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THE ANALYSIS OF MULTIGRID METHOD
FOR NONCONFORMING METHOD
FOR THE STATIONARY STOKES EQUATIONS

KAB SEOK KANG, DO YOUNG KWAK AND YOON JUNG YON

1. Introduction

In this paper we consider V-cycle and W-cycle multigrid algorithms
for numerical solution of the stationary Stokes equations for an incom-
pressible viscous fluid

—Au+grad p=1f in Q,
(1.1) divu=0 1in (,
u=0 on 9N

Here the viscosity constant is taken to be 1, p is the pressure, u =
(u1,ug) is the velocity of the fluid, f = (fi, f2) denotes the body
force, and 2 is a bounded convex polygonal domain in R%2. We assume
f € (L%Q))% There exists a unique solution (u,p) € ((Hy(2))*n
(H2(Q2))*) x (HY(2)/R) of (1.1) and a positive constant Cq such that

(1.2) HUH(H2(Q))2 + IPIHI(Q) < CQ“fH(l_z(Q))2

(cf. [11]).
We will use the following notation for the Sobolev norms and semi-

Nnorims:
1/2
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and
\ 172

|V|(Hm(Q))2 = / Z IBQVIZdI )
Q

je|=m /
Similar notations are also used for scalar functions.

A weak form of (1.1) is to find a divergence-free u in (H{(£2))* such
that

(1.3) a(u,v)+/gradp-v:—/f-vda: Vv € (Hy(Q))%,
Q Q
where

(14) a(Vl,Vg) = / \7v1 ‘VVQd.’E,
2

and Vv, - Vv, = Zf:] Vuy ;- Vog,; for vi = (v11,v12) and vy =
(1'2,17 vy2) 1N ('H(%(Q))z-

Let V. = {v:v € (Hy(2)? div v = 0}. If we restrict (1.3) to V,
the pressure term disappears and the problem becomes to find u € V
such that

(1.5) a(u,v) = / f-vdr ¥YwelVl.
0

The velocity u can be characterized as the unique solution of (1.5) (cf.
[10]).

In order to apply the Ritz-Galerkin method to the equation (1.5),
we introduce a family of triangulations of Q : {T* }{::17 where 7547 is
obtained by connecting the midpoints of the edges of the triangles in
T*. We will denote max{diam 7" : T € T*} by hy.

The finite element spaces Vy are defined as follows:

(1.6)
Vi := {v|p is linear and divergence-free for all T € T*,

v is continuous at the midpoints of interelement boundaries,

and v = 0 at the midpoints of 7% along 9Q}.
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Note that Vi 1s nonconforming because Vi ¢ V.
On Vi + V we define the following positive syrametric bilinear form,

(1.7) ar(vi,va)i= > /Vvl-szdr,
Ters /T

and its associated nonconforming energy norm

(1.8) IVlla, := Var(v,v).

The discretized problem for (1.5) is to find u, € V} such that
(1.9) ar(ug,v) = / f vdr Vv ev,.
Q

It is proved in [10] that there exists a positive constant C such that
(1.10) Jlu—ugll 2oz + halla—uklla, < Chi(lulcuziayz + Iplme))-

In [8], S. Brenner has shown that optimal order of convergence of W-
cycle multigrid algorithm and the full multigrid algorithm is C'rm =1/
for large smoothing number m . In this paper, we prove that the con-
vergence factor of the W-cycle multigrid algorithin with Jacobi, Gauss-
Seidel, or SOR smoothing is C'/(C + m'/*) and the variable V-cycle
preconditioner has uniform condition number.

This paper is organized as follows. We review some facts about the
finite element space Vi in §2. In §3, we define the intergrid transfer
operator and states the properties of the intergrid transfer operator.
The multigrid algorithm is described in §4 and the convergence analysis
are in §5.

2. The Divergence-free P1 Nonconforming Finite Element
Space

Let © be a connected polygonal domain and 7* be a triangulation
of Q. Denote max{diam T : T € T*} by hy. Let
(2.1)
W = {w € (L*(R))* :w| is linear and divergence-free for all T € T*,
w 1s continuous at the midpoints

of interelement boundaries and

w = 0 at the midpoints of 7* along 99}.
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We will describe a basis of W. First we make an observation on the
divergence-free condition. Let w be a linear function on a triangle T'
with midpoints m, mq, and m; on edges €1, eq, and ej.

Then

divw=0« / div wdz =0
-

(2.2) 3

& w-nds:O®Z(w(m,—)-n,—)|ei|20,
or i=1

where n; denotes the outward normal to edge ¢;.

Let e be an edge in T*. Denote by ¢. the piecewise linear function
on ) that takes the value 1 at the midpoint of the edge e and 0 at all
other midpoints.

