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A CROFTON STYLE FORMULA AND ITS
APPLICATION ON THE UNIT SPHERE S**

Y. D. CHAl AND YOUNG S00O LEE

1. Introduction

Crofton’s formula on Euclidean plane E? states: Let I be a rectifiable
curve of length L and let G be a straight line. Then

/ ndG = 2L
Gnl'#o

where n is the number of the intersection points of G with the curve T'.

L. A. Santal6 gave a generalization of Crofton’s formulas to the
sphere and found integral formulas in [6, 8] and R. Howard and H.
Tasaki obtained formulas in Riemannian homogeneous spaces in [4] and
[9], respectively.

In this paper, we define strips on 52 and their density and, using
them, we obtain integral formulas which have relation to the strips.
We see that formula (7) can be regarded as a generalization of the
Crofton’s formula. We also obtain some inequalities on the unit sphere
as their applications.
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2. Preliminaries and Notations

A circle on the sphere is defined to be a plane section of a sphere. A
great circle on the sphere is the section which the plane passes through
the center of the sphere; a small circle on the sphere is the section of
the other case.

The element of area on the unit sphere will be represented by dS.
So if 8 and ¢ are the spherical coordinates of the point €, then

(1) dQ = sin6dé A d¢.

A non-directed great circle C' on the unit sphere can be determined
by one of its poles, that is, by one of the extremities of the diameter
perpendicular to it. Since dQ is the element of area of one of these
extremities, the “density” for measuring sets of great circles on the
sphere is

(2) dC = d)

that is, the “measure” of a set of great circles on the sphere is defined
as the integral of (2) extended over this set.

DEFINITION 1. A closed curve on the sphere is said to be convez
when it cannot be cut by a great circle in more than two points.

A convex curve divides the sphere into two parts, one of which is
always wholly contained in a hemisphere; that is, there is always a
great circle which has the whole convex curve on the same side; we
only have to consider, for example, a great circle tangent to the curve
at some point.

When we say a convez set, we understand that part of the surface
of the sphere which is limited by a convex curve and is smaller than or
equal to a hemisphere.
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3. Integral Formulas and Some Inequalities on S*

W. Blaschke states Crofton’s formula in [1]: Let T' be a convex curve
of length L on the unit sphere and let C be a great circle. Then the
measure of the great circles which cut a convex curve I is equal to the
length of this curve, that is,

(3) / dC = L.
Cnl'#¢

If K is a closed convex curve on the unit sphere of enclosing area
F and length L and F(K,) and L(K,) are the area and the length of
the outer parallel curve K, to K at the distance p < /2, respectively,
then [2]

. F(R,)= Lsinp + Fcosp+ 2n(1 -- cos p),
(4) L(K,)= Lcosp+ (2r — F)sinp.

As an application of the formula (4) L. A. Santalé proved the isoperi-
metric inequality on the unit sphere: If K is a closed convex curve on
the unit sphere of enclosing area F' and length L, then

(5) L*+ F? —4nF > 0.

Assume p < 7. By a strip B of breadth p we mcan the closed part of
the sphere consisting of all points that lie between two parallel circles
at a distance p/2 from a great circle.

The position of a strip B can be determined by the position of its
mid-parallel great circle; in other words, it can be determined by the
pole Q of the great circle. Therefore the density for sets of strips of

fixed breadth will be
(6) dB = df2

where 2 is the extremity of the great circle.
Now we get a generalization of the Crofton’s formula on S2.
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THEOREM 1. Let R be a convex set on the unit sphere of area F
and perimeter L and of the greatest radius ry; of spherical curvature
of OK and let B be the strip of breadth p(0 < p < 7w —2ry). f K is
fixed and B is moving, then

(7) / dB:Lcos£+(27r—F)sin£.
BAK#¢ 2 2

Proof. If BN R # ¢, the mid-parallel C of B intersects the parallel
set K% of K in the distance £. Conversely, if the mid-parallel C of B
intersects K%, then B intersects K. Since the parallel set K% is convex,
using (3) and (4), we have

/ dB:/ dC = Leos2 + (2n - Fysn 2. O
BAK+#¢ CNK g #6 2 2

REMARK 1. If p = 0, then the strip reduces to a great circle and so
Theorem 1 implies the Crofton’s formula as a special case.

As a particular case of a set K in Theorem 1, (7) gives us the fol-
lowing.

COROLLARY 1. The measure of all strips of breadth p that contain
a fixed point P is 2msin £.

