €,(r)r =
0 or {o(x)7 is quasi-definite.

Proof. It is immediately obtained from Theoremn 4.5 and the Sobolev
orthogonality. 0

If £,(x) is a non-zero constant, then o is also quasi-definite by Propo-
sition 4.7. This case reduces to type A. Hence, in type C. we may
assume deg(€;) > 1 so that there are four cases

bo(x)=1—2* 2% &, 14 2%

In each case, we look for the conditions such that the Sobolev weight
equations (4.3) have no quasi-definite moment functional solutions for
k <1 and have a quasi-definite moment functional solution for k = 2.
To do this, we use the previous classifications of classical TPS’s and
Theorem 3.5.

Case C.1. Jacobi type (f2(z) = 1 —2?). The differential equation is
(4.23)
(1—rHy"(r)+(A—a) = (a+ 3+ 2)x)y'(z) = —n(n+a+ 5+ 1)y(z).

The Sobolev weight equations corresponding to (1.23) are

(4.24) (1—2%)0) ~[(B—a)—(a+ 3 +2)t]o =0;
(4.25) (1—abH)r' —[(B-a)—(a+ 3+ 2)z]r = 0;
(4.26) (1= 2*)' = [(B—a) = (a+ F+4)t]w = 0.

The equation (4.24) has no quasi-definite moment functional solution
oifandonlyif o +3+1orwor e {-1,-2,...}, and the equation
(4.25) has no quasi-definite moment functional solution 7 if and only
foa+p+3ora+1,orf+1€{~1,-2,...}, whereas the equation
(4.26) has a quasi-definite moment functional solation w if and only if
o+ p+Sand a+2and J+2 ¢ {~1,-2,---}. Hence, there arise six

cases

(1) a+4+1=—-1landa=-20rf=-2:
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m) a+pg+1l=-2anda=-20r f=-2

(i) « + #+3 = -1, or -2 with @ ¢ {-3,—-4,---} and 3 ¢
{-3,—4,---}
(iv) a=—-2and 3= -2 ;

(v) o= —2and ¢ {-3,— ,~-};

(vi) #=-2and o ¢ {-2,-3,...}.
Case C.1.1. o+ + 1= -1 and a = -2 or 3 = —2 In this case, we
have o = =2, =0 or a =0, # = —2. In both cases, {;(r) = 3 — «a

15 a non-zero constant so that the differential equation (4.23) has no
polynomial solution of degree one.

Case C.1.2. o+ 4+1=-2and o = -2 or 3 = —2. In this case,

we have v = -2, = ~lora = -1, # = =2,
For o = =2, # = —1, the differential equation (4.23) becomes
(4.27)  Liyl(x) = (1 —2H)y" () + (1 + 2}y (2) = —n(n — 2)y(x).

The equation (4.27) is not admissible but has monicpolynomial solu-
tions

, m -3\ -2\ -1 !
(_2«“‘1) E — ) —'l 11-—*L . . 1k
P ) ( . ) ;)( L )(n_k)(r "M+ Dk

for n #£2

and P,Z(—z'_l)(.r) = 1% — 2z + 4, where 7 is an arbitrary constant. The
Sobolev weight equations corresponding to (4.27) are

(4.28) [(1-2*o) — (1 +2)0 =0;
(4.29) (1-2)r' —(14+2)7=0;
(4.30) (1 -8 — (1 — 2w = 0.

The general solutions of (4.28), (4.29), and (4.30) are ¢ = ¢;é(x + 1),
T = c6(r — 1), and w = ¢3(1 + 2)H(1 — x?%), where ¢; (: = 1,2,3)
are arbitrary constants and H{(x) is the Heaviside fanction. Hence, the
corresponding bilinear form (4.10) is

1
Hpoq) = ﬁp(*l)q(-—l)+<‘«zp’(1)q'(1)+C3/ (1--2)p"(x)q"(x)dxr.
-1
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Since w is quasi-definite if and only if ¢3 # 0, we may consider only the
following two parameter family of bilinear forms (by setting 4 = ¢1/c3

and B = (‘2/C3)

1
(4.31) o(p,q) = AP(~l)q(—1)+BP'(1)q'(1)+/ (142)p"(x)q"(r)dx.
-1

PRoPOSITION 4.8. The bilinear form ¢(-,-) in (4.31) is
(1) quasi-definite if and only if A # 0 and B # 0 ;
(1) positive-definite if and only if A > 0 and B > 0.
In cither case, the monic STPS or SOPS relative to ¢(-,-) is {P( —2-0
(x)}0Lo where P.z( 27V (2) =222z —3 and SQ‘ldJ‘Gd norms are given
by

