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REMARKS ON THE REIDEMEISTER NUMBERS

DEGUI L1

0. Introduction

Let X be a connected compact polyhedron and f : X — X a selfmap
of X. The Reidemeister number of f is denoted by R(f).

A lower bound of the Reidemeister number has been obtained in (1]
as follows:

|Coker(1 ~ f1.)| < R(f),

where fi.: H1(X) — H;(X) is the homomorphism induced by f and
H,(X) is the 1-dimensional homology group of X.
In this paper, we obtain an upper bound of the Reidemeister number

R(f) as follows:
R(f) < |Coker(1 — f1.)|[D{mi(X. 20))|,

where D(71(X,xq)) is the commutator subgroup of the fundamental
group m1(X, z).
Thus we have

{Coker(1 — f1,)| < R(f) < |Coker(1 — f1,)/|D(7(X, z¢))]-

Obviously, it follows that if m; (X, 2o ) is abelian then R(f) = |Coker(1—
fl*)‘-

Received October 31, 1995. Revised April 8, 1996.

1991 AMS Subject Classification: 55M20.

Keywords: Reidemeister number, upper bound, connected compact polyhedron,
regular covering space, lifting class.

The author was visiting Department of Mathematics, Seoul National University,
Seoul, Korea, when this work was done.



Degui Li
1. Preliminaries

Let X be a connected compact polyhedron and f : X — X a selfmap
of X. The fundamental group 7;(X,z) is simply denoted by #. Since
there exists always a map ¢ : X — X such that f ~ ¢ : X — X and
g(xo) = xo, we may suppose f(xy) = .

Let H a7 and f.(H) C H, where H a7 denotes that H is normal
subgroup of m and fr: 7 — 7, (a) — (foa).

Up to isomorphism there exists a unique regular covering space

(HX, 1 P) of X such that
(#P)<(mi(uX, Hig)) = H, where pyiq € gP ().

We construct (X, HP) as follows:

nX = {H{c): {c) isthe path class in X
with the initial point zg}
uHP(H(c)) = c(1)

The base point of yX is picked yi, = H(eg), where eq is the point
path at 2 and (co) = e is the identity element of n.

The set of all liftings of f : X — X on X is denoted by Laft( f, H).
Especially, the set D(y X, uP) = Lift(i x, H) forms a group under the
composition of maps, where i x is the identity map of X.

The correspondence

A D(yX,pP)— n/H
lg) — [a] == Ha

is an isomorphism, where {4)(H (eo)) = [a]. Hence we will identify (|4
with [a] and D(y X, yP) with /H.

If 4f, uf € Lift(f,H) then there exists a unique [a] € 7v/H such
that Hf’ = [a] o 1 f. Hence for some Hf € Lift(f, H) we have

Lift(f,H) = {[a]o yf : [a] € n/H )
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Remarks on the Reidemeister numbers

Two liftings g f, yf' € Lift(f. H) are said to be conjugate if there
exists [a] € 7/H such that yf' = [a] o yf o [a]~!. The equivalence
classes by conjugacy are called lifting classes and the lifting class of uf
is denoted by

[fl={lalonfola]™" : [a] € 7/H}

The set of all lifting classes is denoted by Lift'( f, H), and R(f, H) :=
|Lift'( f, H)| is called the H-Reidemeister number of f.

For every [o] € n/H and some yf € Lift(f H), the composition
uf ola] is also a lifting of f on y X, so there exists a unique element
[o'] € 7/H such that [a'] o gf = yf o [a]. This correspondence

Hf,r :x/H — n/H

[a] — []

is determined by Hf and is a homomorphism. If 7/H is a commutative
group then 1 fr does not depend on the choice of uf € Lift(f, H).

For [a],[a'] € n/H and yf € Lift(f.H),[[a] o uf] = [[o'] o uf] if
and only if there exists a [y] € n/H such that

[a'] = Hla]u fx((4]7)-

We introduce the following notations:

T(la], af) = {[¥llalu f=([Y]™") : v] € 7/H},
(r/H) = {T([a}, uf) : [a] € n/H}.

