A CROFTON STYLE FORMULA AND ITS APPLICATION ON THE UNIT SPHERE S^{2*}

Y. D. CHAI AND YOUNG SOO LEE

1. Introduction

Crofton's formula on Euclidean plane E^2 states: Let Γ be a rectifiable curve of length L and let G be a straight line. Then

$$\int_{G \cap \Gamma \neq \phi} n \, dG = 2L$$

where n is the number of the intersection points of G with the curve Γ .

L. A. Santaló gave a generalization of Crofton's formulas to the sphere and found integral formulas in [6, 8] and R. Howard and H. Tasaki obtained formulas in Riemannian homogeneous spaces in [4] and [9], respectively.

In this paper, we define strips on S^2 and their density and, using them, we obtain integral formulas which have relation to the strips. We see that formula (7) can be regarded as a generalization of the Crofton's formula. We also obtain some inequalities on the unit sphere as their applications.

Received March 15, 1996. Revised July 16, 1996.

¹⁹⁹¹ AMS Subject Classification: 53C65, 52A10.

Key words and phrases: Crofton's formula, strip, spherical curvature, parallel set, closed convex curve, maximum breadth.

This paper was partially supported by BSRI-96-1419.

2. Preliminaries and Notations

A circle on the sphere is defined to be a plane section of a sphere. A great circle on the sphere is the section which the plane passes through the center of the sphere; a small circle on the sphere is the section of the other case.

The element of area on the unit sphere will be represented by $d\Omega$. So if θ and ϕ are the spherical coordinates of the point Ω , then

$$d\Omega = \sin\theta d\theta \wedge d\phi.$$

A non-directed great circle C on the unit sphere can be determined by one of its poles, that is, by one of the extremities of the diameter perpendicular to it. Since $d\Omega$ is the element of area of one of these extremities, the "density" for measuring sets of great circles on the sphere is

$$dC = d\Omega$$

that is, the "measure" of a set of great circles on the sphere is defined as the integral of (2) extended over this set.

DEFINITION 1. A closed curve on the sphere is said to be *convex* when it cannot be cut by a great circle in more than two points.

A convex curve divides the sphere into two parts, one of which is always wholly contained in a hemisphere; that is, there is always a great circle which has the whole convex curve on the same side; we only have to consider, for example, a great circle tangent to the curve at some point.

When we say a *convex set*, we understand that part of the surface of the sphere which is limited by a convex curve and is smaller than or equal to a hemisphere.

3. Integral Formulas and Some Inequalities on S^2

W. Blaschke states Crofton's formula in [1]: Let Γ be a convex curve of length L on the unit sphere and let C be a great circle. Then the measure of the great circles which cut a convex curve Γ is equal to the length of this curve, that is,

$$\int_{C \cap \Gamma \neq \phi} dC = L.$$

If K is a closed convex curve on the unit sphere of enclosing area F and length L and $F(K_{\rho})$ and $L(K_{\rho})$ are the area and the length of the outer parallel curve K_{ρ} to K at the distance $\rho \leq \pi/2$, respectively, then [2]

(4)
$$F(K_{\rho}) = L \sin \rho + F \cos \rho + 2\pi (1 - \cos \rho),$$
$$L(K_{\rho}) = L \cos \rho + (2\pi - F) \sin \rho.$$

As an application of the formula (4) L. A. Santaló proved the isoperimetric inequality on the unit sphere: If K is a closed convex curve on the unit sphere of enclosing area F and length L, then

$$(5) L^2 + F^2 - 4\pi F \ge 0.$$

Assume $\rho \leq \pi$. By a *strip* B of breadth ρ we mean the closed part of the sphere consisting of all points that lie between two parallel circles at a distance $\rho/2$ from a great circle.

The position of a strip B can be determined by the position of its mid-parallel great circle; in other words, it can be determined by the pole Ω of the great circle. Therefore the density for sets of strips of fixed breadth will be

$$(6) dB = d\Omega$$

where Ω is the extremity of the great circle.

Now we get a generalization of the Crofton's formula on S^2 .

THEOREM 1. Let K be a convex set on the unit sphere of area F and perimeter L and of the greatest radius r_M of spherical curvature of ∂K and let B be the strip of breadth ρ ($0 \le \rho \le \pi - 2r_M$). If K is fixed and B is moving, then

(7)
$$\int_{B \cap K \neq \phi} dB = L \cos \frac{\rho}{2} + (2\pi - F) \sin \frac{\rho}{2}.$$

Proof. If $B \cap K \neq \phi$, the mid-parallel C of B intersects the parallel set $K_{\frac{\rho}{2}}$ of K in the distance $\frac{\rho}{2}$. Conversely, if the mid-parallel C of B intersects $K_{\frac{\rho}{2}}$, then B intersects K. Since the parallel set $K_{\frac{\rho}{2}}$ is convex, using (3) and (4), we have

$$\int_{B \cap K \neq \phi} dB = \int_{C \cap K_{\frac{\rho}{2}} \neq \phi} dC = L \cos \frac{\rho}{2} + (2\pi - F) \sin \frac{\rho}{2}. \quad \Box$$

REMARK 1. If $\rho = 0$, then the strip reduces to a great circle and so Theorem 1 implies the Crofton's formula as a special case.

