THE GENERATOR OF THE ANALYTIC GROUP
WITH ITS LIE ALGEBRA $g = \text{rad}(g) \oplus \mathfrak{sl}(2, \mathbb{F})$

MI-AENG WI

1. Introduction

Let \mathbb{F} denote \mathbb{R} or \mathbb{C}. Put $A = SL(2, \mathbb{F})$. Define $\mathbb{P}(\mathbb{F}^2)$ to be the set of all 1-dimensional subspaces of \mathbb{F}^2. Then the natural action of A on \mathbb{F}^2 induces an action on $\mathbb{P}(\mathbb{F}^2)$.

REMARK. The action on $\mathbb{P}(\mathbb{F}^2)$ is doubly transitive with the kernel $\{\pm I\}$. In particular, $\text{PSL}(2, \mathbb{F})$ acts faithfully on $\mathbb{P}(\mathbb{F}^2)$.

NOTATION. $G = \langle A, B \rangle$ means that G is generated by A and B.
$Z(G)$ is a center of G.
$[\ , \]$ is a commutator.

Let $v = \langle (0, 1) \rangle$ and B be a stabilizer of v in A.

Thus $B = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid 0 \neq a, \ b \in \mathbb{F} \right\}$. Put $U = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{F} \right\}$.

Let $\exp : \mathfrak{sl}(2, \mathbb{F}) \to A$ be the exponential map. Let \mathfrak{s}_0 be the subalgebra of $\mathfrak{sl}(2, \mathbb{F})$ given by $\left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in \mathbb{F} \right\}$. Then we have the following Lemmas:

Lemma 1.1. $[B, B] = U = \exp(\mathfrak{s}_0)$.

Proof. Since $B/U \cong \mathbb{F} - \{0\}$ is abelian, $[B, B] \leq U$.

Conversely, for $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \in B$, $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \in U$,

$\left[\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}, \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \right] = \begin{pmatrix} 1 & t(1 - a^{-2}) \\ 0 & 1 \end{pmatrix}$. Thus, $U \leq [B, B]$. Also,
\[U = \exp(s_0) \] since the exponential map from \(\mathfrak{sl}(2, \mathbb{F}) \) to \(A \) is given by ordinary exponential matrices. Put

\[
B^{opp} = \left\{ \begin{pmatrix} a & 0 \\ b & a^{-1} \end{pmatrix} \mid 0 \neq a, \ b \in \mathbb{F} \right\} \text{ and } U^{opp} = \left\{ \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \mid c \in \mathbb{F} \right\}.
\]

Lemma 1.2. \(A \) is generated by \(U \) and \(U^{opp} \).

Proof. We will use Gaussian Elimination.

Let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) be in \(SL(2, \mathbb{F}) \). Put \(K = \langle U, U^{opp} \rangle \) and put \(\lambda(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \mu(t) = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix}, \tau = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) for \(t \in \mathbb{F} \). Left multiplication by \(\mu(t) \) induces the elementary row operation of adding \(t \) times first row to the second row. Left multiplication by \(\lambda(t) \) induces the elementary row operation of adding \(t \) times second row to the first row. Also, left multiplication by \(\tau \) interchanges rows and negates the second row. We first note that \(\tau \in K \), since \(\tau = \lambda(1)\mu(-1)\lambda(1) \).

Next, the diagonal matrix \(\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \) is in \(K \) since \(\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} = \mu(1)\lambda(a)\mu(-a^{-1})\lambda(a^2 + a)(\tau^3) \). Next, any matrix \(\begin{pmatrix} b & 0 \\ -b^{-1} & d \end{pmatrix} \) is in \(K \), since \(\begin{pmatrix} b & 0 \\ -b^{-1} & d \end{pmatrix} = \tau^{-1}\lambda(-db^{-1}) \begin{pmatrix} -b & 0 \\ 0 & -b^{-1} \end{pmatrix} \).

Finally, if \(a \neq 0 \), we have \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \mu(-ca^{-1})^{-1}\lambda(ab) \begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \) is in \(K \).

Corollary 1.3. Any two conjugates of \(U \) generate \(A = SL(2, \mathbb{F}) \).