Obviously, R(f,H) = |(x/H)'|

If 7/H is a commutative group then T([a], /) does not depend on

thc Cholce of i f € Lift(f, H). In this case T([a], 5 f) is simply denoted
T([a], H).

IfH = {e} then the notations (X, #P), Lift(f, H), uf.D(uX.uyP),
Lift'(f, H), R(f, H), AH, Hf T([a], Hf T([a], H), and (7 /H)' are sim-
ply denoted by (X, P), Lift(f), f, D(X, P), Lift’ f),R(f),)\,_f,r,T(a.f),
T(«), and 7' respectively.
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Here (X, P) is a universal covering space of X and R(f) is called the

Reidemeister number of f.
The covering space homomorphism

¢ (X, P)>(uX,uP)
{¢) = H{c)

induces a surjection

o' ¢ Lift(f) — Lift(f, H)
f o= @'(f). where ¢'(flop=pof.

Especially, if f =iy then we have

o DX, P)=n - D(yX,yP)=xn/H

a —  p'(a)

where ¢'(a)op = poa.
Note that

(¢ o a)({eo)) = p(a({e0))) = p(Lal{en))) = p(c) = Ha = [qa,
(

Thus we have
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2. An upper bound of the Reidemeister number R(f)
LEMMA 1. If 7/H is commutative group, then
R(f,H)=|(=/H)/T([e], H)|.
Proof. Since 7/H is a commutative group, we have
T(la], H) ={(M[a]ufxl[1)") : v] € 7/ H}
=la{{(Mufel(3)") : 7] € =/ H}
=[a]T([e], H).

Moreover, it is easy to see that T'([e], H) is a normal subgroup of n/H.
Hence we have

R(f, H) =|(x/H)'|
={[a]T([e]. H) : [o] € 7/H}|
=|(w/H)/T([e], H)|. m

LEMMA 2. If f € Lift(f), uf € Lift(f, H) and yf = ¢'(f). Then
nfall) = [Fx(7)].
Proof. By the definiton of j fx, we have
ufs((¥) o uf=nfolnl
Observe that
nfrlDonfop=ufohlop=nfopoy=pofoy
=g o fa(v)o f=[fr(]opof=fr(Nonufoe
Since ¢ is a surjection, if follows that
nfe((]) o nf = [falv)onf.
So that i )
#fx{[7]) = [f=(7)]- 0
Note that ¢': Lift(f) — Lift(f, H ) induces a surjection
o« Lift'(f) — Lift'(f, H)

(71— [N
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LEMMA 3. If yf € Lift(f, H), f € Lift(f) and ©'(f) = yf. Then
(@)~ ([nfD) = {la o fl € Lift'(f) : a € HT(e. f)}.

Proof. Observe that

[ao fle (@) N [ufl) <= ¢llaof])=uf]
e [¢laof)]=[uf]
< Jyem laof)=[]oyfo[y]™
e Iyem polaof)=([yJoufoly) o

Note that
go(aof)=(poa) f (la]og)o f =[a]o(po f)
Fog)=( [a]on)o‘,J
and
(Moufoly™Mow=(Wufa(lr] ™o nfow
=(MIfr(vNouflow= (1 fa(y Mo ufloe.
Hence we have
[ao fl € () M [uf])

<:>376Wa([a]OHf)OLP:([VfTr('YNJ

)
e 3vemlalonf=nf(y"onf
= 3yemla]=[frlrv7")]

louf)ogp

= Jyemac Hyfalvy™)
= a € HT(e, f).

Therefore (') ([1f]) = {[a o f] € Lift'(f) : o € HT (e, f)}. O
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LEMMA 4. For any yf € Lift(f, H), we have
(D ([ fDI < HI-

Proof. Let a € HT(e f) Then there exist ha € Hou, € Tle f)
such that @ = hyu,. Since u, € T(e, f) = {tf t= 1)t e 7r} there

exists to € 7 such that uy = tofr(t71). Hence a = hg, t ofr(tz"). Thus
for any v € m and o« € HT (e, f), we have

P?'O‘fﬂ('f— )’“ Tha t()fﬂ’ t_ ) _]) = Whrxfafr((Pﬂ )

Since yhe € yH = Hy, there is ho(y ) € H such that vh, = ho(y)y.
Thus vafr(7v71) = ha(V)tafr((7ta) ™) € HT (e f) Hence the corre-

spondence
g: waT(e,f) — HT(e,f)
(v, ) — yafa(y7")

is well-defined. It is easy to see that ¢ is a left action of m on HT (e, f).
For any oo € HT (e, f), consider the orbit of a

Qo = {vafay7') 17 € 7).