As a particular case of a set K in Theorem 1, (7) gives us the following.

COROLLARY 1. The measure of all strips of breadth ρ that contain a fixed point P is $2\pi \sin \frac{\rho}{2}$.

Proof. Since the point has area zero and the perimeter zero, the proof follows from (7). \Box

COROLLARY 2. Let N convex sets K_i ($i=1,\dots,N$) be contained in a bounded convex set K on the unit sphere and let L_i be the perimeter of K_i and let r_M be the greatest of the radii r_{M_i} of the spherical curvature of ∂K_i . If N convex sets K_i ($i=1,\dots,N$) are fixed and B is moving, then for the strip B of breadth $\rho(0 \le \rho \le \pi - 2r_M)$ we have

$$\int_{B\cap K\neq \phi} ndB = \sum_{1}^{N} L_{i} \cos \frac{\rho}{2} + (2\pi N - \sum_{1}^{N} F_{i}) \sin \frac{\rho}{2},$$

where n denotes the number of the sets K_i that are intersected by the strip B.

Proof. For the strip B of breadth ρ $(0 \le \rho \le \pi - 2r_M)$, by Theorem 1, we have

$$\int_{B\cap K\neq\phi} n \, dB = \sum_{i=1}^{N} m(B; B\cap K_i \neq \phi)$$

$$= \sum_{i=1}^{N} \left(L_i \cos\frac{\rho}{2} + (2\pi - F_i) \sin\frac{\rho}{2} \right)$$

$$= \sum_{i=1}^{N} L_i \cos\frac{\rho}{2} + (2\pi N - \sum_{i=1}^{N} F_i) \sin\frac{\rho}{2}. \quad \Box$$

THEOREM 2. Let D be the domain on the unit sphere, not necessarily convex, of area F and let B be the strip of breadth ρ . If D is fixed and B is moving, then

$$\int_{B \cap D \neq \phi} f \, dB = 2\pi F \sin \frac{\rho}{2},$$

where f is the area of $B \cap D$.

Proof. The density for sets of pairs of points and strips (Ω, B) , assuming the independence of Ω and B, is $d\Omega \wedge dB$. The measure of the set of pairs (Ω, B) such that $\Omega \in B \cap D$ is

$$\int_{\Omega \in B \cap D} d\Omega \wedge dB.$$

To calculate this integral we fix Ω and apply Corollary 1. Then

$$\begin{split} \int_{\Omega \in B \cap D} d\Omega \wedge dB &= \int_{\Omega \in D} d\Omega \, \int_{\Omega \in B} dB \\ &= 2\pi \sin \frac{\rho}{2} \int_{\Omega \in D} d\Omega \\ &= 2\pi F \sin \frac{\rho}{2}, \end{split}$$

where ρ is the breadth of B. On the other hand, if we fix B and call f the area of $B \cap D$, then

$$m(\Omega, B; \Omega \in B \cap D) = \int_{B \cap D \neq \phi} f \, dB.$$

Thus

$$\int_{B \cap D \neq \phi} f \, dB = 2\pi F \sin \frac{\rho}{2}. \quad \Box$$

THEOREM 3. Let K be a closed convex curve on the unit sphere of enclosing area F and length L. If K is fixed and B is moving, then for the strip B with the breadth $\rho(\rho \leq \pi)$

$$\int_{B\cap K\neq\phi}(\bar{u}^2+\bar{f}^2)dB\geq 8\pi^2F\sin\frac{\rho}{2},$$

where \bar{u} , \bar{f} are the perimeter and area of the convex hull of $B \cap K$, respectively.

Proof. Consider the convex hull $\overline{B \cap K}$ of $B \cap K$ and let u, \bar{f} be the perimeter and area of $\overline{B \cap K}$, respectively. Then, by (5), we have $u^2 + \bar{f}^2 \geq 4\pi \bar{f}$. Since $f < \bar{f}$, using Theorem 2, we have

$$\int_{B\cap K\neq\phi} (\bar{u}^2 + \bar{f}^2)dB \ge 4\pi \int_{B\cap K\neq\phi} \bar{f}dB$$

$$\ge 4\pi \int_{B\cap K\neq\phi} fdB = 8\pi^2 F \sin\frac{\rho}{2}. \quad \Box$$

The following lemma is due to L. A. Santaló.