(4.32)
A f n=0
(P Na), Pi72"Vx)) = ¢ B if n=1
[n(n —1))2K, _2(0,1) if n>2
where

22n+2[(n 4 1)l(n))? >0
Gnt 2 20

1
K,(0,1) = / (14 o) [P ()} dr =
-1

Proof. Direct calculation shows that d)(Pé”z‘"l)(z),Péwz‘—])(z‘)) =
0 only when v = —3. Then Proposition 4.4 shows that qb(P,(n_z’—])(x),
P,(,_2‘_“(.r)) = 0 for m # n. Since we have
(1) pi% “])( 1)=0foralln >1;
(i) [Py =0foralln > 2;
(ii1) [P,(, % _” :r)]” =n(n — I)P,(lo_’lz)(;r) foralln>2;
(iv) (14 2)H(1 —22), PPV POy = K,(0,1)8pmn, m and n > 0,
we obtain (4.32) from which the result follows. [

For o = =1, 3 = =2, the differential equation (4.23) becomes
(4.33) L{yl(z) = (1 —22)"(2)+ (=14 2)y' (2 = —n(n — 2)y(x).
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The equation (4.33) is not admissible but has monic polynomials of
solutions

. M- 3\ T A -1 n—2
‘P(ml.——l) ) = ( * -1 -k vk
" (r) on L k n -k (o= 1" e+ 107,

k=0

for n# 2

and P.‘; TNy = 22 4 + v, where = is an arbitrary constant. The
Sobolev weight equations corresponding to (4.33) are

(4.34) (1~ r%)o) ~(~1+a)0 =0;
(4.35) (1257 — (=14 )7 =0;
(4.36) (1 - _,-z)w’ — (1= 2)w = 0.

The general solutions of (4.34), (4.35), and {4.36) are o = c;6(x — 1),
T=c28(r + 1), and w = e3(1 — 2)H(1 - 2?), whers ¢, (7 = 1,2,3) are
arbitrary constants. As before we may consider only the following two
parameter family of bilinear forms :

I
{(4.37) o(p.q) = ,4])(1)(1(1)+Bp'(~1)q'(~-—l)+—/ (1 -2)p"(e)g" () dr.
-1

PROPOSITION 4.9. The bilinear form ¢(-,-) in (+.37) is
(1) quasi-definite if and only if A # 0 and B #0;
(i1) positive-definite if and ouly if A > 0 and B > 0.
In cither case, the monic STPS or SOPS relative to ¢(-, ) is {P,(,”1 2
()} where P,z( Ty = 22420 - 3 and squarcd norms are given
by

(4.38)
A if n=20
Py E), P (e = B if no=1
[n{n— D]*K,_,11,0) if n>2
where

22 (n + 1 N(n)t)?

(2n +2)I(22 + 1)1 (n>0).

1
K10 = [ (1= (PO dr =
—1
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Proof. Direct calculation shows that ¢(P2(_1'—'2)(;r),P($~l"‘2)(r)) =
0 only when ¥ = —3. Then Proposition 4.4 shows that ¢( P7(';—1,~2)($)’
Pﬁ"'“’”( 1) = 0 for m # n. Since we have

(1) P‘ﬂl””( )::Ofor alln>1;
(i) [P, (,1_2)] )=0foralln>2,;
(i) [PV P () ]” =n(n— )P,(,]_g)(x) for alin > 2;

(iv) ((1=n)H(1—-1x ),P,(nl O)P,SI‘O)) = K,(1,0)0,pn, m and n > 0,

we obtain (4.38) from which the result follows. ]

Case C.1.3: a+/3+3 = -1or -2 with o ¢ {-3,-4,---} and
pé{-3.-4 -}

For o + 3 + 3 = —1, the differential equation (4.23) has a polynomial
solution of degree 2 only when o = —2. Hence, this case reduces to
case C.1.4 below.

For o + 7+ 3 = -2, the differential equation (4.23) has no polynomial
solution of degree four.

Case C.1.4 : o = -2, 3 = —2. The differential equation (4.23)

becomes
(4.39) Lly)(z) = (1 — 22)y"(x) + 2zy'(z) = —n(n — Jy(r).

