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ODD SOLUTIONS TO PERTURBED
CONSERVATION LAWS

JEROME A. GOLDSTEIN, MI Al PARK

§1. Introduction

This paper treats the existence of odd solutions of the Cauchy prob-
lem for a perturbation of a conservation law. That is, we find a function
u = u(t, z) satisfying the differential equation

(1) uy + div(f(u))+ g(u)F(x)=0 fort> 0,z €R",
and the initial condition
(2) u(0,2) = ¢(x) forr ¢ R"

This paper was inspired by the paper of M. Schonbek[8],[9] who
proved existence of solutions to singular scalar conservation laws of the
form

o) _

|7]

by regularizing the equation and taking a singular limit using the theory
of compensated compactness. Schoubek worked on (3) for r > 0 with
boundary condition

(3) we + flu), + 0

(4) u(t,0) = 0.

We provide a semigroup approach to M. Schonbek’s work, but we
mainly treat the Cauchy problem (1)-(2) which is not singular at the
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origin. Section 3 deals with the singular case. M. Schonbek worked in
one dimensional space, but we work in n-dimensional ones.

This paper is also influenced by Crandall’s paper[4]. Crandall solved
the Cauchy problem for a conservation law

v+ div(f(v)) =0 fort >0,z € R",

v(0,2) = Y(x) forz € R™

from the point of view of the theory of semigroups of nonlinear trans-
formations.

In order to formulate the problem in an abstract form, we choose a
Banach space X, namely X = L!(R"), and we regard the solution u in
(1) as a map of R* into X (the map t — u(t,-)). Let

n

Au = — Z(f(u))z' for u € D(4),
i=1
Bu = —g(u)F(z) for u € D(B)
where D(A), the domain of A, and D(B), the domain of B, are suitable

subsets of X. For a precise description of D(A4), see [4]. Then the
problem can be formally rewritten as the abstract Cauchy problem

d
—C—I%:AquBu,

U(O) = Ug.

Let A be m-dissipative on X. Let B be (globally) Lipschitzian and
dissipative on X. Then, by perturbation theory, A + B on D(A + B) =
D(A) is m-dissipative on X.

§2. Basic Theorems

We consider the Cauchy problem (1)-(2) and prove the existence of
solutions to this problem.
The following is Benilan’s extension of Crandall’s theorem[1].
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PROPOSITION. Let f : R — R" be continuous with f(0) = 0 and
lim, o L0 — 0. Then Au = — 7, 2 (f:(u)). with D(A) de-

B hon

fined suitably, is m-dissipative on X.

The assumption that lim;_,, —U({%L = 0 holds if f is differentiable

lz| ™7
at the origin. It is not a restriction (beyond cont:nuity) at all if » = 1.

THEOREM 1. Let the assumptions of the Proposition hold for A. Let
Bu(z) = —F(x)g(u). Suppose that g : R — R is (globally) Lipschitzian
and nondecreasing and that F : R® — R is in L* R") and nonnegative

a.e. Then
n

Cu=—Y (fi(u))s; — Fla)glu)

=1
with D(C) = D(A) is m-dissipative on X = L'(R").

Proof. To apply the perturbation theory, we show that B is (glob-
ally) Lipschitzian and dissipative on X:

1Bu=Boll < [ IFlo)llatn) = g(r)ldr

d

< |IF e llgl Liplle = o],
since F € L®(R") and g is Lipschitzian. Thus B is (globally) Lip-
schitzian.
For each u € X, define J by
J(u)={¢ X" |g|* = [[ul]® =< u.6 >}

J is a (multivalued) function called the duality map of X. For u €
X = L'Y(R™), ¢(u) = ||u||signou is a section of the map J on .X. For
each u,v € D(B),

< Bu— Bv,é(u—v) >

= — / ) F(2)[g(u(x)) — g(v(z))]||u — v||signo{u(z) — v(x))dr
<0,
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since g is nondecreasing. Thus B is dissipative.
Therefore C' is m-dissipative on X = L'(R™).