LEMMA 1. Let K be a convex curve on the unit sphere of enclosing area F and length L with the maximum breadth δ ($\delta \leq \pi/2$). Then

$$L/(2\pi - F) \le \tan\frac{\delta}{2}.$$

Proof. See [7].
$$\square$$

THEOREM 4. Let K be a closed convex curve on the unit sphere of enclosing area F and length L with the maximum breadth $\delta (\delta \leq \frac{\pi}{2})$ and let r_M be the greatest radius of spherical curvature of ∂K . Then for any number ρ in $[0, \pi - 2r_M]$, we have

(8)
$$L\cos\frac{\rho}{2} + (2\pi - 3F)\sin\frac{\rho}{2} \ge 0.$$

Proof. Let B be the strip with the breadth $\rho (0 \le \rho \le \pi - 2r_M)$.

Consider the convex hull $\overline{B \cap K}$ of $B \cap K$ and let \overline{u} , \overline{f} be the perimeter and area of $\overline{B \cap K}$, respectively.

Since the diameter δ' of $\overline{B \cap K}$ is also less than or equal to $\frac{\pi}{2}$, we have $\tan \frac{\delta'}{2} \leq 1$ and so, by Lemma 1, we have $\bar{u} \leq 2\pi - \bar{f}$.

Using the inequality $\bar{u}^2 + \bar{f}^2 \leq (\bar{u} + \bar{f})^2$, by Theorem 1 and Theorem 3 we have

$$8\pi^{2}F\sin\frac{\rho}{2} \leq \int_{B\cap K\neq\phi} (\bar{u}^{2} + \bar{f}^{2})dB \leq \int_{B\cap K\neq\phi} (\bar{u} + \bar{f})^{2}dB$$
$$\leq 4\pi^{2}\int_{B\cap K\neq\phi} dB = 4\pi^{2}\left(L\cos\frac{\rho}{2} + (2\pi - F)\sin\frac{\rho}{2}\right).$$

Hence we have

$$L\cos\frac{\rho}{2} + (2\pi - 3F)\sin\frac{\rho}{2} \ge 0. \quad \Box$$

The followings justify the our main theorem for a region on the unit sphere.

REMARK 2. (1) Let K be a circle of radius $\frac{\pi}{4}$. Then $r_M = \frac{\pi}{4}$, $L = \sqrt{2}\pi$ and $F = (2 - \sqrt{2})\pi$. So if we take $\rho = \frac{\pi}{3}$, then

$$L\cos\frac{\rho}{2} + (2\pi - 3F)\sin\frac{\rho}{2} = 1.34\pi > 0.$$

(2) If K is a circle of radius $\frac{7}{18}\pi$ and we take $\rho = \frac{\pi}{2}$, then the inequality

(8) in Theorem 4 fails to hold. Indeed, in this case L=5.90 and F=4.13 and so

$$L\cos\frac{\rho}{2} + (2\pi - 3F)\sin\frac{\rho}{2} = -0.15 < 0.$$

So our assumption in Theorem 4 is needed.

Y. D. Chai and Young Soo Lee

COROLLARY 3. Let K be a convex set on the unit sphere of area F and perimeter L with the diameter less than or equal to $\frac{\pi}{2}$ and with the greatest radius of spherical curvature of ∂K is less than or equal to $\frac{\pi}{4}$. Then

$$L + (2\pi - 3F) \ge 0.$$

Proof. Take $\rho = \frac{\pi}{2}$ in Theorem 4. Then the proof follows from the Theorem 4 immediately. \square

References

- W. Blaschke, Vorlesungen über Integralgeometrie, Hamburger Mathematische Einzelschriften, Leipzig und Berlin, 1935.
- 2. T. Bonnesen, Les problèmes des isopérimètres et des isépiphanes, Gauthier-Villars, Paris, 1929.
- R. Hermann, Remarks on the foundation of integral geometry, Rend. Circ. Mat. Palermo, Ser. II 9 (1960), 91-96.
- H. Howard, The kinematic formula in Riemannian homogeneous spaces, Memoirs AMS, No. 509, 1993.
- D. L. Ren, Topics in integral geometry, Series in Pure Mathematics, Vol. 19, World Scientific, 1994.
- L. A. Santalo, Integral formulas in Crofton's style on the sphere and some inequalities referring to spherical curves, Duke Math. J. 9 (1942), 707-722.
- L. A. Santalo, Note on convex spherical curves, Bull. Amer. Math. Soc. 50 (1944), 528-534.
- 8. L. A. Santalo, Integral geometry and geometric probability, Encyclopedia of Math. and its appl. Vol. 1, Addison-Wesley, 1976.
- 9. H. Tasaki, Integral geometry under cut loci in compact symmetric spaces, Nagoya Math. J. 137 (1995), 33-53.

DEPARTMENT OF MATHEMATICS, SUNG KYUN KWAN UNIVERSITY, SUWON 440-746, KOREA