The equation (4.39) is not admissible but has monic polynomial solu-
tions

" m—d\" "I =2\ -2
p(-2.-2)( .y — 2 -1 o+ 1)k
" (+) ( n ) k:ll< k )(n— k,’(l ) (r+1)%

for n #2,3

and P( 2D ) = w4y r41, P( % '2)( x) = x® - 31 +7,, where 71, 72
are drhltrary constants. The Sobolev weight equations corresponding
to (4.39) are

(4.40) (1 - 2*)a) - 2z0 =0;
(4.41) (1—a2%)7" =227 =0;
(4.42) (1—2%w' =0.
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We have two linearly independent solutions for o 7 from (4.40) and
(4.41) respectively and one linearly independent solution w from (4.42).
They are

b=br =)+ -1), oP =8a+1 —&r+1);
T = s — 1), D = $(r +1);
w=H(1-r?%).

As before we may consider only the following four parameter family of
bilinear forms :
(4. 43)
Apoq) = Alp(D)g(1) = (p'(1)g(1) + p(1)g'(1))] + Bl(p(~1)g(~1)
+ (1)’(—1)c1( ~1)+ p(=1)g'(=1)] + Cp'(1)¢'(1)

|
+ Dp'(-1)¢'(—1) +/ p'(x)g"(x)da
o

PROPOSITION 4.10. The bilinear form ¢(-,-)in (4.43) is
(1) quasi-definite if and only if A+ B # 0, A+ B # C + D and
2AB-D)C—-A)~(A+B-C-D)#0 -
(1) positive- definite if and only if A+ B >0, A+ B < C+ D and
2AB - D)C—~-A)~(A+B-C-D)>0
In either case, the monic STPS or SOPS relative t (-, -) is {P,(,_Q’—Z)
()}, where PJ “2‘“2)(.1') = 2 4y,74+1 and P:;mz'*?')(.r) = 1 ~3r47,,

with v, = '2/(“;:';3{_’;.(;";)1))’ S 2(/;:::) and squared norns are given by
(4.44)
A4+ B if n=20
~-A-B+C+D if n=

Py ), PUE () =
oLr, (), P, (x)) > P

[n(rn - 1)K, _+(0,0) if n>3
where E = (C — A)(y; +2)* + (D — B)(y) — 2)? + 8 and

92n+1 ("!)4

(0.0) . _
10 (0.0) / [P 2] dr = (2n)!(2n + 1)!

(n>0)

—
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Conversely, with any choice of vy, 72, {P( % _2’(:1:)} >o Is an STPS
relative to ¢(-,-) if A, B, C, and D are such that
A+B#0, A+B+#C+ D,
(C— A} +2)°+(D - B)(m —2)° +8£0,
(A+B)y2 -2(A-B)=0,
and

(A+B-C—-D)y+2(A-B-C+ D)=0.

Proof. Direct calculation shows that ¢(P§_2’~z)(x),Pé_2’—2)(x)) =
0 and ¢(P2(—2,——2)(m),P1(—2.~2)($)) = 0. Then Proposition 4.4 shows
that
¢(P(—2'_2)(1f), P,(,_z'_z)(x)) = ( for m # n. Since we have
(1) P,(,—2’_2)(:}:1) =0foralln>4;
(1) [}"(—2 _2)] (x1)=0foralln>3;
(111) [P( A (o))" =n(n— 1)P,(&g)(x) foralln > 3;
(iv) (H(1—22), PPy = K,.(0,0)6mn, m and 1 > 0,
we obtain (4.44) from which the result follows. (]

Case C.1.5: a = -2 and § ¢ {-3,—4,---}. The differential equation
(4.23) becomes

(4.45) L{yl(x) = (1=2*)y"(2)+((8+2)—Pz)y'(z) = —n(n+A—1)y(z).
The equation (4.45) is admissible and so has a unique monic PS {Py(,—_z’ﬂ)
(x)}22, of solutions

—1 n
R G I e

k=0
(n>0).
The Sobolev weight equations corresponding to (4.45) are
(4.46) (1 - a®)o] — [(8+2) — Balo = 0;
(4.47) (1—2%)r' —[(8+2) - pz]r =0;
(4.48) (1-2Hw —(A+2)(1-z)w=0.
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The general solutions of (4.46), (4.47), and (4.48) are 0 = ¢, [Fé(x—1)—
28" =1), 7 = eb(7-1),w = C3(1+.L‘)§_+2H(1—1‘), where ¢; (i = 1,2,3)
are arbitrary constants. For information on the distribution r§, we
refer to Hormander [5] and Morton and Krall [12]. As before we may
consider only the following two parameter family of bilinear forms :

o(p,q) =A[Ap(1)g(1) + 2(p'(1)q(1) + p(1)¢'(1))]

4.49)
( + Bp( )g' (1) + (1 + )PP H(1 - 0), p"(2)q" ().

