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A HOPF BIFURCATION IN A
DOUBLE FREE BOUNDARY PROBLEM
WITH PUSHCHINO DYNAMICS

YooN MEE HAM* AND SANG SuP YUM

1. Introduction

In [3], they deal with the free boundary preblem with Pushchino
dynamics. They showed the existence of solutions and the occurence
of a Hopf bifurcation. In this paper, we shall show a Hopf bifurcation
occurs for the double free boundaries which is given by (1)(see in [4],

[5])

vy = vy —(er + b+ e H(z — s(t) — ey H(z — p(t))
for(z,t) € Q- U QT,

v(0,8) =0 =uv,(1,t) fort >0,

(1) v(r,0) =vg(z) ford <a <1,

%% = C(v(s(t),t)) fort >0,

9 = —C(u(p(t),t)) fort >0,

(0) =80, 0 <s9<1, p(0)=po, 0<po<l,

T
T
S

where v(x,t) and v,(z,t) are assumed continuous in 2 = (0,1) x (0, 00).
Here, H(-) is the Heaviside function, Q= = {{z,#) €  : 0 < z <
s(t), plt) < x < 1} and QF = {(a,t) € Q : stt) < z < p(t)}. The
velocity of the interface, C(v), in (1), which specifies the evolution of
the interface s(t) and p(t), is determined from tle first equation in (1)
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using asymptotic techniques (see in [1]). The function C(v) can be
calculated explicitly as

20 — c—2a
c1tc2
Ga—-a Iv ) i
\/( c1+c2 l + 01+52
h b ci{cz—a) d 14 o
where —¢; < b < === and c1, c; are positive constants.

2. The preliminarly results

The existence and uniqueness of solution of (1) was investigated in
[2] by using the semigroup theory. We recall the few things from [2]:

Let G(z,y) be Green’s function of the operator A := ——gy +(c; +b)
and the domain of the operator 4, D(A) = {v € H%%(0,1) : v,(0) =
vy(1) = 0}. Define a function

1
ﬂ%&pﬁ=m/‘GWJMHW—S%—H@-pH@‘
0

Setting v(s,p) = g(s,s,p) and n(s,p) = ¢(p,s,p). We obtain the reg-
ular problem of (1) by using the transformation u(z,t) = v(z.t) —
g(z. s(t), p(t)):

@) {d(‘m+Awém wasm
(

u, s P)( ) (ug 50,P0)-

The operator A is a 3 x 3 matrix whose the entry of the first row and
column is the operator A and the rest terms are all vero. The nonlinear
term f(u,s,p) is represented by

G(x,5)C(u(s) + (s, p)) + G(x. p)Clu(p) + n(s, p))
flu,s,p) = Clu(s)+~(s.p))
—=C(u(p) + n(s, p))

In order to show the occurence of a Hopf bifurcation, we need to
examine the behavior of the eigenvalues for the linearized problem at the
stationary solutions of (2). Thus we shall show the stationary solution
of (1) (or (2)) exists and the Hopf bifurcation occurs in the next section.
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3. The Hopf bifurcation

3.1 The stationary solutions
Let u(z,t) = u*(z), s(t) = s* p(t) = p* and the time derivatives in
(2) equal to zero we obtain the stationary problem:

Aut = 2O +4(s",p") - Glevs”)
+ 'C;lC(U*(p*) +n(s",p"))- G, p")
0= %C(u*(s*) +7(s™.p7))
0= —2C(u*(p*) + n(s*,p).

For nonzero 7 we obtain the following theorem:
c1 — 2a

<
2(61 + CQ) C1 + b
stationary solution (u*(z),s*,p*) = (0,s*,p*) for all 0 < T < oo with
p* =1—3s*,s*€(0,1/2). The linearization of f at (0,s*.p*) is

Df(0,s*,p")(d,4,p)

THEOREM 1. If 0 <

then (2) has a unique

:a;C] ((s") + 70057, 2)5 + 7(s%, 7)) - (Gs7,97),1,0)
+G:C1( (p*) + ns(s*,p")8 +mp(s™,p }p) ( (s *,p*),().—l)_
1

The pair (0, s*,p*) corresponds to a unique steady state (v*, s* p*) of
(1) for 7 # 0 with v*(z) = g(x,s*. p*).

