A NEW EQUILIBRIUM EXISTENCE
VIA CONNECTEDNESS

DONG IL RIM, SUNG MO IM AND WON KYU KIM

In 1950, Nash [5] first proved the existence of equilibrium for games where the player's preferences are representable by continuous quasi-concave utilities and the strategy sets are simplexes. Next Debreu [3] proved the existence of equilibrium for abstract economies. Recently, the existence of Nash equilibrium can be further generalized in more general settings by several authors, e.g. Shafer-Sonnenschein [6], Borglin-Keiding [2], Yannelis-Prabhakar [8]. In the above results, the convexity assumption is very essential and the main proving tools are the continuous selection technique and the existence of maximal elements. Still there have been a number of generalizations and applications of equilibrium existence theorem in generalized games.

In this note, we first give a new maximal element existence theorem using the connectedness and next we shall prove a new equilibrium existence theorem for non-compact non-convex 1-person game. We also give an example that the previous results due to Shafer-Sonnenschein [6], Borglin-Keiding [2], Yannelis-Prabhakar [8], Tian [7] do not work; however our result can be applicable.

We first recall the following notations and definitions. Let \(A \) be a non-empty set. We shall denote by \(2^A \) the family of all subsets of \(A \). Let \(X, Y \) be non-empty topological spaces and \(T : X \to 2^Y \) be a correspondence. Then \(T \) is said to be open or have open graph (respectively, closed or closed graph) if the graph of \(T \) (\(\text{Gr} T = \{(x, y) \in X \times Y : y \in T(x)\} \)) is open (respectively, closed) in \(X \times Y \). We may call \(T(x) \) the
upper section of T, and $T^{-1}(y) = \{ x \in X \mid y \in T(x) \}$ the lower section of T. It is easy to check that if T has open graph, then the upper and lower sections of T are open; however the converse is not true in general. A multimap $T : X \to 2^Y$ is said to be closed at x if for each net $(x_\alpha) \to x$, $y_\alpha \in T(x_\alpha)$ and $(y_\alpha) \to y$, then $y \in T(x)$. And T is closed on X if it is closed at every point of X. Note that if T is single-valued, then the closedness is equivalent to continuity as a function. A correspondence $T : X \to 2^Y$ is said to be upper semicontinuous if for each $x \in X$ and each open set V in Y with $T(x) \subset V$, then there exists an open neighborhood U of x in X such that $T(y) \subset V$ for each $y \in U$. It is easy to see that when X and Y are regular topological spaces and T is upper semicontinuous and each $T(x)$ is non-empty closed, then T has closed graph; so T is closed (for the proof, see Proposition 11.9 of Border [1]).

Let $T : X \to 2^Y$ be a correspondence; then $x \in X$ is called a maximal element for T if $T(x) = \emptyset$. Indeed, in real applications, the maximal element may be interpreted as the set of those objects in X that are the “best” or “largest” choices.

Let I be a (possibly uncountable) set of agents. For each $i \in I$, let X_i be a non-empty set of actions. A generalized game (or an abstract economy) $\Gamma = (X_i, A_i, P_i)_{i \in I}$ is defined as a family of ordered triples (X_i, A_i, P_i) where X_i is a non-empty topological space (a choice set), $A_i : \prod_{j \in I} X_j \to 2^{X_i}$ is a constraint correspondence and $P_i : \prod_{j \in I} X_j \to 2^{X_i}$ is a preference correspondence. An equilibrium for Γ is a point $\hat{x} \in X = \prod_{i \in I} X_i$ such that for each $i \in I$, $\hat{x}_i \in A_i(\hat{x})$ and $P_i(\hat{x}) \cap A_i(\hat{x}) = \emptyset$. In particular, when $I = \{1, \cdots, n\}$, we may call Γ an N-person game.

We begin with the following:

Lemma. Let X be a non-empty connected subset of a Hausdorff topological space E and $T : X \to 2^X$ be closed at every x, where $T(x) \neq \emptyset$, such that

1. $T^{-1}(y_\alpha)$ is non-empty open in X for some $y_\alpha \in X$,
2. $x \notin T(x)$ for each $x \in X$.

Then T has a maximal element $\hat{x} \in X$, i.e., $T(\hat{x}) = \emptyset$.