PROPOSITION 4.11. The bilinear form ¢(-,-) in (4.49) is
(1) quasi-definite if and only if Af #0, B — %A #0,
(11) positive-definite if and only if A >0, B -- iA > 0.
In either case, the monic STPS or SOPS relative to ¢(-, ) is {P( 2.8)

(r)}>, and squared norms are given by

(4.50)
BA if n=0
P E (&), PSEN2)) = { B~ 3A if n=1
[n(n — DK, —2(0.8+2) if n>2

where

22n+ﬂ+2[n!r(n + 8 +2)]2
I'2n+ 8 +4)I'(2n+ 8+ 3)

K,(0,+42)= (n>0).

Proof. Proposition 4.4 shows that qb(P( % ﬂ)( ), P, ~% bfm)( ) =140
for m # n. Since we have

(i) P& 0 ) =0foralln>2:
(i1) [P( —% /3)] =0foralln>2;
(iii) [P( - ﬂ)]" =n(n — 1)Pn0 g+2)(z) foralln > 2 ;
(iv) (1+ .r)ﬁ“H( —2), PP pLOAEDY - K (0,8 + 2)bmn, m

and n > 0,

we obtain (4.50) from which the result follows. O
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Case C.1.6: 3 = -2 and a ¢ {-3,—4,---}. The differential equation
(4.23) becomes '

(4.51)

Liyl(r) = (1 = 2*)y"(z) + ((=2 = a) — az)y'(z) = —n(n + a — D)y(z).

The equation (4.51) is admissible and so has a unique monic PS{P,(IO’_”
(2)}22, of solutions

-1 n

P = (MR Y (Y (0D e e

k=0
(n>0).

The Sobolev weight equations corresponding to (4.51) are

(4.52) (1 =aHo] + [(a + 2) — az]o = 0;
(4.53) (1-aH)7" + [(a +2) + az]r =0;
(4.54) (1-a*)w' —(a+2)1+z)w =0.

The general solutions of (4.52), (4.53), and (4.54) are o0 = ¢;[adé(z +
D+ 2(c + 1)), 7 = c28(z + 1), w = ¢3(1 — x)$+2H(1 + 1), where
¢i (2 = 1,2,3) are arbitrary constants. As before we may consider only
the following two parameter family of bilinear forms :
(4.55)

¢(p,q) =A[Bp(-1)g(=1) — 2(p'(~1)q(~1) + p{~1)¢'(-1))]

+ Bp'(-1)¢'(-1) 4+ (1 — 2)$T*H(1 + z), p" ()" (2)).

PROPOSITION 4.12. The bilinear form ¢(-,-) in (4.55) is
(1) quasi-definite if and only if A # 0, B — ;‘;—A #0;
(11) positive-definite if and only if 4 > 0, B — iA > 0.
In either case, the monic STPS or SOPS relative to ¢(-,-) is {P(o‘
(z)}52, and squared norms are given by

(4. 06)
oA if n=20

(PY"B(z), Pl D(x)={ B-14 if n=1
[n(n —1)?Kp—2(a+2,0) if n>2
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where

22n+tet2[pIl(n + a + 2))?

Koo +2,0) = ;
Sl 420 = Fe T AT (en fa + 3)

{n > 0).

Proof. Proposition 4.4 shows that ¢(P, ple ( Y, ple? ( )) = 0 for
m # n. Since we have

(1) P —1)=0forn>2;
i) (PR (=1)=0forn > 2
(ii1) [P(" z) o)) = n(n - l)]:',(lm;2 UJ( ) forn > 2
(iv) ((1 );:“H(l + ), PO plett Oy — ( 4 2,0)0mns T

dlld n >0,

we obtain (4.56) from which the result follows. [l

Case C.2. Bessel type (¢,(.r) = 2%) The differential equation is
(4.57) 2y (x) + (ar + By (x) = n(n+ o~ Dy(z).

The Sobolev weight equations corresponding to (4.27) are

(4.58) (rla) — (ax + B)o =0;
(4.59) 2’ —(ax + B)r = 0;
(4.60) 2w — (x4 8w = 0.

