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INVERSE PROBLEM FOR SEMILINEAR
CONTROL SYSTEMS

JoNG-YEOUL PARK, JIN-MUN JEONG AND YOUNG-CHEL KwWuUN

1. Introduction

Let consider the following problem: find an element u(t) in a Banach
space U from the equation

o (1) = Az(t) + f(t,2(t) + Sou(t), 0<t<T
with initial and terminal conditions
z(0)=0, z2(T)=2¢

in a Banach space X where ¢ € D(A). This problem is a kind of con-
trol engineering inverse problem and contains nenlinear term, so that
it is difficult and interesting. The proof of main result in this paper is
based on the Fredholm property of [1] in section 3. Similar considera-
tions of linear system have been dealt with in many references. Among
these literatures, Suzuki[5] introduced this problem for heat equation
with unknown spatially-varing conductivity. Nakagiri and Yamamoto|[2]
considered the identifiability problem, which A is a unknown operator
to be identified, where the system is described by a linear retarded
functional differential equation. We can also apply to determining the
magnitude of the control set for approximate controllability if X is a
reflexive space, i.e., we can consider whether a dense subset of X 1is
covered by reachable set in section 4.
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2. Preliminaries

Let both X and U be Banach spaces. Consider the following semi-
linear equation which is described by control systemn with final time on
X:

z'(t) = Az(t) + f(t,2(t)) + Sou(t), 0<t<T,
(2.1) z(0) =0

z(T)=¢ € D(A).
Here, the operator A that generates a compact C-semigroup S(t) on
X is a bounded operator. For the sake of simplicity we assume that the
complex spectrum of 4 is contained in the half-plane {A € C: Re A <
0}, and hence there exists a constant M such that

(2.2) IS < M

where the norm of an element of X is usually denoted by || - [|. Let
us assume that f is continuously differentiable on [0,7] x X into X
and f(0,2(0)) = 0. Let @, be a bounded operator from U onto X and
assume that there exists a constant ¢ such that

lull < cll@ou|l, wel.

Then the initial value problem (2.1) has a unique solution satisfying
the integral equation

(2.3) z(t) = /ULS(t—s){f(s,x(s))+¢ou(f)}ds,

for 0 < ¢ < T. This solution z(t) is continuously differentiable in X on
[0,T), 2(t) € D(A) and (2.1) is satisfied in X(see [3, Theorem 1.5 in
Chapter 6]). Let z(t; f, u) be a solution of the equation (2.1) associated
with nonlinear term f and control u at time . We define the reachable
sets for the equation (2.1) as follows:

Ly = {a(t;0,u) s u € C(0,T;U)),

Re={z(t; f,u) :u e CY0,T;U)),

Roc = U Rtv
t>0
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where C1(0, T; U) denotes the set of all continuously differentiable func-
tions from (0,7T) into a Banach space U.

Let X be a reflexive Banach space. The observed linear system on
X is defined by
| (1) = A*y(t), 0<t<T,
(2.4) {y( ) y(t), 0<t<

y(0) = 0.
Then we can define the observable sets by
Ne={z" € X*:®S*(s)z* =0, se€]l0,t]}

Ne = ﬂ N,.
>0

For the solvability of the equation (2.1) we will use properties of degree
theory, which is called Fredholm alternative for nonlinear operator.

Suppose that D is open subset of X, p is a point in X and B is a
continuous function from D into X where D denotes the closure of D
in X. Set

d(B;D,p)= Y signJ(B())
zeB~1(p)

J(B{r)) 1s the Jacobian determinant of B at z ¢ D. Then d(B;D,p)
is called the degree of the mapping B with respect to the set D and
the point p. Let B be a compact operator. Then if d(I — B; D.0) # 0
and (I — B)(z) # 0 for all + € 9D then there is an zo € D such
that (I — B)(xg) = 0, which is called the existence theorem and this is
the aim of using degree theory in this paper. Let B(t) be a compact
operator from D into X. Suppose that if given ¢ > 0, there exists a
6 > 0 such that if |t; — t3] < 6 then for all z € D it is

1B(t:1)(z) — Bt2)(z)|} <e.

It is well known that if for all z € D and all t € [0, 1], (I—B(t))(z) # 0,
then d(I — B(t); D,0) exists and has the same value, which is called the
invariance under homotopy theorem.
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3. Inverse problem

In what follows we consider the control problem corresponding to
the admissible set W defined by

(3.1) W= {ueCY0,T;U): u(0)=a, ac U}.
So, we can define the reachable set by

L= {z(t;0.u):u € W},

R, = {z(t: fiu) i ue W},
corresponding to the admissible set W.

In (2.1), for each u € L?(0,T;U) if f is continuously differentiabe in

t on [0,T] and uniformly Lipschitz continuous on X then there exists
a unique mild soluion z(¢; f, u) satisfying (2.3). So we can define the
nonlinear operator F on W by

(Fu)(t) = f(z(t)), uweW

and we set (®u)(t) = Pou(t). This operator @ is called the Nemitsky
superposition operator corresponding to @,. Both F and & are contin-
uous operators from W to X and @ is a bounded linear operator. Since
the semigroup S(t) is compact, the assumption f implies the compact-
ness of the operator F. We note that since the controller @ is bounded
below there exists the bounded inverse 1.

