REMARKS ON THE REIDEMEISTER NUMBERS

DEGUI LI

0. Introduction

Let X be a connected compact polyhedron and $f: X \to X$ a selfmap of X. The Reidemeister number of f is denoted by R(f).

A lower bound of the Reidemeister number has been obtained in [1] as follows:

$$|\operatorname{Coker}(1 - f_{1*})| \le R(f),$$

where $f_{1*}: H_1(X) \to H_1(X)$ is the homomorphism induced by f and $H_1(X)$ is the 1-dimensional homology group of X.

In this paper, we obtain an upper bound of the Reidemeister number R(f) as follows:

$$R(f) \leq |\operatorname{Coker}(1 - f_{1*})||D(\pi_1(X, x_0))|,$$

where $D(\pi_1(X, x_0))$ is the commutator subgroup of the fundamental group $\pi_1(X, x_0)$.

Thus we have

$$|\operatorname{Coker}(1 - f_{1*})| \le R(f) \le |\operatorname{Coker}(1 - f_{1*})| |D(\pi_1(X, x_0))|.$$

Obviously, it follows that if $\pi_1(X, x_0)$ is abelian then $R(f) = |\operatorname{Coker}(1 - f_{1*})|$.

Received October 31, 1995. Revised April 8, 1996.

¹⁹⁹¹ AMS Subject Classification: 55M20.

Keywords: Reidemeister number, upper bound, connected compact polyhedron, regular covering space, lifting class.

The author was visiting Department of Mathematics, Seoul National University, Seoul, Korea, when this work was done.

1. Preliminaries

Let X be a connected compact polyhedron and $f: X \to X$ a selfmap of X. The fundamental group $\pi_1(X, x_0)$ is simply denoted by π . Since there exists always a map $g: X \to X$ such that $f \simeq g: X \to X$ and $g(x_0) = x_0$, we may suppose $f(x_0) = x_0$.

Let $H \triangleleft \pi$ and $f_{\pi}(H) \subset H$, where $H \triangleleft \pi$ denotes that H is normal subgroup of π and $f_{\pi} : \pi \to \pi, \langle a \rangle \mapsto \langle f \circ a \rangle$.

Up to isomorphism there exists a unique regular covering space $(H\tilde{X}, HP)$ of X such that

$$({}_{H}P)_{\pi}(\pi_{1}({}_{H}\tilde{X},{}_{H}\tilde{x}_{0})) = H, \text{ where } {}_{H}\tilde{x}_{0} \in {}_{H}P^{-1}(x_{0}).$$

We construct $({}_{H}\tilde{X},{}_{H}P)$ as follows:

$$_H ilde{X}=\{H\langle c
angle:\langle c
angle \ \ ext{ is the path class in }X$$
 with the initial point $x_0\}$ $_HP(H\langle c
angle)=c(1)$

The base point of $H\tilde{X}$ is picked $H\tilde{x}_0 = H\langle e_0 \rangle$, where e_0 is the point path at x_0 and $\langle e_0 \rangle = e$ is the identity element of π .

The set of all liftings of $f: X \to X$ on $H\tilde{X}$ is denoted by Lift(f, H). Especially, the set $\mathcal{D}(H\tilde{X}, HP) := \text{Lift}(i_X, H)$ forms a group under the composition of maps, where i_X is the identity map of X.

The correspondence

$$\lambda_H : \mathcal{D}({}_H \tilde{X}, {}_H P) \to \pi/H$$

$$\ell_{[\alpha]} \longmapsto [\alpha] := H\alpha$$

is an isomorphism, where $\ell_{[\alpha]}(H\langle e_0\rangle) = [\alpha]$. Hence we will identify $\ell_{[\alpha]}$ with $[\alpha]$ and $\mathcal{D}(H\tilde{X}, HP)$ with π/H .