The cquation (4.58) has no quasi-definite moment functional solution
o if and only if & € {0,—1,---} or B = 0 and the equation (4.59) has
no quas1 -definite moment funchonal solution 7 if and only if o + 2 €
{0,—1,---} or # = 0, whereas the equation (4.60) has a qua81 definite
motne nt functional solution w if and only if & +4 ¢ {0,—1,---} and
B # 0. Hence, there arise two cases : a = =2, f #0or a = —3 3 #0.
For o = =2, 8 # 0, the differential equation (4 57) has no polynomial
solution of degree three.

For o = =3, 3 # 0, the differential equation (4.57) has no polynomial
solution of degree four.
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Case C.3. Laguerre type ({2(z) = z). The differential equation is

(4.61) ey"(r) + (0 +1 - 2)y'(z) = —ny(2)
The Sobolev weight equations corresponding to {4.61) are
(4.62) (zo) —(14+a—1x)o =0;

(4.63) ' —(1+a—x)7r =0;

(4.64) rw' —(2+a—2)w=0.

The equation (4.62) has no quasi-definite moment functional solution
oifand only if @ € {—1,-2,...}, and the equation (4.63) has no quasi-
definite momentfunctional solution 7 if and only if @ € {-2,-3,...},
whereas the equation (4.64) has aquasi-definite moment functional so-
lution w if and only if o ¢ {—3,—4,---}. Hence we have @ = —2 and
then the above equations become, respectively,

(465)  Llyl(r) = ry"(2) — (14 2)y'(x) = —ny(a);
(4.66) (ro) + (1 +x)o =0;

(4.67) v+ (14 x)r =0;

(4.68) w + zw=0.

The equation (4.65) is admissible and so has a unique monic PS{L%_”
(2)}22, of solutions

(~2) )l n—2 (x)k
L(x) Z - (n > 0).

The PS {L(,,_”(:r,) > o cannot be a TPS but it does form an STPS
relative to the form of #(-,-) in (4.10). The general solutions of (4.66),
(4.67), and (4.68) are 0 = ¢ [6(z) + &'(z)], 7 = cz6(x), and w =
c3H(xr)e™ T, where ¢; (1 = 1,2,3) are arbitrary constants. As before
we may consider only the following two parameter family of bilinear

forms :

=A[p(0)g(0) — (p'(0)q(0) + p(0)¢'(0))]

4.69 %
(4.69) + BY(0)¢(0) + / P(e)g" (2)e ™ de.
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PROPOSITION 4.13. The bilinear form ¢(-,-) in 1 4.69) is
(1) quasi-definite if and only if A # 0, B+ 34 #0 ;
(1) positive-definite if and only if A >0, B+ 34 > 0.

In either case, the monic STPS or SOPS relative to ¢ -, -} 1s {L%—Q)(m)}oo

n=0
and squared norms are given by

A f n=0
(4.70) (LG P(x), LS P(x))={ B+34 if n=1
[n(n—1)n-1)1% if n>2

Proof. Proposition 4.4 shows that aﬁ(L(T,1—2)(:E), LY 2)(1')) = 0 for m #
n. Sinee we have

(i) LT20)=0foralln > 2
(i) [L2)(0) =0 for all n > 2:
(111) [Li,_lz)(;r)]” =n(n — l)L(nO_)z(Jt) foralln > 2 ;
(iv) (H(x)e " L LYY = (028,00, m and n > 0,
we obtain (4.70) from which the result follows. [

Case C.4. Twisted Jacobi type (¢,(r) = 1+ r*). The differential

cquation is
(4.71) (1+aHy(e)" + (br + c)y(z) = n(n+b— 1y(r).

The Sobolev weight equations corresponding to (4.71) are

(4.72) (14 2%)0]) - (bz +c)o = 0;
(4.73) (1+ 257" —(bz 4+ )7 =0;
(4.74) (14 rH)w' — (br + 22 + c)w = 0.

The equation (4.72) has no quasi-definite moment functional so-
lution ¢ if and only if b € {0,—1,-2,...}, and the equation (4.73)
has no quasi-definite moment functional solution 7 if and only if b €
{—2.-3....}, whereas the equation (4.74) has a quasi-definite moment
functional solution w if and only if b ¢ {4, =5,... }. Hence, there arise
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two cases : b= —2 or b = —3. When b = -3, the differential equation
(4.71) has no polynomial solution of degree four. When b = —2, the
equation (4.71) has a PS of solutions only when ¢ = 0 and then the
above equations become

(4.75) Lly)(z) =(1+ *)y"(z) - 22y’ = n(n - 3)y(z);
(4.76) (14 2%)0]" + 220 = 0;

(4.77) (1+ %) + 227 =0;

(4.78) (1+ 2%’ =0.

