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GOTTLIEB GROUPS OF SPHERICAL ORBIT
SPACES AND A FIXED POINT THEOREM

D. 5. Cuun, K. H. CHol, AND J[. PAK

1. Introduction

The Gottlieb group of a compact connected AVR X, G(.X), consists
of all o € T1;(X) such that there is an associated map A : S' x X — X
and a homotopy commutative diagram

A

ST x X —— X
incl T oo Vod
StvXx

It is well known that G(X) lies in the center of II;(X ), and it is also
characterized by

(1) G(X) =Im (evy : I (X~:id) — I (X) where ev: XY — X
is an evaluation at the base point.

(11) G(X) = the set of covering transformations of the universal cover
of X which are equivariantly homotopic to the identity map.

Gottlieb has shown that if X is a finite KiIl,1), then G(X) =
Z(I11(X)), the center of II1(X). More recently, Oprea has shown that
if H is a finite group which acts freely on an odd dimensional sphere

S+l p > 1, then G(S?"*1/H) = Z(H). Note that II;(K(I1,1)) =

M for 1 =1 d H(S2"+]/H)--{H for 1 =1
0 otherwise, an ' O I(&EtYy for o> 2
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So the aspherical spaces and spherical orbit spaces are quite different
as topological spaces but as far as Gottlieb groups are concerned they
are the same. That is, their Gottlieb groups are the center of the
fundamental groups. Note that we are concerned only on the subgroups
of the fundamental groups in this paper.

The purpose of this paper is to give readers an insight of a free
actions of a finite group on odd dimensional sphere, $2"+!, and show
that K'(II,1) and the spherical orbit spaces have very much the same
fixed point theorems.

2. Free finite group actions on spheres

The free finite group actions on even dimensional spheres are almost-
trivial. The Lefschetz fixed point theorem implies that each element
h # e of H must reverse orientation. Since the composition of two ori-
entation reversing homeomorphisms preserve orientation. H must be
Z4 or trivial.

The finite groups H acting freely and orthogonally on S2"t! have
been completely classified by Vincent and Wolf [W], and it is known
that these groups H have periodic cohomology [C E]. More recently,
Broughton [B 2] has shown that if H acts freely and linearly on the
odd dimensional sphere S***! n > 1, then G(S*"*'/H) ~ Z(H). Of
course, Oprea’s theorem [O 2] is more general, but then Broughton’s
proof is so simple. Here on we may assume that H has non-trivial
center.

THEOREM 1. Let the finite group H act freely on the odd dimen-
sional sphere S*"*1 n > 1, such that the restriction of this action on
the center, Z(H), is orthogonal, then G(S?"*'/F) is isomorphic to
Z(H).

Proof. Let us denote the orbit space by X = 5*"*1/H. We may
identify H with II;(X) as a deck transformation group on the universal

covering space S?"*1. Since it is well known that G(X )lies in the center
Z(H), all we need to show is that Z(H) C G(X).
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It is well known that if a finite group H acts freely on S?"*!, then
every abelian subgroup of H must be a cyclic subgroup, Z,(a), for some
positive integer p, generated by «, that is, Z,(a) == (o | af = 1), [B1].

In our case, since the center of H is an abelian subgroup it is a
cyclic subgroup of H and we take Z,(a) = Z/H). By hypothesis
Zp(a) acts freely and orthogonally on $?"*!. The classification of or-
thogonal Z,(«) actions amounts to classification of the generalized lens
spaces Lani1(p) ~ S*" 11 /Zp(a). Here we have II)(Lanii(p)) ~ Zy o~
G(L2n41 (p)). That is, the Gottlieb groups of lens spaces are equal to
their fundamental groups. For more details of the classification of lens
spaces readers are referred to [O].