If $H\tilde{f}, H\tilde{f}' \in \text{Lift}(f, H)$ then there exists a unique $[\alpha] \in \pi/H$ such that $H\tilde{f}' = [\alpha] \circ H\tilde{f}$. Hence for some $H\tilde{f} \in \text{Lift}(f, H)$ we have

$$\operatorname{Lift}(f,H) = \{[\alpha] \circ {}_H\tilde{f} : [\alpha] \in \pi/H \ \}$$

Two liftings $H\tilde{f}, H\tilde{f}' \in \text{Lift}(f, H)$ are said to be *conjugate* if there exists $[\alpha] \in \pi/H$ such that $H\tilde{f}' = [\alpha] \circ H\tilde{f} \circ [\alpha]^{-1}$. The equivalence classes by conjugacy are called *lifting classes* and the lifting class of $H\tilde{f}$ is denoted by

$$[H\tilde{f}] = \{ [\alpha] \circ H\tilde{f} \circ [\alpha]^{-1} : [\alpha] \in \pi/H \}$$

The set of all lifting classes is denoted by Lift'(f, H), and R(f, H) := |Lift'(f, H)| is called the H-Reidemeister number of f.

For every $[\alpha] \in \pi/H$ and some $H\tilde{f} \in \text{Lift}(f, H)$, the composition $H\tilde{f} \circ [\alpha]$ is also a lifting of f on $H\tilde{X}$, so there exists a unique element $[\alpha'] \in \pi/H$ such that $[\alpha'] \circ H\tilde{f} = H\tilde{f} \circ [\alpha]$. This correspondence

$$H\tilde{f}_{\pi}: \pi/H \to \pi/H$$

$$[\alpha] \longmapsto [\alpha']$$

is determined by $H\tilde{f}$ and is a homomorphism. If π/H is a commutative group then $H\tilde{f}\pi$ does not depend on the choice of $H\tilde{f}\in \mathrm{Lift}(f,H)$.

For $[\alpha], [\alpha'] \in \pi/H$ and $H\tilde{f} \in \text{Lift}(f, H), [[\alpha] \circ H\tilde{f}] = [[\alpha'] \circ H\tilde{f}]$ if and only if there exists a $[\gamma] \in \pi/H$ such that

$$[\alpha'] = [\gamma][\alpha]_H \tilde{f}_{\pi}([\gamma]^{-1}).$$

We introduce the following notations:

$$T([\alpha], H\tilde{f}) := \{ [\gamma][\alpha]_H \tilde{f}_{\pi}([\gamma]^{-1}) : [\gamma] \in \pi/H \},$$
$$(\pi/H)' := \{ T([\alpha], H\tilde{f}) : [\alpha] \in \pi/H \}.$$

Obviously, $R(f, H) = |(\pi/H)'|$.

If π/H is a commutative group then $T([\alpha], H\tilde{f})$ does not depend on the choice of $H\tilde{f} \in \text{Lift}(f, H)$. In this case $T([\alpha], H\tilde{f})$ is simply denoted by $T([\alpha], H)$.

If $H = \{e\}$ then the notations $({}_H\tilde{X},{}_HP)$, ${\rm Lift}(f,H),{}_H\tilde{f},\mathcal{D}({}_H\tilde{X},{}_HP)$, ${\rm Lift}'(f,H),R(f,H),\lambda_H,{}_H\tilde{f}_\pi,T([\alpha],{}_H\tilde{f}),T([\alpha],H)$, and $(\pi/H)'$ are simply denoted by (\tilde{X},P) , ${\rm Lift}(f),\tilde{f},\mathcal{D}(\tilde{X},P)$, ${\rm Lift}'(f),R(f),\lambda,\tilde{f}_\pi,T(\alpha,\tilde{f})$, $T(\alpha)$, and π' respectively.

Here (\tilde{X}, P) is a universal covering space of X and R(f) is called the Reidemeister number of f.

The covering space homomorphism

$$\varphi: (\tilde{X}, P) \to ({}_H\tilde{X}, {}_HP)$$
$$\langle c \rangle \longmapsto H \langle c \rangle$$

induces a surjection

$$\varphi' : \operatorname{Lift}(f) \to \operatorname{Lift}(f, H)$$

$$\tilde{f} \longmapsto \varphi'(\tilde{f}), \text{ where } \varphi'(\tilde{f}) \circ \varphi = \varphi \circ \tilde{f}.$$

Especially, if $f = i_X$ then we have

$$\varphi': \mathcal{D}(\tilde{X}, P) = \pi \to \mathcal{D}({}_{H}\tilde{X}, {}_{H}P) = \pi/H$$

$$\alpha \longmapsto \varphi'(\alpha).$$

where $\varphi'(\alpha) \circ \varphi = \varphi \circ \alpha$.