The equation (4.75) is not admissible but has monic polynomial solu-
tions

S m—4\ 'S n =2\ [n—2 ek .
pi* 2)(T)=( n ) Z( k )(n_k)(x—z) Mo+ i)k
k=0 /
=" P (—dx),

forn # 2,3 and Py(x) = 22 +vz—1, P3(z) = 2% 43z 42, where 71, 72
are arbitrary constants. There are two linearly independent solutions o,
T from (4.76), (4.77) respectively and one linearly independent solution
w from (4.78) such that

o1 — (2n 6(211) (2) _ = n s(2n+1)
Z 2n)' (@), o n; (2n +1)! (=)

TR o e Ve ) sant)
=2 Tt T Z<2n+1>' )

and
_ - (_1)n n)
—;(2n+1)!6(2 (2)-

As before we may consider only the following four parameter family of
bilinear forms :

(4.79)
é(p,q) = A(dV,pg)+B(a' D, pg)+C(r™V, p'¢")+D(r P, p'¢ )+ (w, p"¢").
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PROPOSITION 4.14. The bilinear form ¢(-,-) in (4.79) is quasi-definite
ifandonly if A#0, A—C #0,4(C - A)(1—-C)—(B+2D)* # 0 and
30A% 4124 +11B? # 0. In this case, the monic STPS relative to ¢(-,-)
is {13,(,,—2'_2)(1) o o Where P( 2 2')( ) =z%+y,2--1 and P;—Z_Z)(;r)
=1’ +3r 4+, w1th "= E(-?'—%Q, Yo = % and squared norms are given

by

(4.80)
A if n=20
C-A if n=1
¢(PL 2 D(r), P2 D) ={ E if n=2
F if n=23

[n(n — 1))2K,_4(0,0) if n>4

where E = (C — A} —2(B +2D)y, +4(1 - C), F = A(~} - 30) -
12Bv, — 12 and

(4] (nl)" >0),

(00) 2
Ka(0,0) = /[P 7)) d = oo i1 "2

Conversely, with any choice of v,, 72, {f’( : ~2) 1)}, is an STPS
relative to ¢(-,-) if A, B, C, and D are such that
A#0, A-C#0;

4(C-AN1-C)—(B+2D)* £0, 3042+ 124+ 11B> #0;

and

‘472—‘.8:—‘0, (C—-A)’yl—(B-{'QD:O
Proof. The proof is similar to that of Proposition 4.10. O

Type D : 0, 7, w are not quasi-definite. Recall that the bilinear
form &(-,-) in (4.10) may be quasi-definite even though all o, r and
w are not quasi-definite. We will now show that any STPS relative to

such a bilinear form cannot satisfy a second-orderdifferential equation
of the form (3.1).
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THEOREM 4.15. Let {P,(z)}32, be an STPS relative to aquasi-
definite bilinear form ¢(-,-) in (4.10). If 0,7, w are not quasi- definite,
then {P,(xr)}22., can not satisfy a second-orderdifferential equation of

the form (3.1).

Proof. Assume that {P,(r)}22, satisfies the differential equation(3.1)
but o, 7, and w are not quasi-definite. Then, {P,(z)}52, and { P} (7))},
satisfy the differential equation (4.9) for k¥ = 1,2 respectively and o,
7, and w satisfy the Sobolev weight equations (4.3) for k¥ = 0,1,2 re-
spectively. Since o, 7, and w are not quasi-defivite, Theorem 3.5 and
Theorem 3.6 imply

(0, P7) = (1. (P)") = (w,(P))" =0
for all n large enough so that
(Pn, Pr) =0

for all n large enough, which contradicts the fact that {Pp(z)}72, is an
STPS relative to ¢(-,-). O

REMARK 4.3. Theorem 4.15 can be generalized to the case of the
symmetric bilinear form ¢(-,-) in (2.7). In other words, any STPS
relative to a symmetric bilinear form in (2.7) with no quasi-definite
moment functional o) for k =0,1,--- N cannot satisfy a second order
differential equation of the form (3.1).

In summary, we have shown that there are, up to a real linear change
of variable, eighteen distinct PS’s satisfying the differential equation
(3.1) which are orthogonal relative to a bilinear form ¢(-,-) in (4.10).
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