Now we introduce the operator G. Let G be an isomorphism on an
arbitrary Banach space X. That is, G : X — X is bijective, lincar and
G and G~ are continuous. Let X, = {u € X : G+ = u} be the fixed
point set of G. Then X, is a closed subset of X.

EXAMPLE 1. Let X = LY (R"™) and (G, u)(z) = —u(—z) for r € R™
and u € X. Then X, ={u € X :uis odd in X}

2. Let X = L'(R") and (G.u)(z) = u(—z) for r € R" and v € X.
Then the corresponding X, is {u € X : u is even in X}.

Both choices of X, are closed subspaces in this cxample.

G commutes with A means that for v € D(A). Gu € D(A) and
G(Au) = A(Gu) and G anticommutes with A means that for v € D,
Gu € D(A) and G(Au) = ~ A(Gu).

LEMMA 1. Let A, B be as in Section 1. Let G = G, or G; G u(x) =

—u{—x) or Gou(z) = u(—=z). Then A commutes with G, if each f; is
odd. A always anticommutes with G .. Similarly, B commutes with G,
provided ¢ is odd and F is even.

Proof. For u € D(A),

(AGo(u))(z) = A(—u(~z)) = — Z[fz(*?t(—x))]z,w

if each f; is odd

= 2 U=l = ~(Au)(~2) = (Godd(u))(x).

That is, G,(Au)(z) = A(G,u)(z), for each z € R™ and each u € D(A).

The other commuting assertions are proved in a similar way.

THEOREM 2. Let the assumptions of Theorem 1 hold. Suppose that
each f; is odd for 1 < i < n, g is odd and F is even. Let X, = {u €
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X :uisoddin X}. Thenfor A >0, (I —AA+B)): D(A)NX, - X,
is onto Here D(A) is as in [1].
Proof. Consider
w— NA+ B =k

for k € X and A > 0. Applying G = G, to both sides,
() Gu — MA+ B)Gu = Gk,

because G commutes with both A and B. Then I — A A + B) maps
D(A)N X, into X,, since v = Gu implies k = GF. By m-dissipativity

u—AMA+Blu=k

has a unique solution u. For k € X,,i.e.Gk = k, Gu is also a solution
from (5). By uniqueness, u = Gu. Therefore R[(1—AA+B))|x,] = X,
for A > 0.

By the Crandall-Liggett theorem[5], A + B etermines a strongly
continuous contraction semigroup on X,. In other words, if T(t)¢ =
limn—oo(I — £(A+ B))""¢ for ¢ € X, then for ¢ € X,, T(t)¢ € X, for
t > 0 and the semigroup T acts on X,. See [3] for an analogous idea in
the Hamilton-Jacobi context.

§3. An Illustration of the Singular Case

We consider the Cauchy problem (1)-(2) with Dirichlet boundary
condition at 0.

Of concern is when F(0) = oc and F(r) < Ms < oo if |2] > 6 > 0.
See (3) for a specific example.

For simplicity we work in one dimensional space, so consider

g(u)

(6) wet flude t

=0 forzxeR,t>0

with the initial condition
(7 u(0,z) = ¢(z) forr e R

525



Jerome A. Goldstein, Mi Aj Park

and with boundary condition

(8) u(#,0) =0 fort > 0.

where h is continuous, h(z) — 0 as 2 — 0 and for each & > 0, there
1s a € > 0 such that h(x) > € if 2 > 6. We also assume h is even and

1 1
fU Wdl‘ < 0Q.
We consider

ut_(A_FBn’)u:() fOI‘.I'eR,t;i O',

where (A+ Bp)u = — f(u),~ hg((ur)) = Cru and h;(z) is an even function

in L*>(R) N C(0,00) and nonnegative a.e. and {A,} is a decreasing
sequence converging to h.