Note that

$$(\varphi \circ \alpha)(\langle e_0 \rangle) = \varphi(\alpha(\langle e_0 \rangle)) = \varphi(\ell_{\alpha}(\langle e_0 \rangle)) = \varphi(\alpha) = H\alpha = [\alpha],$$

$$(\varphi'(\alpha) \circ \varphi)(\langle e_0 \rangle) = \varphi'(\alpha)(\varphi(\langle e_0 \rangle)) = \varphi'(\alpha)(H\langle e_0 \rangle).$$

Hence $\varphi'(\alpha)(H\langle e_0\rangle) = [\alpha] = \ell_{[\alpha]}(H\langle e_0\rangle)$. It follows that

$$\varphi'(\alpha) = \ell_{[\alpha]} = [\alpha].$$

Thus we have

$$[\alpha] \circ \varphi = \varphi \circ \alpha$$

2. An upper bound of the Reidemeister number R(f)

LEMMA 1. If π/H is commutative group, then

$$R(f,H) = |(\pi/H)/T([e],H)|.$$

Proof. Since π/H is a commutative group, we have

$$T([\alpha], H) = \{ [\gamma][\alpha]_H \tilde{f}_{\pi}([\gamma]^{-1}) : [\gamma] \in \pi/H \}$$
$$= [\alpha] \{ [\gamma]_H \tilde{f}_{\pi}([\gamma]^{-1}) : [\gamma] \in \pi/H \}$$
$$= [\alpha] T([e], H).$$

Moreover, it is easy to see that T([e], H) is a normal subgroup of π/H . Hence we have

$$R(f, H) = |(\pi/H)'|$$

$$= |\{[\alpha]T([e], H) : [\alpha] \in \pi/H\}|$$

$$= |(\pi/H)/T([e], H)|. \square$$

LEMMA 2. If $\tilde{f} \in Lift(f)$, $H\tilde{f} \in Lift(f,H)$ and $H\tilde{f} = \varphi'(\tilde{f})$. Then $H\tilde{f}_{\pi}([\gamma]) = [\tilde{f}_{\pi}(\gamma)].$

Proof. By the definition of $_H\tilde{f}_{\pi}$, we have

$$_H\tilde{f}_{\pi}([\gamma])\circ _H\tilde{f}=_H\tilde{f}\circ [\gamma].$$

Observe that

$$H\tilde{f}_{\pi}([\gamma]) \circ H\tilde{f} \circ \varphi = H\tilde{f} \circ [\gamma] \circ \varphi = H\tilde{f} \circ \varphi \circ \gamma = \varphi \circ \tilde{f} \circ \gamma$$
$$= \varphi \circ \tilde{f}_{\pi}(\gamma) \circ \tilde{f} = [\tilde{f}_{\pi}(\gamma)] \circ \varphi \circ \tilde{f} = [\tilde{f}_{\pi}(\gamma)] \circ H\tilde{f} \circ \varphi.$$

Since φ is a surjection, if follows that

$$_{H}\widetilde{f}_{\pi}([\gamma])\circ _{H}\widetilde{f}=[\widetilde{f}_{\pi}(\gamma)]\circ _{H}\widehat{f}.$$

So that

$$_H\tilde{f}_{\pi}([\gamma]) = [\tilde{f}_{\pi}(\gamma)].$$

Note that φ' : Lift $(f) \to \text{Lift}(f, H)$ induces a surjection

$$\overline{\varphi'}: \operatorname{Lift}'(f) \to \operatorname{Lift}'(f, H)$$

$$[\tilde{f}] \longmapsto [\varphi'(\tilde{f})].$$

LEMMA 3. If
$$H\tilde{f} \in Lift(f,H), \tilde{f} \in Lift(f) \text{ and } \varphi'(\tilde{f}) = H\tilde{f}$$
. Then
$$(\overline{\varphi'})^{-1}([H\tilde{f}]) = \{ [\alpha \circ \tilde{f}] \in Lift'(f) : \alpha \in HT(e,\tilde{f}) \}.$$