Proof. Let \(x, y \in A \) with \(U^x \neq U^y \). By Lemma 1.1, \(U^x = [B^x, B^x] \) and \(U^y = [B^y, B^y] \). So, \(B^x \neq B^y \). By doubly transitivity of \(A \) on \(P(\mathbb{F}^2) \), there is \(h \in A \) such that \(B^{xh} = B, \ B^{yh} = B^{opp} \). Then \(\langle U^x, U^y \rangle = \langle U^xh, U^yh \rangle^{h^{-1}} = \langle U, U^{opp} \rangle^{h^{-1}} = A^{h^{-1}} = A \) by Lemma 1.2.

Proposition 1.4. Let \(G^* \) be an analytic group with \(L(G^*) = \mathfrak{sl}(2, \mathbb{F}) \). Put \(\mathfrak{s}_0 = \) the subalgebra of \(\mathfrak{sl}(2, \mathbb{F}) \) given by \(\left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in \mathbb{F} \right\} \).
Then G^* is generated by any two conjugates of $\exp^* (s_o)$, where $\exp^*: sl(2, \mathbb{F}) \to G^*$ is the exponential map.

Proof. Put $U^* = \exp^* (s_o)$. Let X^*, Y^* be two distinct conjugates of U^* in G^*.

Put $H^* = (X^*, Y^*)$. We will show that $H^* = G^*$. We have G^* semisimple. Hence $Z(G^*)$ is discrete, and any proper normal subgroup of G^* is contained in $Z(G^*)$ since $PSL(2, \mathbb{F})$ is simple for any field \mathbb{F} of order bigger then 3. Then $G^*/Z(G^*)$ is a simple analytic group with Lie algebra $sl(2, \mathbb{F})$. Thus $G^*/Z(G^*) \cong PSL(2, \mathbb{F})$, and the quotient map $\varphi: G^* \to G^*/Z(G^*)$ is a covering of $PSL(2, \mathbb{F})$. Then we have a commutative diagram; for any $g \in G^*$,

\[
\begin{array}{ccc}
G^* & \xrightarrow{ad_g} & G^* \\
\exp^* & \downarrow \varphi & \downarrow \varphi \\
sl(2, \mathbb{F}) & \xrightarrow{ad_{\varphi(g)}} & PSL(2, \mathbb{F}) \\
\exp & & \\
PSL(2, \mathbb{F}) & \xrightarrow{ad_{\varphi(g)}} & PSL(2, \mathbb{F})
\end{array}
\]

Here $X^* = (\exp^* (s_o))^g$ for $g \in G^*$.

Then we have $\varphi(X^*) = (\exp(s_o))^\varphi(g)$ by the above commutative diagram. Similarly, $\varphi(Y^*) = (\exp(s_o))^\varphi(h)$ for some $h \in G^*$. Suppose $\varphi(X^*) \neq \varphi(Y^*)$. Let ψ be the quotient map $SL(2, \mathbb{F}) \to PSL(2, \mathbb{F})$.

Since ψ is an epimorphism, we have $\varphi(g) = \psi(g')$ for some $g' \in SL(2, \mathbb{F})$. Then we have a commutative diagram:

\[
\begin{array}{ccc}
SL(2, \mathbb{F}) & \xrightarrow{ad_{g'}} & SL(2, \mathbb{F}) \\
\exp_1 & \downarrow \psi & \downarrow \psi \\
sl(2, \mathbb{F}) & \xrightarrow{ad_{\varphi(g)}} & PSL(2, \mathbb{F}) \\
\exp & & \\
PSL(2, \mathbb{F}) & \xrightarrow{ad_{\varphi(g)}} & PSL(2, \mathbb{F})
\end{array}
\]
This diagram show that $\varphi(X^*) = \psi(\exp_1(s_o)^g')$. Put $\tilde{X} = \exp_1(s_o)^g'$. Similarly, put $\tilde{Y} = \exp_1(s_o)^h'$, where $\varphi(h) = \psi(h')$. Then $\varphi(X^*) = \psi(\tilde{X})$ and $\varphi(Y^*) = \psi(\tilde{Y})$. Thus $\psi(\tilde{X}) \neq \psi(\tilde{Y})$ and so $\tilde{X} \neq \tilde{Y}$. But $(\tilde{X}, \tilde{Y}) = SL(2, \mathbb{F})$ by Corollary 1.3. So, $\langle \varphi(X^*), \varphi(Y^*) \rangle = \psi(\tilde{X}, \tilde{Y}) = PSL(2, \mathbb{F})$. Now, then $\varphi(H^*) = PSL(2, \mathbb{F})$. But $\text{Ker } \varphi = Z(G^*)$ and so $G^* = H^*Z(G^*)$. Since G^* is semisimple, $G^* = [G^*, G^*] = H^*$. So, we are done in this case.