Returning to our proof, since Z,(«) acts orthogonally on S§4"+!
we have a free irreducible unitary representation 0 of Z,(«) of de-
gree one by Schur's lemma [W]. That is, the representation space is
C, the complex plane. The representation d on Z,(a) is given by
Oak) = exp(2mikl/p), (¢, p) = 1, and k = 1....p. We can view
{1,exp(27il/p). ... ,exp(2mil (p—1)/p)} as a subgroup of a circle group
T' = {exp(2mis)},s € [0,1] acting freely on §?"+) such that §2+!/T!
= Cp(n),the complex projective space. This is a standard Hopf fiber-
ing. Note that every finite subgroup of T! is a cyclic subgroup of T'!
and in particular we have H N T' = Z,(a). Since H is a finite group,
Zy(a) is a normal subgroup of some finite index, say q, in H. Choose a
coset representation H = U?_,5,Z,(«) with b; € Z,(«). Then therc is a
well-defined induced fixed point free irreducible uaitary representation
I1 = 8" on H given by

I{h) = (B(bl-_lhbj)), where O(c) =0

forc € Zy(a) on Vi @- - - @V, .For more details for the induced represen-
tations readers are referred to [W, Chapter 4]. These representations
are ¢ x ¢ matrices. Thus we have

exp(2mikl/p) 0

0 exp(2mikt/p)
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Since II(a*) is a scalar multiple of the identity matsix it commutes with
other matrices and we have

Ma*) C S' x...x S' CU(n+ ).
R e

g copies

We are not going into detail but note that n and q «re related according
to the structure of H. Since II{Z,(«a)) lies in the connected group
S! x ... x S! we can follow the method of Lang [L] to complete the
proof. For a given a* ¢ Zyla),let v : I — T' x ... x T! be a path
between v(0) = id and 7(1) = II(a*). Note that we may take

exp(2mitkf/p) 0

y(t) = -
0 exp(2mitkl/p)

Define a homotopy K : $*"t! x I — S?"*! byK(z.t) = 4(t)z. Then
for h € H, we have (with abuse of notation) hix(r,t) = hy(t)r =
¥(t)he = 4(¢)(hx) = K(hz,t). That is K(x,t)is the desired equivariant
homotopy on §%"*! between the identity map and that of a* € Z,(a).
This completes the proof.

3. A fixed point theorem

Now we like to give an application. Let X be a compact, connected
ANR, and f: X — X be a continuous map such that L(f) # 0. Thus
we have an essential fixed point ¢y € X such thatf(zy) = xy. We
take this point as our base point in the sequal and drop the base point
from the notation for the fundamental group. Letfy : II;(X) — II,(X)
be the induced homomorphism. Two eclements o and 8 in II,{X) are
said to befy-equivalent if there exists an element -y € IT1;(X )such that
a = v8fu(y~1). This is an equivalence relation on I1;(X), and the set
of equivalence classes,II}(f) = {[a]}. is called the Reidemeister classes.
The cardinality of this set is called the Reidemeister number of f and

denoted by R(f).
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Let ev : XX — X be the evaluation map given by ev(g) = g(z¢)
with compact open topology. Then ev map induces evy : I} (X ¥, f) —
II;(X). The Jiang subgroup T(f)of I11(X ) is evg (II(X X, f)) C I (X).
Let T'( f) be the Reidemeister classes of H;( f) which contains some
element of T(f). Note that, if f is the identity map,then we have
T(id) = G(X), the Gottlieb group of X. It is well known that G(X) C
T(f) and if we denote the cardinality of Tl(f)by J(f), then we have
J(f) < N(f) < R(f)[B],[/]. One of the importance of the Gottlieb
group is that if G(X) = I1,(X), then all the Nielsen fixed point classes
have the same Hopf fixed point index ¢( f ) and if we denote the Lefschetz
number of f and the Nielsen number of f by L{ f) and N( f) respectively,

then L(f) =« /IN(f). [J].

LEMMA 2. Let f : X — X be a continuous map on a compact,
connected ANR X such that L(f) # 0. If fu(l;(X)) C Z(II,(X))
then R(f) = R(h) were h = fu|Z(I1,(X)).

Now let X be a spherical orbit space. From the previous section
we have Z(I[,(X)) = G(X) C T(f) C II;(X). Thus we have R(h) <
J(f) € N(f) < R(f). where h = f4Z(IL,(X)).

THEOREM 3. Let f : X — X be a continucus map on a spheri-
cal orbit space X such that fx(II;(X)) C Z(I11(X)). Then R(h) =
J(f) = N(f) = R(f) and they are given by Order (Z(I1;(X))/(1 —
h)Z(IL (X))

This is a direct consequence of the lemma and the fact that R(h) <
J(f) < N(f) < R(f). The proof of the lemma is given in [K;P] and
the theorem is exactly the same with Cor. 3.2 of [K; P] except now a
spherical polyhedron in [K; P] is replaced by spherical orbit space. Of
course, this theorem follows from the theorem of “eventually abelian
maps” [J], but then our proof is so simple.