Proof. Observe that

$$\begin{split} [\alpha \circ \tilde{f}] \in (\overline{\varphi'})^{-1}([H\tilde{f}]) &\iff \overline{\varphi'}([\alpha \circ \tilde{f}]) = [H\tilde{f}] \\ &\iff [\varphi'(\alpha \circ \tilde{f})] = [H\tilde{f}] \\ &\iff \exists \ \gamma \in \pi, \ \varphi'(\alpha \circ \tilde{f}) = [\gamma] \circ H\tilde{f} \circ [\gamma]^{-1} \\ &\iff \exists \ \gamma \in \pi, \ \varphi \circ (\alpha \circ \tilde{f}) = ([\gamma] \circ H\tilde{f} \circ [\gamma]^{-1}) \circ \varphi. \end{split}$$

Note that

$$\begin{split} \varphi \circ (\alpha \circ \tilde{f}) = & (\varphi \circ \alpha) \circ \tilde{f} = ([\alpha] \circ \varphi) \circ \tilde{f} = [\alpha] \circ (\varphi \circ \tilde{f}) \\ = & [\alpha] \circ (_H \tilde{f} \circ \varphi) = ([\alpha] \circ _H \tilde{f}) \circ \varphi \end{split}$$

and

$$\begin{split} ([\gamma] \circ_H \tilde{f} \circ [\gamma]^{-1}) \circ \varphi = & ([\gamma]_H \tilde{f}_{\pi}([\gamma]^{-1}) \circ_H \tilde{f}) \circ \varphi \\ = & ([\gamma][\tilde{f}_{\pi}(\gamma^{-1})] \circ_H \tilde{f}) \circ \varphi = ([\gamma \tilde{f}_{\pi}(\gamma^{-1})] \circ_H \tilde{f}) \circ \varphi. \end{split}$$

Hence we have

$$[\alpha \circ \tilde{f}] \in (\overline{\varphi'})^{-1}([H\tilde{f}])$$

$$\iff \exists \ \gamma \in \pi, ([\alpha] \circ H\tilde{f}) \circ \varphi = ([\gamma \tilde{f}_{\pi}(\gamma^{-1})] \circ H\tilde{f}) \circ \varphi$$

$$\iff \exists \ \gamma \in \pi, [\alpha] \circ H\tilde{f} = [\gamma \tilde{f}_{\pi}(\gamma^{-1})] \circ H\tilde{f}$$

$$\iff \exists \ \gamma \in \pi, [\alpha] = [\gamma \tilde{f}_{\pi}(\gamma^{-1})]$$

$$\iff \exists \ \gamma \in \pi, \alpha \in H\gamma \tilde{f}_{\pi}(\gamma^{-1})$$

$$\iff \alpha \in HT(e, \tilde{f}).$$

Therefore
$$(\overline{\varphi'})^{-1}([H\tilde{f}]) = \{ [\alpha \circ \tilde{f}] \in \text{Lift}'(f) : \alpha \in HT(e, \tilde{f}) \}.$$

LEMMA 4. For any $H\tilde{f} \in Lift(f, H)$, we have

$$|(\overline{\varphi'})^{-1}([H\tilde{f}])| \le |H|.$$

Proof. Let $\alpha \in HT(e, \tilde{f})$. Then there exist $h_{\alpha} \in H, u_{\alpha} \in T(e, \tilde{f})$ such that $\alpha = h_{\alpha}u_{\alpha}$. Since $u_{\alpha} \in T(e, \tilde{f}) = \{t\tilde{f}_{\pi}(t^{-1}) : t \in \pi\}$, there exists $t_{\alpha} \in \pi$ such that $u_{\alpha} = t_{\alpha}\tilde{f}_{\pi}(t_{\alpha}^{-1})$. Hence $\alpha = h_{\alpha}t_{\alpha}\tilde{f}_{\pi}(t_{\alpha}^{-1})$. Thus for any $\gamma \in \pi$ and $\alpha \in HT(e, \tilde{f})$, we have

$$\gamma \alpha \tilde{f}_{\pi}(\gamma^{-1}) = \gamma h_{\alpha} t_{\alpha} \tilde{f}_{\pi}(t_{\alpha}^{-1}) \tilde{f}_{\pi}(\gamma^{-1}) = \gamma h_{\alpha} t_{\alpha} \tilde{f}_{\pi}((\gamma t_{\alpha})^{-1}).$$