Proof. Suppose the assertion were false. Then $T(x)$ is non-empty.
for each \(x \in X \) and so \(T \) is closed at every \(x \in X \). Since \(T \) is closed, the lower section \(T^{-1}(y_o) \) is closed. In fact, for every net \((x_\alpha)_{\alpha \in \Gamma} \subset T^{-1}(y_o) \) with \((x_\alpha) \to x \), we have \(y_o \in T(x_\alpha) \) for each \(\alpha \in \Gamma \) and \((x_\alpha) \to x \), so by the closedness of \(T \) at \(x \), \(x \in T^{-1}(y_o) \). Hence \(x \in T^{-1}(y_o) \), so \(T^{-1}(y_o) \) is closed. By the assumption (1), \(T^{-1}(y_o) \) is also non-empty open. Therefore, by the connectedness of \(X \), \(T^{-1}(y_o) = X \). Hence we have \(y_o \in T(x) \) for each \(x \in X \) and hence \(y_o \in T(y_o) \), which contradicts the assumption (2). Therefore \(T \) has a maximal element \(\hat{x} \in X \), i.e. \(T(\hat{x}) = \emptyset \). This completes the proof.

It should be noted that in the above Lemma, we do not need the compact convex assumption on \(X \) and also do not need the closed convex assumption on \(T(x) \); but we shall need the non-empty open lower section at some special point.

The following simple example is suitable for our Lemma:

Example 1. Let \(X = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x, \ 0 \leq y \leq \frac{1}{2}\} \) be a connected set in \(\mathbb{R}^2 \) and a correspondence \(T: X \to 2^X \) be defined as follows:

\[
T(x, y) := \begin{cases}
\text{line segment from } (0,0) \text{ to } \frac{1}{2} (x, y), & \text{if } (x, y) \neq (0,0), \\
\emptyset, & \text{if } (x, y) = (0,0).
\end{cases}
\]

Then it is easy to show that the correspondence \(T \) is closed at every \((x, y) \neq (0,0) \) and \((x, y) \notin T(x, y) \) for each \((x, y) \in X \). And note that \(T^{-1}(0,0) = X \setminus (0,0) \) is open in \(X \). Therefore, by Lemma, \(T \) has a maximal element \((0,0) \) in \(X \).

Using Lemma, we shall prove a basic new equilibrium existence theorem for a connected 1-person game.

Theorem. Let \(\Gamma = (X, A, P) \) be an 1-person game such that

1. \(X \) is a non-empty connected subset of a regular topological space,
2. the correspondence \(A: X \to 2^X \) is upper semicontinuous such that for each \(x \in X \), \(A(x) \) is non-empty closed in \(X \),
3. the correspondence \(P: X \to 2^X \) is upper semicontinuous such that \(P(x) \) is closed in \(X \) for each \(x \in X \), and \(P(x) \) is non-empty for each \(x \notin \mathcal{F} := \{x \in X : x \in A(x)\} \),

589
(4) for some \(y_o \in X \), \(A^{-1}(y_o) \) and \(A^{-1}(y_o) \cap P^{-1}(y_o) \) are non-empty open in \(X \),

(5) for each \(x \in X \), \(x \notin P(x) \).

Then \(\Gamma \) has an equilibrium choice \(\hat{x} \in X \), i.e.,

\[\hat{x} \in A(\hat{x}) \quad \text{and} \quad A(\hat{x}) \cap P(\hat{x}) = \emptyset. \]

Proof. Note that since \(A \) is closed and the assumptions (2) and (4), by using Lemma, the fixed point set \(\mathcal{F} \) of \(A \) is non-empty closed.

We now define a correspondence \(\phi : X \rightarrow 2^X \) by

\[
\phi(x) = \begin{cases}
 P(x), & \text{if } x \notin \mathcal{F}, \\
 A(x) \cap P(x), & \text{if } x \in \mathcal{F}.
\end{cases}
\]

Then, by the assumption (5), we have \(x \notin \phi(x) \) for each \(x \in X \). We shall show that \(\phi \) is upper semicontinuous. Let \(V \) be any open subset of \(X \) containing \(\phi(x) \). Then we let

\[
U := \{ x \in X : \phi(x) \subset V \} = \{ x \in \mathcal{F} : \phi(x) \subset V \} \cup \{ x \in X \setminus \mathcal{F} : \phi(x) \subset V \} = \{ x \in \mathcal{F} : (A \cap P)(x) \subset V \} \cup \{ x \in X \setminus \mathcal{F} : P(x) \subset V \} = \{ x \in X : (A \cap P)(x) \subset V \} \cup \{ x \in X \setminus \mathcal{F} : P(x) \subset V \}.
\]

Since \(X \setminus \mathcal{F} \) is open, \(P \) is upper semicontinuous and \(A \cap P \) is upper semicontinuous at every \(x \) with \((A \cap P)(x) \neq \emptyset \), \(U \) is open and hence \(\phi \) is also upper semicontinuous at every \(x \) with \(\phi(x) \neq \emptyset \). Since each \(\phi(x) \) is closed, by Proposition 11.9 of Border [1], \(\phi \) is closed at every \(x \in X \) with \(\phi(x) \neq \emptyset \).