4. Example

Let H be a finite group such that every subgroup of order pq is cyclic,
where p and ¢ primes, and has every Sylow subgroup cyclic. Then by
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Burnside theorem H has generators r and y and has the following
presentation H = (z,ylz™ =1 = y™, yay~! = 2"), where m, n >
L,((n — 1)n,m) = 1. These groups have order mr. = mn'd, where d is
the order of r in K,, and every prime divisor of d divides n'. L, is the
multiplicative group of residues modulo m of integers prime to m.

We would like to show how H acts freely and linearly on some odd
dimensional sphere $2¢~! such that G(S*>V/H) = Z(H).

Case 1. When d = 1. then we take rn = 1 and we have H ~ (y), a
cyclic group of order n, and we have a usual fixed point free irreducible
unitary representation

exp(27i/n) 0

exp{2mig;/n)
{y) =

0 exp(2mign/n)

where (n, ¢;) =1,1=1,...n. Now let S+ = {7 = (Z,.... AR
Z?;ll Z;iZ; = 1}. Thendefine II(y)Z = (Z, exp(27i/n). Z, exp(2mig, /n).
oo Zpyrexp(2migy/n)), (n,q;) = 1 for i = 1,....n. This is a fixed
point free rotation of period n and whose orbit space is a generalized
lens space Lony1(piqi,--. . qn) = Lyy11(p) and it is well known that
I (Lan41(p)) = G(Lznt1(p)) ~ Z,. Then for any continuous map
f i Lony1(p) — Longi(p), let f# 1 Z, — Z, the induced homonior-
phism such that fu(1) = k. Then N(f) = R(j) = (1 — k.p). the
greatest common divisor of 1 — & and p.

Case 2. When d # 1. It is not so hard to see that the center of H is
a cyclic group generated by y of order n'. That is, Z(H)= (y%). Thus
we have a fixed point free irreducible unitary representation of degree
1, 8(y?) = exp(2mik/n )(k,n') = 1 by Schur’s lemma. The induced
representation Il is given by d x d matrix

exp(2mik/n’) 0
H(yd) = where (k,n’) =1.
0 exp(2mik/n’)

Note that (y?) is the center of H, the diagonal entries has to be the
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same. The dth root of II(y%) becomes

0 z 0
M(y) = (T(y*)"/* = 0 SR
exp(2nik/n’) 0 0

On the other hand (z) < H is a normal cyclic subgroup of H of order m
generated by z. Thus we have a usual irreducible vnitary representation
exp(2nil/m) 0
exp(2nilr /m)

(z) =

0 exp(2milre=" /)

where (¢,m)=1.

Since every element of H can be written in the form of z%y® for some
non-negative integers a and b, the induced representation of x%y? is
nothing else but I(z%y?) = (z*)(y®) = (II(2))*(II(y))". Note that
IT satisfies II(y)IL{z)II(y~!) = (O(z))". Also we like to remark II is
not a representation induced from that of (y?). II becomes a faithful
representation, and now II(H) acts on S?¢7! freely and denote the
orbit space $?4~1/H by X. Then I1,(X) ~ H and II{y?) acts on §24-!
equivariantly. Let f : X --» X be a continuous map such that the
induced homomorphism fg : H -+ H satisfy our theorem. That is,
fa(H) C (y*) ~ Z(H) ~ Z,_. Then let faly'y = y?. Then our
theorem says N(f) = R(f) = (1 —c,n ), the grestest common divisor
of 1 —candn'.

Now we show that G(S*?'/H) = Z(H). Sinc. II(1).II(y4) € T x

x Tl let v: I — T' x...x T! be a path givea by

exp(2with/n’) C
(1) = -

0 exp(2mith/n’)
Then 4(0) = I and (1) = I(y?).

Define a homotopy K : S2¢7! x [ — S*=1 by R (¢, t) = ~(
for any h € H we have hK(z,t) = hvy(t)x = y(t)ha = 5
K(hz,t). That is, G(S?*~'/H)~ Z(H).

7. Then

t)
(H)hr) =
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