Since $\gamma h_{\alpha} \in \gamma H = H\gamma$, there is $h_{\alpha}(\gamma) \in H$ such that $\gamma h_{\alpha} = h_{\alpha}(\gamma)\gamma$. Thus $\gamma \alpha \tilde{f}_{\pi}(\gamma^{-1}) = h_{\alpha}(\gamma)\gamma t_{\alpha}\tilde{f}_{\pi}((\gamma t_{\alpha})^{-1}) \in HT(e,\tilde{f})$. Hence the correspondence

$$g: \pi \times HT(e, \tilde{f}) \to HT(e, \tilde{f})$$

 $(\gamma, \alpha) \longmapsto \gamma \alpha \tilde{f}_{\pi}(\gamma^{-1})$

is well-defined. It is easy to see that g is a left action of π on $HT(e, \tilde{f})$. For any $\alpha \in HT(e, \tilde{f})$, consider the orbit of α

$$\Omega_{\alpha} = \{ \gamma \alpha \tilde{f}_{\pi}(\gamma^{-1}) : \gamma \in \pi \}.$$

Note that $[\alpha \circ \tilde{f}] = [\alpha' \circ \tilde{f}]$ if and only if there exists $\gamma \in \pi$ such that $\alpha' = \gamma \alpha \tilde{f}_{\pi}(\gamma^{-1})$. Hence

$$|(\overline{\varphi'})^{-1}([_H\tilde{f}])|=|\{\Omega_\alpha:\alpha\in HT(\epsilon,\tilde{f})\}|.$$

By the proceding argument, we have

$$\gamma \alpha \tilde{f}_{\pi}(\gamma^{-1}) = h_{\alpha}(\gamma) \gamma t_{\alpha} \tilde{f}_{\pi}((\gamma t_{\alpha})^{-1}), \text{ where } \alpha = h_{\alpha} t_{\alpha} \hat{f}_{\pi}(t_{\alpha}^{-1})$$

and $h_{\alpha}(\gamma)\gamma = \gamma h_{\alpha}, h_{\alpha}(\gamma) \in H$. Hence

$$\Omega_{\alpha} = \{h_{\alpha}(\gamma)\gamma t_{\alpha}\tilde{f}_{\pi}((\gamma t_{\alpha})^{-1}): \gamma \in \pi\}.$$

It follows that if $\gamma = t_{\alpha}^{-1}$ then $h_{\alpha}(t_{\alpha}^{-1}) \in \Omega_{\alpha}$. Thus for every $\alpha \in HT(e, \tilde{f})$ there exists $h_{\alpha}(t_{\alpha}^{-1}) \in H$ such that

$$\Omega_{\alpha} = \Omega_{h_{\alpha}(t_{\alpha}^{-1})}.$$

Therefore

$$|\{\Omega_{\alpha}|\alpha\in HT(e,\tilde{f})\}|=|\{\Omega_{h_{\alpha}(t_{\alpha}^{-1})}|h_{\alpha}(t_{\alpha}^{-1})\in H\}|\leq |H|.$$

So that for any $H\tilde{f} \in Lift(f, H)$, we have

$$|(\overline{\varphi'})^{-1}([H\tilde{f}])| \le |H|.$$

LEMMA 5. If $D(\pi) \subset H$ then $HT(e, \tilde{f})$ is a normal subgroup of π , where $D(\pi)$ is the commutator subgroup of π .

Proof. Obviously, $HT(e, \tilde{f}) \neq \emptyset$. Let $t_1, t_2 \in HT(e, \tilde{f})$. Then there exist $h_1, h_2 \in H$ and $\gamma_1, \gamma_2 \in \pi$ such that $t_1 = h_1 \gamma_1 \tilde{f}_{\pi}(\gamma_1^{-1}), t_2 = h_2 \gamma_2 \tilde{f}_{\pi}(\gamma_2^{-1})$. Observe that