Next we shall show that \(\phi^{-1}(y_o) \) is an open subset of \(X \). In fact, by the assumption (4), we have that

\[
\phi^{-1}(y_o) = \{ x \in X : y_o \in \phi(x) \} = \{ x \in \mathcal{F} : y_o \in \phi(x) \} \cup \{ x \in X \setminus \mathcal{F} : y \in \phi(x) \} = [\mathcal{F} \cap (A \cap P)^{-1}(y_o)] \cup [(X \setminus \mathcal{F}) \cap P^{-1}(y_o)] = P^{-1}(y_o) \cap [A^{-1}(y_o) \cup ((X \setminus \mathcal{F}) \cap P^{-1}(y_o))] = [P^{-1}(y_o) \cap A^{-1}(y_o)] \cup [(X \setminus \mathcal{F}) \cap P^{-1}(y_o)].
\]

590
is non-empty open in X. Therefore, by Lemma, there exists a point $\hat{x} \in X$ such that $\phi(\hat{x}) = \emptyset$. If $\hat{x} \notin \mathcal{F}$, then $\phi(\hat{x}) = P(\hat{x}) = \emptyset$, which is a contradiction. Therefore, we have $\hat{x} \in \mathcal{F}$ and $\phi(\hat{x}) = A(\hat{x}) \cap P(\hat{x}) = \emptyset$, i.e., $\hat{x} \in A(\hat{x})$ and $A(\hat{x}) \cap P(\hat{x}) = \emptyset$. This completes the proof.

Remark. Our Theorem is quite different from the previous many equilibrium existence theorems (e.g. Shafer-Sonnenschein [6], Borglin-Keiding [2], Yannelis-Prabhakar [8], Kim [4]). In these results, the compactness and convexity assumptions are very essential. But we do not need any compact convex assumption on the choice set X, but we only need the connectedness assumption. Also we do not need the convexity assumptions on the values $A(x)$ and $P(x)$ and strong open lower section assumptions; but we need the weaker open lower section property at some special point.

Next we give an example of a connected 1-person game where our Theorem can be applicable but the previous known results can not be applicable:

Example 2. Let $X = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x, 0 \leq y \leq \frac{1}{r}\}$ be a connected choice set and the correspondences $A, P : X \to 2^X$ be defined as follows:

$$A(x, y) := \{(s, t) \mid s = y, 0 \leq t \leq \frac{1}{y} \text{ or } 0 \leq s \leq y, t = 0\},$$

for each $(x, y) \in X$,

$$P(x, y) := \begin{cases} \emptyset, & \text{for each } (x, x) \in X \text{ with } 0 \leq x \leq 1, \\ \{(s, t) \mid s = y, 0 \leq t \leq \frac{1}{y} \text{ or } 0 \leq s \leq y, t = 0\}, & \text{otherwise}. \end{cases}$$

Here, we shall use $1/0$ as the infinity for simplicity of the formula. Then it is easy to show that the correspondence A is upper semicontinuous and each $A(x, y)$ is non-empty closed and the fixed point set \mathcal{F} of A is exactly the diagonals of X, i.e., $\mathcal{F} = \{(x, x) \mid 0 \leq x \leq 1\}$. Also we have that P is upper semicontinuous on $X \setminus \mathcal{F}$ and $P(x, y)$ is non-empty closed at every point except on the diagonals. And note that
$A^{-1}(0,0) = X$ is open and $P^{-1}(0,0) = X \setminus \mathcal{F}$ is also open. Therefore all assumptions of Theorem are satisfied, so that we can obtain an equilibrium point $(0,0) \in X$ such that $(0,0) \in A(0,0)$ and $A(0,0) \cap P(0,0) = \emptyset$.

Finally, it should be noted that by modifying the methods in Borglin-Keiding [2] or Kim [4], we can show that the case of N-agents can be reduced to the 1-person game.

References

Department of Mathematics and Department of Mathematics Education, Chungbuk National University, Cheongju 360-763, Korea