Note that [a o f] [a' o f] if and only if there exists v € = such that
o' = yafr(v™"). Hence

) H[uf) = {9 a € HT(e, )},

By the proceding argument, we have

yafe(v7!) = halY)tafx((1ta) "), where a = hatafa(ty')
and ha(v¥)y = Yha, hol{y) € H. Hence
Q, = {ha(W’)Vrta]Err(("/ta)—l) 1Y e ﬂ'}'
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It follows that if v = t7' then ho(tJ') € Q4. Thus for every a €
HT(e, f) there exists h «(t3') € H such that

Qo = th.u;‘)'

Therefore
{Qala € HT(e, /)} = {Q,,_ =1 lhalts!) € HY| < |H|.
So that for any y f € Lift(f, H), we have
1) (af) < |H|. C

LEMMA 5. If D(n) C H then HT(e, f) is a normal subgroup of m,

where D(w) is the commutator subgroup of =.

Proof. Obviously, HT (e 7& 0. Let ty,t2 € HT(c f) Then there
exist h1 hg € H and 7, 72 € m such that t; = hyyifal (7 1)ty =
h2"}2fﬂ-("72 ). Observe that
tity ! =k fa(0 7 ) falv2)7 e =l el 2 w{lhz”lr

=[h 1’71f7r(71 ’72)’721 hy ]h hﬂlfw(/l ’72)
=[him fr(37 v2)v7 R RS [, Feln 2 v el )
=y felr v2)vs by TR o, el 72)72 ']
Fr(vi 2 95 g ' Fal (v ') ™) € HT (e, f).
Hence HT(e, f) is a subgroup of 7.
For o« € HT (e, f) and t € 7, we have
tat™! :th'}'f,,('y_l)t"l, where a = h'yf,,('y_l), he H
:h’tﬂ,f,,( —1) ~1 where 't = th,h' € H
Rty fuly ™)t ]t“]tvf ( Y
Rty faly ™)t falv") € HT(c, ).

Hence HT (e, f) i1s a normal subgroup of 7. 0O
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THEOREM 1. It D(w) C H then

R(f) < |H||m/HT(c, f).
Proof. Since D(7) C H,n/H is a commutative group. Note that

) =|Lift'(f)] = IU{W )N ([ f]) : [ f) € Lift' (£, H)}|
=" @) (uflluf) € Lift'(f, H)
It follows from Lemma 4 and Lemma 1 that
R(f) < |H|[Lift'"(f, H)| = |H|R(f,H) = |H||ix/H)/T([e]. H)|.
Note that

T(le], H) ={[v]ufa([1]7") : [7) € =/H}
={vfaly ") 1y €7}
={Hyfaly" ") iy e} =HT(c,f)/H.

Hence we have

R(f) < \H||(x/H)/(HT(e, f)/H)| = |H||x/HT(e, f)|. O

THEOREM 2. R(f) < |D(x)||n/D(m)T (e, f)| and for M := {H am :
D(n) C H, f.(H) C H}, we have

|D(7)||7/D(=)T )] = min{|H||w/HT e, )| H e M},

Proof. Note that D(w) a7 and fr(D(x)) C Di(n). From Theorem 1,
we have

R(f) < |D{m)||x/D(m)T(e, f .
Now let us show that if H,, H; € M and H; C K5, then

\H o ||7/H\T(e, )| < |Hylln/H2Tic, f)]-

405



Degui L1

Consider the homomorphism

H2/H1—">H2 f)/Hl f)
Ja.