$$\begin{split} t_1 t_2^{-1} &= h_1 \gamma_1 \tilde{f}_\pi(\gamma_1^{-1}) \tilde{f}_\pi(\gamma_2) \gamma_2^{-1} h_2^{-1} = h_1 \gamma_1 \tilde{f}_\pi(\gamma_2^{-1} \gamma_2) \gamma_2^{-1} h_2^{-1} \\ &= [h_1 \gamma_1 \tilde{f}_\pi(\gamma_1^{-1} \gamma_2) \gamma_2^{-1}, h_2^{-1}] h_2^{-1} h_1 \gamma_1 \tilde{f}_\pi(\gamma_1^{-1} \gamma_2) \gamma_2^{-1} \\ &= [h_1 \gamma_1 \tilde{f}_\pi(\gamma_1^{-1} \gamma_2) \gamma_2^{-1}, h_2^{-1}] h_2^{-1} h_1 [\gamma_1, \tilde{f}_\pi(\gamma_1^{-1} \gamma_2) \gamma_2^{-1}] \tilde{f}_\pi(\gamma_1^{-1} \gamma_2) \gamma_2^{-1} \gamma_1 \\ &= [h_1 \gamma_1 \tilde{f}_\pi(\gamma_1^{-1} \gamma_2) \gamma_2^{-1}, h_2^{-1}] h_2^{-1} h_1 [\gamma_1, \tilde{f}_\pi(\gamma_1^{-1} \gamma_2) \gamma_2^{-1}] \\ &= [\tilde{f}_\pi(\gamma_1^{-1} \gamma_2), \gamma_2^{-1} \gamma_1] \gamma_2^{-1} \gamma_1 \cdot \tilde{f}_\pi((\gamma_2^{-1} \gamma_1)^{-1}) \in HT(e, \tilde{f}). \end{split}$$

Hence $HT(e, \tilde{f})$ is a subgroup of π .

For $\alpha \in HT(e, \tilde{f})$ and $t \in \pi$, we have

$$\begin{split} t\alpha t^{-1} = & th\gamma \tilde{f}_{\pi}(\gamma^{-1})t^{-1}, \text{ where } \alpha = h\gamma \tilde{f}_{\pi}(\gamma^{-1}), h \in H \\ = & h't\gamma \tilde{f}_{\pi}(\gamma^{-1})t^{-1}, \text{ where } h't = th, h' \in H \\ = & h'[t\gamma \tilde{f}_{\pi}(\gamma^{-1}), t^{-1}]t^{-1}t\gamma \tilde{f}_{\pi}(\gamma^{-1}) \\ = & h'[t\gamma \tilde{f}_{\pi}(\gamma^{-1}), t^{-1}]\gamma \tilde{f}_{\pi}(\gamma^{-1}) \in HT(\epsilon, \tilde{f}). \end{split}$$

Hence $HT(e, \tilde{f})$ is a normal subgroup of π .

THEOREM 1. It $D(\pi) \subset H$ then

$$R(f) \le |H||\pi/HT(e, \tilde{f})|.$$

Proof. Since $D(\pi) \subset H, \pi/H$ is a commutative group. Note that

$$R(f) = |\operatorname{Lift}'(f)| = |\bigcup \{ (\overline{\varphi'})^{-1}([H\tilde{f}]) : [H\tilde{f}] \in \operatorname{Lift}'(f, H) \} |$$

$$= \sum |(\overline{\varphi'})^{-1}([H\tilde{f}])| [H\tilde{f}] \in \operatorname{Lift}'(f, H)$$

It follows from Lemma 4 and Lemma 1 that

$$R(f) \le |H| |\text{Lift}'(f, H)| = |H| R(f, H) = |H| |(\pi/H)/T([e], H)|.$$

Note that

$$\begin{split} T([e], H) = & \{ [\gamma]_H \tilde{f}_{\pi}([\gamma]^{-1}) : [\gamma] \in \pi/H \} \\ = & \{ \gamma \tilde{f}_{\pi}(\gamma^{-1})] : \gamma \in \pi \} \\ = & \{ H \gamma \tilde{f}_{\pi}(\gamma^{-1}) : \gamma \in \pi \} = HT(e, \tilde{f})/H. \end{split}$$

Hence we have

$$R(f) \le |H| |(\pi/H)/(HT(e,\tilde{f})/H)| = |H| |\pi/HT(e,\tilde{f})|.$$

THEOREM 2. $R(f) \leq |D(\pi)||\pi/D(\pi)T(e,\tilde{f})|$ and for $M:=\{H \triangleleft \pi: D(\pi) \subset H, f_{\pi}(H) \subset H\}$, we have

$$|D(\pi)||\pi/D(\pi)T(e,\tilde{f})| = \min\{|H||\pi/HT(e,\tilde{f})| : H \in M\}.$$