Proof. Since the point has area zero and the perimeter zero, the
proof follows from (7). O

COROLLARY 2. Let N convex sets K;(i = 1,--- | N) be contained
in a bounded convex set K on the unit sphere and let L; be the perime-
ter of K; and let rp; be the greatest of the radii ry;, of the spherical
curvature of ;. If N convex sets K;(1 = 1,--- ,N) are fixed and B
1s moving, then for the strip B of breadth p(0 < p < m — 2ry;) we have

ndB =Y L;cos? + (27N - Y F)) sm
/Br‘\h’#q) Z 2 Z
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where n denotes the number of the sets K; that are intersected by the
strip B.

Proof. For the strip B of breadth p (0 < p < —2ry), by Theorem
1, we have

/ ndB = m(B; BN K; # ¢)
BK#¢

fi

Il

N

1

N
Z (L cos o —+— (2 — F;isin -g)
1

N p N o
; 5 27rN~Z]‘ Fj)sin 3 a

THEOREM 2. Let D be the domain on the unit sphere, not necessar-
ily convex, of area F' and let B be the strip of breadth p. If D is fixed
and B is moving, then

/ fdB = 2nFsin 2,
BnD#¢ 2

where f is the area of BN D.

Proof. The density for sets of pairs of points and strips ({2, B), as-
suming the independence of  and B, is dQ A dB. The measure of the
set of pairs (§2, B) such that 2 € BN D is

/ dQ A dB.
QeBnD

To calculate this integral we fix  and apply Corollary 1. Then

/ dQ/\dB:/ dQ/ dB
QcBnD QeD QB

:27rsin£/ dQ)
2 Jaen

. P
= 27 F sin =
it s1n2,
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where p is the breadth of B. On the other hand, if we fix B and call f
the area of B N D, then

m(Q,B;QEBﬂD):/ fdB.
BnD#¢

Thus
/ de:?nFsinB. O
BAD#4 2

THEOREM 3. Let K be a closed convex curve on the unit sphere of
enclosing area F and length L. If K is fixed and B is moving, then for
the strip B with the breadth p(p < )

/ (u* + f*)dB > 8xF sinf-,
BNK#¢

%]

where i, f are the perimeter and area of the convex hull of B N K,
respectively.

Proof. Consider the convex hull BN A of BN K and let u, f be
the perimeter and area of BN K, respectively. Then, by (5), we have
u? + f* > 4rf. Since f < f, using Theorem 2, we have

/ (u* + f3)dB > 47r/ fdB
BnK+#¢ BnK#¢

> 47r/ fdB =8r*Fsnf. DO
BAK+#¢ 2

The following lemma is due to L. A. Santald.

LEMMA 1. Let K be a convex curve on the unit sphere of enclosing
area F' and length L with the maximum breadth § (6 < x/2). Then

L/(2m — F) < tan g
Proof. See [7]. O
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THEOREM 4. Let K be a closed convex curve on the unit sphere of

m

enclosing area F' and length L with the maximum breadth é (6 < T)
and let rp; be the greatest radius of spherical curvature of 0. Then
for any number p in [0, # — 2r ], we have

(8) Lcosg+(27r—3F)sin-g— > 0.

Proof. Let B be the strip with the breadth p (0 < p <7 — 2rpy).

Consider the convex hull BN K of BNK and let @, f be the perime-
ter and area of BN K, respectively.

Since th( diameter 6’ of BN K is also less than or equal to 7+ we

have tan % <1 and so, by Lemma 1, we have u << 27 — f.
Using the inequality 42+ f? < (a+ f)?, by Theorem 1 and Theorem

3 we have

87r2Fsing < / (u? 4 f2)dB < / (u+ f)*dB
BnK+#¢ BnKs#¢

§47r2/ dB:4#2(Lcos£~+—(27r—F)sin—p—>.
BnK#¢ 2 2

Hence we have

Lcos§+(27r—3F)sm—>0 O

The followings justify the our main theorem for a region on the unit
sphere.

™

REMARK 2. (1) Let I be a circle of radius §. Then rayy = I"’
L=v2rand F = (2 — V2)7. So if we take p = 7, then

Lcos— (27r~3F)51n§—134 > 0.

(2) If K is a circle of radius 1377 and we take p = 7, then the inequality
(8) in Theorem 4 fails to hold. Indeed, in th1:. case L = 5.90 and
F =413 and so

Lcos 2 3 + (27 — 3F)81n-2— =-0.15< 0.

So our assumption in Theorem 4 is needed.
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COROLLARY 3. Let K be a convex set on the unit sphere of area F
and perimeter L with the diameter less than or equal to 5 and with
the greatest radius of spherical curvature of 0K is less than or equal to

4. Then
L+ (27 —3F) > 0.

Proof. Take p = £ in Theorem 4. Then the proof follows from the
Theorem 4 immediately. O
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