Proof. We rewrite (s, p) and r)(s,p) as

7(s,p) = g(s,s,p)

sinh v/eq +b(1 — s — p) ( )
= p(s, hi+v/¢ b —phH—1
n(s.p) + (cy + b)sinhv/e; + b cosh(ver +5(s

Since C(:) = 0, we have v(s,p) = n(s,p) = '2'('31+C2)

obtain sinhv/c; + (1 — s — p) = 0. Thus we have C(r)=0iff s+ p =

From this, we
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1. Therefore we only need to show the existence of s* which satisfies
v(s*,1—38%) = 2_(?1_%:) for s* € (0,1). Now, we define

c1 — 2a

[(s):=~(s,1—-s ~ 5
() :=1( ) er T ea)

sinh v/c; + b — sinh e, + b(2s — 1) —sinh2y/c. + bs 1 —2a
2(c; + b)sinh /ey + b 20y +eq)

Then ['(s) is solvable with s € (0,1/2), because T'(s) < 0 .I(0) =

(r1+b) CC‘] ffz) > 0 and I'(1/2) < 0. The formula for Df(0,s*, p*)

follows from the differentiation and the relation ('(

c3—2a ):: ¢y +co
2(C1+L’32) oy .

Using Theorem 4 in [2], we obtain the corresponding steady state

(v*,¢*, p*)for (1). O

3.2 A Hopf bifurcation

We now show that a Hopf bifurcation occurs as the new parameter
¢t +¢

[y = varies. The linearized eigenvalue problem of (2) is given
by

(—A + puDf(0,s*, p* N u, s, p) = M, s,p)

which is equivalent to

(3)  Au+ I = p(y,(s",p")s +vp(s™, p")p + u(7))G (2, s7)
+ (158, p*)s + mp(s*.p")p + u(p*))G(x.p")
(4) As = p(7s(s™,p")s + 7p(s™, pT)Pp + (7))

(9) Ap = —pu(ns(s™.p")s + (s, p™)p + ulp™)).

H

We have the following lemma:

LEMMA 2. Forpu* € R\{0}, there exists a C'-curve u — (¢(p), (1))
of eigendata such that ¢{(u*) = ¢* and A(u*) = 18 where ¢* is an
eigenfunction of —A + p*D f(0, s*, p*) with eigenvalue /3.

Proof. Let ¢* = (v¥,50.p0) € D(A) x R?. First, we see that
sg # 0 and py # 0, for otherwise, by (3), (A + 13 ¢ = iBG(-. s*)s¢ —
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1B3G(-, p*)po = 0, which is not possible because A is symmetric. So with-
out loss of generality, let sy = 1 and pg = 1. Ther by (3) E(yy, 3. u*) =
0, where
E: DAy xCxRxR-—XcxCxC,
E(u, A p)
(A+A)u =g (35(87,p") + 7p(s%,p") = u(s*))G(-,57)
—p{na(s*p") + 1p(s™,p") + u(p™)G(- p)

A= (vs( 8™ P7) + 787, p7) - uls™))

At (ns(s™,p") +mp(s™,p™) 4 u(p™))
The equation E(u, A\, u) = 0 is equivalent that A is an eigenvalue of
—A+uDf(0,s*, p*) with eigenfunction (u,1,1). We want to apply the
implicit function theorem to E. and therefore have to check that E is
in C'! and that

(6)
D 2y E(3po, 18, p0) : D(A) x C — L*(0,1) x C) is an isomorphism.

Now it is easy to see that E is in C'. The mapping
D unE(vo,if, 1)@, A)
(A+i8)a — pra(s*) - G-, %) = p*al(p*) - G(-,p*) + Mg
= —pu*a(s*) +A/\
pru(p*) + A
is a compact perturbation of the mapping

(i, A) s ((A+ i,[i’)ﬁ,;\)

which is invertible. As a consequence, D, ) E(v, 23, 1*) is a Fredholm
operator of index 0. Thus to verify (6), it suflices to show that the
system

(A+iB8)i+ My = p*(a(s*)G(-, s*) + u(p®)G(-, p*))
(7) A= pras*)
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necessarily implies that & = 0, A = 0. Thus let (i, A) be a solution of

(7), and define ¥ := ¥ — G(-,3*) + G(-,p*). Then
(8) (A+iB)a+ kg =0.
Also, ¥, is a solution to the equation

(9)  (A+iB)y = —bg + bpn
(10)

i = - (38" 0) + (5" 0) + Un(57) + Gs™87))
(11)

i3 =—p" (ns(S*,p*) +0p(s™,p") + 1 (p") + G(s*,p*))'

From the equation (9), we have
1
Im (¥1(s”) — ¥1(p*)) = ,5/ |¢‘1|2.
0
If we add (10) and (11), then

1
(12) w [l =2,
0

From (9) we can then calculate 4(s*) as fol Y (A+if)1 = —u(s*)+u(p*)
which, together with (8), (9) and (12), implies that

2

1 1
)\/ u’)f:f(S*)——ﬂ(p*)z?)\/u*:)\/ ¥y
0 0

1
A(/ w112~w?>=o,
0

which implies A= 0, for otherwisq Imvy; = Imvy, = 0, which is a
contradiction. So we conclude that A = 0. And so we have @& = 0.