Let Cu= —f(u), — f:((g; /e want to solve

(9) u—Cu=1

where [ is in a dense set of the space LZ,,, for example, in CX(R/
{0}) and suppl C [e,2] U [~2, —¢] and ! is odd. We know that C, is
m-dissipative by Theorem 1.

LEMMA 2. Let the assumptions of Theorem 2 hold when we take
F(zr) = Z](—z) and let u, satisfy
Uy — A(A+ B,)u, =1

where | € CZ°(R/{0}) and suppl C [e,2]U[—2, —¢] and | is odd. Then
u, € LP(R) and
lunller < {H|ee

for1 < p < oc.

Proof. Since (', is m-dissipative by Theorem 1,

glun) —
ho(z)

(10) Un + flun): +
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has a unique solution wu,. Multiplying (10) by |un|? 2u, = |un(?™!
signg(u,) and integrating both sides yields

/ |un|?dz +/ flun)elun? 2undr + / ‘Z(I(L"iﬂun]””zu,,d‘r
— 00 —OC - OC, n\ L

s @)
= / lun|P 2upde.
—oc

The second term of the left side is

‘/k Flun)zlun]P Pupde = / J(un)zf'(un)|unfp“2u,,d;r

= / H(uy)de =0,

where H' = G and G(u,) = f'{un)|un [P ?up.
The third term of the left side is

/ ), =2, > 0,
-0 hn(‘/r')

since ¢ 18 odd and nondecreasing. Thus

[lunl|Ls < / [P < e el 7

by Holder's inequality. Therefore {|un||pr < ||| for 1 < p < oc,s0 for
1<p<oc.

THEOREM 3. Let the assumptions of Theorem 2 hold. Suppose also
that h is even, h € L>=(R), + € L'(0,1) and for cach € > 0, h is
bounded away from zero on (e,oc). Let | be as in Lemma 2, and let u,,
be the unique solution of

(11) Up — A(A+ Byu, =1,

(1]
[SS]
~I
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where A > 0 is fixed. Then u,, — u in L'(R) and u solves (9). Thus
A+ B = C (with D(C) = D(A)) is densely defined and essentially

m-dissipative and so determines a contraction semigroup on L} ,(R).

Proof. The last part follows by the Crandall-Liggett theorem. Let
u, be the unique solution of (11). We need only show that {u,} is a
Cauchy sequence in LY(R). For n > m,

Un + A(f(un))e + " (o)

implies ,

9(um 7
fmsd l

ha(z) )

U + /\(f(um)r +

where | = )\g(um)(m - -ﬁ—"—}(—;—)) + 1.
Since A + B is dissipative,

llen = wllpr <=1z

o0 , 1 1
Y A e e

But |g(um(z))| < C1 = ||gllc[-a,a] Where @ = ||l[|oc since [[um|[ec <
l{||oo- To simplify the following calculation, suppose h is monotone
nondecreasing on [0, 8] for some § > 0. Then ,for example,we can take

[ h(z) for lz| >
Anl) = { h(L) for |z| <

|dz.

3= 3=

for sufficiently large n. Thus the above calculation becomes

w1 1
n—Umllp < 2XC —
[T / e e

1

= 1
<2/\C/ —dzx
- ! 0 hn(x)

1

w1
< 2)C / —dr - 0
! o h(z)
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as n — oo(with n > m) since + € L'(0,1). Thus u, — u and u is the

desired solution of (9). This completes the proof.

We close with some remarks. It 1s not difficuli to state a version of
Theorem 3 which works for z € R™ rather than r € R. But the local
integrability of -}l- near the origin remains a crucial hypothesis.

If h(z) = c|z|* with ¢,a > 0, then Theorem 3 holds when a < 1.
Schonbek’s example was for @ = 1,which is a much harder case. We
hope to extend over techniques to cover this and other cases for which

1 .
fo %d:c = oc in the future.
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