The first kind of basis functions are associated with internal edges.
Let w, := ¢.t., where e is an internal edge and t, 1s a unit vector
tangential to e. Then it follows from (2.2) that w, € W.

The second kind of basis functions are associated with internal ver-
tices. Let p be an internal vertex and e;,e,,... ,¢; be the edges in Tk
that have p as an endpoint. Let w, := Z£=1
a unit vector normal to e; pointing in the counterclockwise direction.
It again follows from (2.2) that w, €¢ W.

The proof of the following lemma, can be found in Appendix 3 of [15)].

le:| 71 de,m,,, where n,, is

LEMMA 1. The set of vector functions {w, : e is an internal edge of
T*}U{w, : p is an internal vertex of T*} is a basis of W. In particular,

(2.3) dim W = e’ + 0,

where ¢! denotes the number of internal edges and v’ denotes the num-
ber of internal vertices.

We know that the dimension nj of the finite eclement space Vi in
(1.6) is

(2.4) ng ~ 2f1451
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by applying (2.3) and Euler’s formul, where fj denotes the number of
triangles in 7*.

Henceforth, we will use the following set of vector functions as the
standard basis for Vj:
(2.5)
{v¥: e is an internal edge of Tk}U{v;f : p is an internal vertex of 7%},

Let Z :={z € (L*(Q))?: z|r is linear for all T € T*, z is continuous
at the midpoints of interelement boundaries, and z = 0 at the midpoints
of 9Q1}.

The interpolation operator 11 : (H%(Q))2 N (H1(Q))? — Z is defined
by (ef.[11])

(2.6) lIg € Z and /Hgds = /gds for all edges e € 7.

More explicitly, we have

1
(2.7) Ng(m.) = ﬂ/gds,
€ €

where m, is the midpoint of the edge e.

3. The Intergrid Transfer Operator I}_,

In this section, we describe the intergrid transfer operator and rep-
resent their properies which will be used in the analysis of multigrid
method in §5.

Let v € Vi_y. To define If_,v, it suffices to specify its values at the
midpoints of 7% If m € 09, then (If_ v)(m) = 0. If m lies in the
interior of €2, then there are two cases to consider. For a midpoint m
of T* that lies on the common edge of two triangles T) and T, of 75!

(e.g. my,... ,mg in Figure 1), we define
L 1
(Ik—lv)(m) = 5[VIT1(m) +viTz<nl)]'

<
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If a midpoint m lies in the interior of a triangle T in 7%~ (e.g. my, ms,
and mg in Figure 1), then the tangential component of (If_,v)(m)1is the
same as the tangential component of v(m), and the normal component
will be determined by the condition that div(If_,v) = 0 on the three
outer triangles in the subdivision of T. In other words, if we denote by
e; the edge in Figure 1 that has m; as its midpoint, then (I,’:_]v)(m,-)-n,-,

1 =7T,8,9, are determined by the following equations:

Z (If_,v)(my) - mjle;] = 0,

i=6,1,7

(3.1) Z (I,f_]v)(mi) -n;le;| =0,

i=2,3,8

Z (If_ ,v)(m;) - njle;] = 0.

i=4,5,9

The following propositions and theorems are proved in [8].

PROPOSITION 1. The intergrid transfer operator Ifﬂl maps Vi_q

mnto Vi, 1.e.,

(3.2) If_veVi VeV

Figure 1

It is obvious that I,’f_l : Vik—1 — V} 1s a linear operator.
The next theorems are proved in [8] and are used in the proof of

approximation property(Lemma 3).
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THEOREM 1. There exists a positive constant C such that for all
vV E Vk-—-l7

(3.3) 17E_1¥]lay < CJIVlla,_,
and
(3.4) ”If—ﬂ’ - VH(LZ(Q))2 < Chi||vlla,_,-

COROLLARY 1. There exists a positive constant C such that

(35) ’lI,ICC»IV||(L2(Q))2 < CHV||(L2(Q))2 Vv € Vi1,

THEOREM 2. There exists a positive constanr C such that

(3.6) 1§y (Tk-18) — Tigllay < Chilgluza)y:

and

Iy (Teo1g) — Tagll (22002
< Chilglimziny: Vg € (HX(Q))* N (Hy(Q))%

4. The Multigrid Algorithm

Given v € Vi, we can write v = 3 a,v¥ + ijv}’;j, where the
e; ranges over all internal edges of 7% and p; ranges over all internal
vertices of 7*. The inner product (-, i on Vi is defined by