It remains to show that $\varphi(X^*) \neq \varphi(Y^*)$. Suppose $\varphi(X^*) = \varphi(Y^*)$. Then $Z(G^*)X^* = Z(G^*)Y^*$. But $X^* = (Z(G^*)X^*)^0$, a connected component of 1 in $Z(G^*)X^*$, since X^* is connected and so $X^* \leq (Z(G^*)X^*)^0$. Also $Z(G^*)X^*/X^* \cong Z(G^*)/(Z(G^*) \cap X^*)$ discrete. Hence $X^* = (Z(G^*)X^*)^0$. Similarly, $Y^* = (Z(G^*)Y^*)^0$. Hence $X^* = Y^*$, a contradiction.

2. Main Hypothesis

PART I: Assume that G is an analytic group over $\mathbb{F} (= \mathbb{R}$ or $\mathbb{C})$. Let \mathfrak{g} be the Lie algebra of G. Assume that $\mathfrak{g} = \text{rad}(\mathfrak{g}) \oplus \mathfrak{m}$, where $\mathfrak{m} = \mathfrak{sl}(2, \mathbb{F})$.

Before stating Part II of the hypothesis, we first establish notation, as follows.

Let s_o be the subalgebra of $\mathfrak{sl}(2, \mathbb{F})$ given by $\left\{ \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \mid a \in \mathbb{F} \right\}$.

$$q = \text{nil} \text{ rad}(\mathfrak{g})$$
$$s = q \oplus s_o$$
$$S_0 = \exp(s_o)$$
$$S = \exp(s)$$
$$Q = \exp(q)$$
$$M = \exp(m)$$

PART II: Let X denote the group of all continuous automorphisms of S. Assume that no non-identity X-invariant subgroup of S is normal in G.

534
Lemma 2.1. [Theorem 3.18.13 in [3]] Let \(G \) be an analytic group with Lie algebra \(g \), and \(Q(\text{resp. } N) \) the radical (resp. nil radical) of \(G \). Then \(Q \) and \(N \) are closed. Suppose that \(g = q + m \) is a Levi decomposition of \(g \) and that \(M \) is the analytic subgroup of \(G \) defined by \(m \). Then \(G = QM \), and \(M \) is a maximal semisimple analytic subgroup of \(G \).

Remark. Notice that \(g = \text{rad}(g) \oplus m \) is a Levi decomposition of \(g \). Then, by Lemma 2.1, we have \(G = RM \), where \(M \) is a maximal semisimple connected subgroup of \(G \) and \(R \) is the radical of \(G \). Also, \(Q \) is a connected normal Lie subgroup of \(G \) and \(S \) is connected nilpotent.

Now, we want to describe what are the relations among \(S, Q, M \) and \(G \) under the main hypothesis:

Lemma 2.2. [Proposition 2.2 in [5]] \(G = QM \) and \(g = q \oplus m \).

Lemma 2.3. [Lemma 4.3 in [5]] \(S = QS_\circ \) and \(S_\circ \cap Q = 1 \).

Let \(D \) denote the inverse image of \(Z(G/Q) \) in \(G \), where \(Z(G/Q) \) is a center of \(G/Q \).

Lemma 2.4. \(S \cap D = Q \)

Proof. We have \(S = QS_\circ \) and \(S_\circ \cap Q = 1 \) by Lemma 2.3. Thus \(S \cap D = QS_\circ \cap D = Q(S_\circ \cap D) = Q \).