Proof. Note that $D(\pi) \triangleleft \pi$ and $f_{\pi}(D(\pi)) \subset D(\pi)$. From Theorem 1, we have

$$R(f) \le |D(\pi)| |\pi/D(\pi)T(e, \tilde{f})|.$$

Now let us show that if $H_1, H_2 \in M$ and $H_1 \subset H_2$, then

$$|H_1||\pi/H_1T(e,\tilde{f})| \le |H_2||\pi/H_2T(e,\tilde{f})|.$$

Consider the homomorphism

$$\psi: H_2/H_1 \to H_2T(e, \tilde{f})/H_1T(e, \tilde{f})$$
$$H_1a \longmapsto H_1T(e, \tilde{f})a.$$

If $H_1T(e,\tilde{f})b \in H_2T(e,\tilde{f})/H_1T(e,\tilde{f})$, then $b \in H_2T(e,\tilde{f})$. Hence there exist $h \in H_2$, $t \in T(e,\tilde{f})$ such that b = ht = [h,t]th. Thus

$$H_1T(e,\tilde{f})b = H_1T(e,\tilde{f})[h,t]th = H_1T(e,\tilde{f})h = \psi(H_1h).$$

Therfore ψ is an epimorphism. It follows that

$$|H_2T(e,\tilde{f})/H_1T(e,\tilde{f})| \leq |H_2/H_1|.$$

So that we have

$$|H_1||H_2T(e,\tilde{f})/H_1T(e,\tilde{f})||\pi/H_2T(e,\tilde{f})| \le |H_1||H_2/H_1||\pi/H_2T(e,\tilde{f})|;$$
 that is,

$$|H_1||\pi/H_1T(e,\tilde{f})| \le |H_2||\pi/H_2T(e,\tilde{f})|.$$

Note that $D(\pi) \in M$ and for any $H \in M, D(\pi) \subset H$. Hence for any $H \in M, |D(\pi)| |\pi/D(\pi)T(e, \tilde{f})| \leq |H| |\pi/T(e, \tilde{f})|$. \square

3. An estimation of the Reidemeister numbers

Theroem 3. $|\pi/D(\pi)T(e,f)| \le R(f) \le |D(\pi)||\pi/D(\pi)T(e,f)|$, where $T(e,f) = \{\gamma f_{\pi}(\gamma^{-1}) : \gamma \in \pi\}$.

Proof. By Theorem 2, we have

$$R(f) \leq |D(\pi)| \Big| \pi/D(\pi) T(e, \tilde{f}) \Big|.$$

Moreover, it is well known that

$$|\operatorname{Coker}(1 - f_{1*})| \le R(f),$$

where $f_{1*}: H_1(X) \to H_1(X)$ is the homomorphism induced by f and $H_1(X)$ the 1-dimensional homology group of X[1]. Hence it is sufficient to show that

$$D(\pi)T(e,f) = D(\pi)T(e,\tilde{f})$$

and

$$|\operatorname{Coker}(1 - f_{1*})| = |\pi/D(\pi)T(e, \tilde{f})|.$$

Consider the commutative diagram

$$\begin{array}{ccc} \pi & \xrightarrow{\tilde{f}_{\pi}} & \pi \\ \theta \downarrow & & \theta \downarrow \\ H_1(X) & \xrightarrow{f_{1*}} & H_1(X) \end{array}$$

and the composition $\eta \circ \theta$

$$\pi \xrightarrow{\theta} H_1(X) \xrightarrow{\eta} \operatorname{Coker}(H_1(X) \xrightarrow{1-f_{1\bullet}} H_1(X)),$$

where θ is the abelianization; i.e., θ is a surjective homomorphism, ker $\theta = D(\pi)$, and η is the natural projection. Since $\eta \circ \theta$ is a surjective homomorphism, we have