(4.1) (Vi,v2)g = h’izal,ia%i+hizbl,jb2,j:
where vy = 3 a].i"'&*“z blij;fj and vy = ZQQHVSI_"{‘Z b2y]'V1;j belong

to ‘/)C‘
Using the quadrature formula, it is easy to see that

(4.2) (V,V)(Lz(‘n))z < Ch;z(v,v)k Vv € Vi
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The symmetric positive definite operator A : Vx — V% is defined by
(4.3) (Arv, W) = ar(v,w) Vv,w €V},

where ai(-,-) is defined in (1.7).
By a standard inverse estimate,

(4.4) ar(v.v) < Ch 3 (v, V)L2a): Vv € Vi

Then (4.2) and (4.4) imply that the largest eigenvalue Ay of Ay is
bounded by

(4.5) Ay < CRL

The fine-to-coarse intergrid transfer operator I,f_] Ve — Vo i1s de-

fined by

(4.6) (v, IF7 W)y = (If_ v, w)k W e Vioy,w € Vi
Define the operator P,f'] Ve — Vi1 by

(4.7) ak (P v, w)=ap(v. If_w) Yvel,weli.

Also, we require a sequence of linear smoothing operators Ry : Vi —
Vi for k = 2,...,j. We shall always take R| = Al‘]. Let RZ denote
the adjoint of R) with respect to the (-, ); inner product and define

R, if l1s odd,
(D
Rk = T . .
R; if lis even.
We define the multigrid operator By : Vi — Vi in terms of an itera-
tive process as follows.

MULTIGRID ALGORITHM. Set B; = Al“l. Assume that Bi_; has
been defined and define Big for g € V} as follows;

(1) Set v® =0 and q° = 0.
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(2) Define vifori=1,2,... ,m(k) by
(4.8) vi= v BT g g,
(3) Define wm(*) = ymik) o I,f_lqp, where q* for i = 1.... ,p is
defined by
(49)  a'=q" '+ Bl (g - Aw™ M) - AiiqtT).
(4) Define w' for i = m(k) + 1.....2m(k) by
(4.10) wi=wil 4 RV g gwth,
(5) Set Bpg = w?m(k),

In Algorithm, m(k) gives the number of pre and post-smoothing
iterations and can vary as a function of k. If p = 1, we have a V-
cycle multigrid algorithm. If p = 2, we have a W-cycle algorithm. A
variable V-cycle algorithm is one in which the number of smoothings
m(k) increase exponentially as k& decreases (i.e., p = 1 and m(k) =
29—k The smoothings are alternated following [6] and are put together
so that the resulting multigrid preconditioner By is symmetric in the
(-,-)x imner product for each k.

5. Multigrid Analysis

In this section, we will show the regularity and approximation prop-
erty and apply the theory developed in [6] to analyze multigrid algo-
rithm.

First, we define the mesh-dependent norm ||| - |||s,x on Vi by
- 2
(5.1) VI &= (A Ve
Therefore,

IVIllox = v/ (v, V)i and [[[v]ll2x = V(Arv. V)i = Var(v,v) = [[V]a,.

From definition (5.1), it is easy to deduce the following inequality:

(5.2) lax(v, w)| < H[VIllz4e.kl[[W]l]2- ¢,k

The next proposition and lemma are proved in [§].
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ProposITION 3. We have [[[v[|1x < Cl|v|(12(0)):.

LEMMA 3. There exists a positive constant C such that
(53) (T =L PE DIk < Challvlllz e Vv € Vi

Here we show the regularity and approximation property.

PROPOSITION 4. There exists a positive constant (' 4 such that

lax((1 = I, PE v, v)
(5.4) Apv, Agv)\ .
<Cy (W—’\kvl&> (11\~(V.,V)$/4a Vv € Vi,
A
for k =1,...,j, where Ay Is the largest eigenvalue of Ay.
Proof. From (5.2), Lemma 3, and Cauchy-Schwarz inequality, we
have
k(T = Iy PETW V)L S I = Ty PET VI sl vl
< Chifilvillze - [Hvlla
= Chy(Apv. AV VL,

< Chy(Agv, Apv) /- (Arv o v)d

From (4.5), we get (5.4). O

To apply the theory in [6], we need appropriate conditions for the
smingther operator Ry.
(A.1) There is a constant C'p which does not depend on k and satis-
fying

(U, u)k

(5.5) »

< Cr(Rpu,u)y VueV

Here, Ky 1s I — RyAy, K} is adjoint of iy with respect to
(Ag-,-)x inner product and Ry is either (I — K;Kk)A;l or
(I — KkK,’;)A,:]. Ay 1s the largest eigenvalue of Ay.
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The Richardson smoothing procedure and point Jacobi, Gauss-Seidel,
or SOR smoothing procedure Ry satisfy the condition (A.1) (cf. [5,16]).