Lemma 2.5. [Lemma 3.2 in [5]] \(M \) is a covering group of \(PSL(2, \mathbb{F}) \).

3. Main Theorem

Theorem 3.1. \(G = \langle S, S^x \rangle \) for any \(x \in G - N_G(S) \), where \(N_G(S) \) is a normalizer of \(S \) in \(G \).

Proof. Let \(x \in G - N_G(S) \). Then \(S \neq S^x \). Put \(\overline{G} = G/Q \). Then \(\bar{S} \neq \bar{S}^x \), since \(Q \leq S \cap S^x \). Here \(\bar{G} \cong M/(M \cap Q) \). Put \(\bar{M} = M/(M \cap Q) \). We need to show that the canonical map \(M \rightarrow \bar{M}/Z(\bar{M}) \) is a covering of \(PSL(2, \mathbb{F}) \), where \(Z(\bar{M}) \) is a center of \(\bar{M} \). By Lemma 2.5, \(M \) is a covering group of \(PSL(2, \mathbb{F}) \) and \(M/K \cong PSL(2, \mathbb{F}) \), where \(K \) discrete kernel of the covering map \(M \rightarrow PSL(2, \mathbb{F}) \). Since \(M \)
is semisimple, \(M = [M, M] \) and so \(Z(M) = K \). Now, \(\tilde{M}/Z(\tilde{M}) = M/(M \cap Q)/Z(M)/Z(M \cap Q) \cong M/Z(M) = M/K \cong PSL(2, \mathbb{F}) \). Since \(\tilde{M} \) is semisimple, \(Z(\tilde{M}) = K/Q \) is discrete. Hence, the canonical map is a covering of \(PSL(2, \mathbb{F}) \).

Now, let \(\pi; M \rightarrow PSL(2, \mathbb{F}) \) and let \(\tilde{M}_0 \) be a subgroup of \(M \) generated by two conjugate of \(S_0 \). Since \(S_0 \cap \ker \pi = 1 \), \(S_0 \ker \pi = S_0 \times \ker \pi \). Also, \(S_0 \) is connected, and so \(S_0 \ker \pi/S_0 \cong \ker \pi \) discrete. \(S_0 \) is connected component of 1 in \(S_0 \ker \pi \). Thus \(S_0 \) is the unique conjugate of \(S_0 \) contained in \(S_0 \ker \pi \). Thus the restriction of \(\pi \) to \(\tilde{M}_0 \) is surjective by Corollary 1.3. Hence \(\tilde{M} = M_0 Z(\tilde{M}) \). Since \(\tilde{M} = [\tilde{M}, \tilde{M}] = [M_0 Z(\tilde{M}), M_0 Z(\tilde{M})] = [M_0, M_0] \leq M_0, M = \tilde{M}_0 \). Thus \(\tilde{M} = \langle S_0, S_0^x \rangle \) for \(x \in G - N_G(S) \). Since \(G = Q M \) by Lemma 2.2, \(G = Q \langle S_0, S_0^x \rangle = \langle QS_0, QS_0^x \rangle = \langle S, S^x \rangle \) for \(x \in G - M_G(S) \).

Corollary 3.5. \(Q = S \cap S^x \) for any \(x \in G - N_G(S) \).

Proof. We have that \(Q \leq S \cap S^x \). Put \(\tilde{G} = G/Q \). Then \(\tilde{S} \cap \tilde{S}^x \) is normal in \(\tilde{G} = \langle \tilde{S}, \tilde{S}^x \rangle \). Thus \(S \cap S^x \) is normal in \(G \). However, \(Q \) is the largest subgroup in \(S \) which is normal in \(G \) by Lemma 2.4. Thus \(S \cap S^x \leq Q \) and so \(S \cap S^x = Q \).

References

5. Mi-Aeng Wi, *The Structure of A Connected Lie Group G with its Lie Algebra g = rad(g) \oplus sl(2, \mathbb{F})*, Honam Mathematical Journal 17 (1995), 7-14.

Department of Mathematics, Chonbook University, Jeonju 560-759, Korea