As a result
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We have thus shown (6), and get a Cl-curve y — (d(u), AM(p)) of
eigendata such that ¢(u*) = ¢* and AMp*) =:8. 0O

Now we shall use the Fourier cosine transformation to show the
transverality condition and uniqueness of p*. If we use v(z,t) = u(x, )+
g(x,s,p), the eigenvalue problem is obtained by

(13) A0 = vz — () + b)v — (65 — 6 )
(14) A—u( V(%) + v(s*))
(15) A= —p(()(p*) + v(p")).

We take a Fourier cosine transformation in the equation (13), then we
have

=, coskms* — cos kmrp*
= -2 - s ki
v(x) c1; Gt 11N cos krx

oC

cos(2k — 1)ms*
= —4c¢ 2k -1
4(1,;::1((2k—1)7r)2+c1+b+)\cos( yra

since p* = 1 — s*. Furthermore, by using Green’s function
(16) v(r) = —Ga(z.s") + Gz, p").

Now, we add the equation (14) and (15):

(A7) p((0")(5%) = Gals™ss) + Gals™, 1= 5°)) =

since (v*)(s*) = (v*)'(1 — s*). Here is the main theorem.

THEOREM 3. For a given pure imaginary eigenvalue i3, 3 # 0, there
exists a unique p* such that (0,s*, p*, u*) is a Hopf point.

Proof. We assume that 8 > 0 and let A = i3 in (17), then the real

and imagnary parts are obtained by

(18) plm((=Gpa(s™, %)+ Gp(s*, 1 —s%)) =
(19) p((v*)(s*) + Re(—Ga(s*,s*) + Gy(s*,1 — s*))) =0
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where G is Green’s function of the operator 4 + 3. If we know the
existence of 38 in (19), we may find the value of x* corresponding 4 in
(18). Thus, we define

T(3)=(v")(s*) + Re(—~G4(s*,s*) + Gsls™, 1 - s%)).
Then

T(0) = (v")(s") + (—G(s™, s*) + G(s*,1 — s* )
1

1~ cosh(y/c 4 b(1— 2s* >
msinhm( cosh(v/ey + b 5 ))’

<0

and limg_... T(#) = (v*)'(s*) > 0. Furthermore, T' () > 0. Therefore
there is a unique g such that T(3) = 0. From this 3, the @ can be
uniquely determined from (18).

Now we only need to show the transversality condition. Differentiate
with respect to p in (17) then we have

A
(L e+ G(s™, %) = Gi(s*. 1 — s%) = e
Evaluating at g = p* (note A(p*) = i3),
V) (=5 + Gyls® ') = Ghls® 1= 7)) = —
H p B (/‘*)2.

The real part of M (u*) is

5r(D - F)
(C—E+1/p*)?+(D-F)

ReX(p*) =

where C'+:D = Gy(s*,s*) and E+F = G, 3(s*, 1~ ™). We only need
to examine the sign of D F. D = ImGYy(s ..s’*) an-

43 (cos kms*)2(k?n? + ¢y + b)
4
IUEYOE * “dZ« Azrr2+m+b + 32)?
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and
43 1 cos kms* coskm(l — s*) (k% + e + b)
F=—vw-——44c8
(4 + 32)2 T4 Z (k272 ¢, + b)2 + B2)2
Thus,

cos(2k — 1)ms™)2((2k — 1)*7* + ¢; + b)
(((2k — 1)272 + ¢y + )% + 32)? .

D— F_SCIﬂZ

The transversality condition ReA'(p*) > 0 is satisfied. [

Therefore, we have the following theorem for the Hopf bifurcation of

{1):

¢ —2a
THEOREM 4. Assume that 0 < — so that (1), re-
2(c1 + (‘2) L+ b
spective]y (2), has a unique stationary solution (0 s*,p*) , respectively
(v K , for all 4 > 0 with p* = 1 — s*. Then there exists a unique

ur o> 0 .such that the linearization —A + u*Df(0,s* p*) has a purely
imaginary pair of eigenvalues. The point (0,s*,p*. u*) is then a Hopf
point for (1) and there exists a C'-curve of nontrivial periodic orbits
for (1), (2), respectively, bifurcating from (0, s*, p™, p*), (v*. 8% p*. p™),
respectively.
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