Hya— H\T f

If H\T(e, f)b € HyT(e, f)/H,T(e, f), then b € H,T(e, f). Hence there
exist h € Hy,t € T(e, f) such that b = ht = [h,t]th. Thus

H\T(e, f)b= H,T(e, )h,t]th = HT(e, f)h = w(H k).
Therfore ¢ is an epimorphism. It follows that
\HyT(e, f)/H\T(c, I < |Hy/Hy).

So that we have

|Hy||H2T (e, f)/H\T(e, f)||v/HyT(e, f)| < |Hy||Hy/Hy||x/Hy T (e, f);

that is, )
\Hyl|w/H1T (e, f)| < |Ha||7/HaTe. f).

Note that D(r) € M and for any H € M, D(7) C H. Hence for any
H e M, |D(r)|lx/D(x)T(e, f)| < |H||x/T(e, f)|. O

3. An estimation of the Reidemeister numbers

THPROEM 3. |x/D( TI')T(f I < R(f) < |D(r)||x/D(m)T(e, f)|,
where T(e, f) = {vfa(v"'): v € 7}.

Proof. By Theorem 2, we have
) < D(m)||7/D(m)T(e, f)|.
Moreover, it 1s well known that
|Coker(1 — f1.)] < R(f),
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where f1,: Hi(X) — Hy(X) is the homomorphism induced by f and
H,(X) the 1-dimensional homology group of X[1]. Hence it is sufficient
to show that

and

|Coker(1 — f1,)| = |x/D(m)T(e. f)].

Consider the commutative diagram

fW
s — L
d d
fix

Hy(X) —— Hy(X)
and the composition n o §

N l_flt
T — s Hi{(X) —— Coker(H,(X) -—» H\(X)),

where 6 is the abelianization ; i.e., 8 is a surjective homomorphismn, ker
¢ = D(x), and n is the natural projection. Since 7 o € is a surjective
homomorphism, we have

Coker(1 — fi.) = m/ker(n o 6).
Observe that

a €Eker(nol) <= nofla)=10
= 0(a) € (1 - fr)(Hi(X)) = (1= fr.)(8(7))
& dyembla)=(1~ fr.)(0(7)) = 0(7) = fr.ob(v)
=6(7) =00 frlv) = 0(vfnlv™")
— Iyemalrf-(y1)! € ker § = D(n)
<= JyemacDanfr)
< a € D(m)T(e, f).
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Hence we have .
ker(no @) = D(m)T(e, f)

and
Coker(1 — f1,) = n/D(7)T(c, f..

It follows that
(Coker(1 — f.)] = [n/D(m)T(c, f)].

It remains to show that

Let f be the lifting of f such that f((c())) = 3. Then for any o € 7, we
have

frla) = 8fxl0)§™" or frla) = B7" fr(a)B.
If u € D(n)T(e, f) then there exist d € D(7) and v € 7 such that

u=dyfr(y™") = dyBfa(y )3
=d[vy, BB f=(v")B87!
=dy, B[y fx(y "), 8787 By fr(v ™)
=d[y, B)B7f=(v7). BT I (v T") € D(x)T (e, f).
Hence D(7)T(e, f) C D(n)T(e, f).

Conversely, if u € D(7)T (e, f) then there exist ¢ € D(7) and v € 7
such that

u=dyfe(y™") = dy87 fr(v "5
=dly, 8787 v fa(v ), Blvfaly™") € D(%)Te, f).
Hence i
D(m)T(e, f) C D(7m)T(e, f).

Thus we have

D(m)T(e,f)=D(m)T(e, f). O

408



Remarks on the Reidemeister numbers

References

1. T. H. Kiang, The Theory of Fized Point Classes, Scientific Press, Peking, 1979.

2. R. F. Brown, The Lefschetz Fized Point Theroem, Scott-Foresman, Chicago,
1971.

3. B. . Jiang, Estimation of Nielsen numbers (II), Acta Sci. Natur. Univ. Peking,
1979, 48-57.

, Lectures on Nielsen Fized Point Theory, Contemp. Math. 14, Amer.

Math. Soc., Providence, 1983.

4.

References

DEPARTMENT OF MATHEMATICS, YANBIAN UNIVERSITY, JILIN PROVINCE, 133002,
CHINA

409