The convergence rate for the multigrid algorithm on the k-th level is
measured by a convergence factor §y satisfying

(56) |ak((I — BkAk)V.,V)[ < é‘kak(v,v), Vv € Vi

THEOREM 3. Define By by p = 2 and m(k) = m for all k in the
multigrid algorithm. Then , with m sufficiently large enough. (5.6)
holds with é; = é(independent of k) given by

C

N7 \ <“:___—‘
(O.l) bk_b_c%—ml/‘i

The condition number of B A for the preconditioner By is K( By Ag)
= 11 /10 where 1y and 7; satisfy

(5.8) T]oak(V,V) < ak(BkAkV,V) < mak(v V). Vv € V4.
THEOREM 4. Define By by p=1and m(k)=2"% fork =1.... .j
in the multigrid algorithm. Then the constants g, and 1, in (5.8) satisfy
m (k)4 C + m{k)'/*
> ——————  and <
o = C +m(k)1/4 ane = m(k)1/4

The constants C' in Theorem 3 and Theorem 4 depend only on C'4
in (5.4) and Cg in (5.5)(cf. [6]). From Theorem 3 and Theorem 4, we
have an optimal convergence property of the W-cycle and a uniform
condition number estimate for the variable V-cycle preconditioner.

Proof of Theorem 3. We shall prove (5.6) by induction on k. For
k = 1, there is nothing to prove. Assume that (5.6) holds for & — 1.
From the Algorithm, we have

(5.9) I-ByAy = (K [(I-If_ P+ IE_(1-By_y Ay PEVKY
on Vi where
) { (KZK;C)'"/Z if m is even,

K=
‘ ]\’k(lf,fl{k)(m_l)/z if m is odd.

353



K.S. Kang, D.Y. Kwak, and Y.J. Yon

By (5.9) and the induction hypothesis,
(5.10)
ar((I-ByAg)u,u) = ax((I - If_, Pf "y, a)
+ a1 ((I = By oy Ax1)* P e, PE 1y

< ap((I—If_, Pf™ i n) + 6%ax( I, Pf i)
= (1= 8%)ax((I = If_P{7 0, ) + 62ag(i, 0),

where i = K"u. By (5.4) and a gencralized arithmetic-geometric mean

inequality,

(5.11)

holds for any positive 4.
Since the spectrum of K is contained in the interval (—

spectrum of Ky = K{K or KK} is contained iv the interval [0.1).

Therefore, from (5.5), we have

(5.12)
Aga, Ay ]
(”‘”IC‘E?M < Crax((I — Kp)a,a) = Crap((I - K)(Kg)™u, u)
Nk
m—1
S % (lk((.[‘“ ]"k)([&'k)iu’u)
m
1=0
Cr

= ———ak((I - (I’fk)m)u, u).
Combining above results gives

ak((-[”“ Bk44k‘)u,ll) S |: 1—-§6 )324
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By choosing i so that
2 8 -1/3 | o 2 1 ~
(1=0°)Ca=n, " 4+6° <6 (1-6)C.Cr—yk <¢
4 4m
and the argument of proof of Theorem 3 in [4], we have
ax(({ = BrAx)u,u) < dai(u. u)

for all u € V;.
To show (5.6), we only to show that

—ap((I — BrAg)u,u) < dag(u,u).
By (5.10), it clearly suffices to show that
(5.13) —ax((I = If_, P¢ 1, a) < dag(u, u).

From (5.11) and (5.12). we have

e~ - C :
(5.14) —ax((I - If_ PF "My, n) < ;ﬁézak(u,u)

Inequality (5.13) immediately from (5.14) if m and C are chosen suffi-
ciently large. [J

We shall use the following lemma[6] in the proof of Theorem 4.

LEMMA. Assume that p =1 and that é; fori == 2.... , k satisfies the
inequality

—a;((I - I!'_, P{7")i1,4) < 6;a;(u,u) forallucVy
where 01 = I;'l-(m(i))u. Then
k _
n < H(l + 5z')~
i=2
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Proof of Theorem 4. Firstly, we have the inequality

(5.15) ar((I — BrAg)u,u) < épag(u,u) for all u € Vi
where §; is given by
oo ¢
YT O mk)

It immediately follows that (5.8) holds with ny = 1 — é%.
From (5.9-12), we have
ap((f — ByAgju,u)
= (1= bk—n)ar((I = I, Py 1), @) + Sxorar(i, @)

C C - C % T\
< [(1 — ék_l)—f"m 1S +ék—1] ar((KiKg)™u,u)

C Tk > m
+ ((1 - 6k~—])CA4TI;"/k) ak((I — (I&kf\k) )ll7 ll).

By choosing 7% so that

X 1 _ i 1 .
(1- ék—l)CAZ’Yk VP bk <k (1- Ok-l)C,aCRm‘y’k = b5 1

and the argument of proof of Theorem 1 in [4], we have (5.15).
To estimate 7,, we note that (5.14) and elementary arguments imply

that _
J :
11 (1 = ) <1<
pabird m{k)s m(j)

s

By above lemma, we have the bound for 7.
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