$$\operatorname{Coker}(1 - f_{1*}) \cong \pi / \ker(\eta \circ \theta).$$

Observe that

$$\alpha \in \ker(\eta \circ \theta) \iff \eta \circ \theta(\alpha) = 0$$

$$\iff \theta(\alpha) \in (1 - f_{1*})(H_1(X)) = (1 - f_{1*})(\theta(\pi))$$

$$\iff \exists \ \gamma \in \pi, \theta(\alpha) = (1 - f_{1*})(\theta(\gamma)) = \theta(\gamma) - f_{1*} \circ \theta(\gamma)$$

$$= \theta(\gamma) - \theta \circ \tilde{f}_{\pi}(\gamma) = \theta(\gamma \tilde{f}_{\pi}(\gamma^{-1}))$$

$$\iff \exists \ \gamma \in \pi, \alpha(\gamma \tilde{f}_{\pi}(\gamma^{-1}))^{-1} \in \ker \theta = D(\pi)$$

$$\iff \exists \ \gamma \in \pi, \alpha \in D(\pi) \gamma \tilde{f}_{\pi}(\gamma^{-1})$$

$$\iff \alpha \in D(\pi) T(e, \tilde{f}).$$

Hence we have

$$\ker(\eta \circ \theta) = D(\pi)T(e, \tilde{f})$$

and

$$\operatorname{Coker}(1 - f_{1*}) \cong \pi/D(\pi)T(e, \tilde{f}).$$

It follows that

$$|\operatorname{Coker}(1 - f_{1*})| = |\pi/D(\pi)T(e, \hat{f})|.$$

It remains to show that

$$D(\pi)T(e,\tilde{f}) = D(\pi)T(e,f).$$

Let \tilde{f} be the lifting of f such that $\tilde{f}(\langle e_0 \rangle) = \beta$. Then for any $\alpha \in \pi$, we have

$$\tilde{f}_{\pi}(\alpha) = \beta f_{\pi}(\alpha) \beta^{-1} \text{ or } f_{\pi}(\alpha) = \beta^{-1} \tilde{f}_{\pi}(\alpha) \beta.$$

If $u \in D(\pi)T(e, \tilde{f})$ then there exist $d \in D(\pi)$ and $\gamma \in \pi$ such that

$$\begin{split} u &= d\gamma \tilde{f}_{\pi}(\gamma^{-1}) = d\gamma \beta f_{\pi}(\gamma^{-1}) \beta^{-1} \\ &= d[\gamma, \beta] \beta \gamma f_{\pi}(\gamma^{-1}) \beta^{-1} \\ &= d[\gamma, \beta] [\beta \gamma f_{\pi}(\gamma^{-1}), \beta^{-1}] \beta^{-1} \beta \gamma f_{\pi}(\gamma^{-1}) \\ &= d[\gamma, \beta] [\beta \gamma f_{\pi}(\gamma^{-1}), \beta^{-1}] \gamma f_{\pi}(\gamma^{-1}) \in D(\pi) T(e, f). \end{split}$$

Hence $D(\pi)T(e, \tilde{f}) \subset D(\pi)T(e, f)$.

Conversely, if $u \in D(\pi)T(e,f)$ then there exist $d \in D(\pi)$ and $\gamma \in \pi$ such that

$$u = d\gamma f_{\pi}(\gamma^{-1}) = d\gamma \beta^{-1} \tilde{f}_{\pi}(\gamma^{-1}) \beta$$

= $d[\gamma, \beta^{-1}][\beta^{-1}\gamma \tilde{f}_{\pi}(\gamma^{-1}), \beta]\gamma \tilde{f}_{\pi}(\gamma^{-1}) \in D(\pi)T(e, \tilde{f}).$

Hence

$$D(\pi)T(e,f) \subset D(\pi)T(e,\tilde{f}).$$

Thus we have

$$D(\pi)T(e,\tilde{f}) = D(\pi)T(e,f).$$

Remarks on the Reidemeister numbers

References

- 1. T. H. Kiang, The Theory of Fixed Point Classes, Scientific Press, Peking, 1979.
- 2. R. F. Brown, The Lefschetz Fixed Point Theroem, Scott-Foresman, Chicago, 1971.
- 3. B. J. Jiang, Estimation of Nielsen numbers (II), Acta Sci. Natur. Univ. Peking, 1979, 48-57.
- 4. _____, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.

References

DEPARTMENT OF MATHEMATICS, YANBIAN UNIVERSITY, JILIN PROVINCE, 133002, CHINA