According to the definition z(#; f, u), we have

T
(3.2) 2 (T) = S(T)&ya + /ﬂ S(T — s)D(s)((F + S)u)(s)ds

where we set D(s) = d/ds. From (2.1), (3.2) and «(T) = ¢ € D(A) it

follows

A¢ + Pou(T) + f(T, ¢)
T
= S5(T)®pa + / S(T — 3)D(s)((F + @)u)(s)ds.
0
Define the operator B from W to X by

.
Bu = @‘1[/(; S(T — s)(D(s)((F + ®)u)(s))]ds.
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LEMMA 3.1. The operator B mentioned above is compact.
Proof. Let

T
GIT) = [ ST =)D +8))s)ds.

Then we can rewrite G(7T') as
7
G(T) = S()G(T - €) + ~ $)(D(s) (F +&)-))(x)ds

Te

for € € (0,T). From the assumptions f and @ it follows

T
| [ ST - DEE +8) )i <
T—e
(Csup (DEIE + ) NGl [ 1Sl
8€[0,77]
tends zero as € — 0. By the compactness of S(e), 7'5(e)G(T — €) is

compact and hence, B is also compact as a limit of compact operat,or.

LEMMA 3.2. There exists a constant cg > (} such that
(3.3) [[Bul| < colullc

where ¢y is depend on time T.

Proof. We have that continuous differentiable of f implies that f is
Lipschitz continuous in both t and z, and by assuinption that f(0,z(0))
= 0 it follows

HFWO| = |[f{t, 2D < eaffa (D]

where ¢ is the Lipschitz constant. Thus from (2.2) and (2.3)
llz(t)]] < M/ [I(f )) + Pou(s))||ds
< CpM/ [lx(s)||ds + MT||@o]|i]2]|
0
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for 0 <t < T. By Gronwall’s inequality we have
()il < MT||@olexp(ciMT)||u |,

hence

(Fu)()|| < e MT||®|exp(ci MT)|ul].

From the similar way mentioned above and the -aniformly Lipschitz
continuity in both z and ¢, since

DISI(F + @)us) = 5= f(s,)e'(5) + - f(s,2) + Bou (5]

we have

[D(s)((F + S)u)(s)|] < ¢y

for some c; > 0. Therefore, by the definition of the operator B, the
proof is complete.

As is seen in Lemma 3.2, we remark it holds that 1 — ¢p > 0 for the
sufficiently small time T. In virtue of Lemmas in this section we know
that B is a compact operator, therefore from (3.2) we can reduce to the
equation

(I-Blu=g, g=0""[S(T)®oa—A¢- f(T,4)].

THEOREM 3.1. Let ||aj| < ¢y where a € U in (3.1) and 1 — ¢4 > 0
where cg is a constant in (3.3). Then under the assumptions f and &,
there exists a solution u € W of problem (2.1) for a given ¢ € D(A).

Proof. Consider the following equation on W:
(I-ABju=g, 0<X<L1.
Take a constant ¢ > 0 such that
¢ >(1—co) Mgl
We apply the degree theory on the ball U, i.e.,
Ue={ueW:|u]| <c}.
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Then, by using Lamma 3.2, we have
el < Mgl + [ Bull < gl + collull.
Thus
[lull < (1~ co) M lgll < e,

that is,
wug U, 0<A<1

where OU . denotes the boundary of U.. Therefore, from degree theory

it follows that there exists a solution v € U, such that

(I —BJu=g.

4. Reachable sets for semilinear system

Let X be a reflexive Banach space throughout this section.

DEFINITION 4.1. (1) The system (2.1) is said to be approximate
controllable in time T (resp. infinite time) if Ry = X (resp. Roo = X).
(2) The system (2.4) is said to be observable on [0,T] (resp. infinite
time) if Np= {0} (resp. N = {0}).

THEOREM 4.1. Suppose that 1 — cg > 0 where ¢y is a constant
in (3.3) for sufficiently small T, then the system (2.1) is approximate
controllable in time T.

Furthermore, the system (2.1} is approximate controllable in time T
if and only if the system (2.4) is observable in time T'.

Proof. As is seen in Theorem 3.1 it is easily seen that
Ry =Ly = D(A).

Since

T
Ly = {/ S(T — 5)@ou(s)ds : u € C'0,T;U)},
0
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by the orthogonal set LF of L1 we have

-
LT = {/ S(s)Pou(s)ds:u e CHO, U} *
Jo

= ker®;S*(t), te€]0,T]
- J\/TT.
Hence, from the definition 4.1 we have that the system (2.1) is approxi-

mate controllable in time 7" if and only if the system (2.4) is observable
in time T.

In what follows we assume that the control set U is a reflexive Banach
space and u € W2P(0,T;U) for p > 1 where
W2P(0,T;U) = {u € LP(0,T;U) : o', u" € LP(0,T;:U)}.

DEFINITION 4.2. (1) The system (2.1) is said to be exact contollable
in time T (resp. infinite time) if Ry = X (resp. R = X).
(2) The system (2.4) is said to be continuously observable on [0, T} if
there exists a constant M > 0 such that
Hfle < Mzp||@*S*(-) fll(war)wds
for each f € X*.

THEOREM 4.2. Let D(A) = X and assume the assumptions in The-
orem 4.1. Then the system is exact controllable in time T.

Furthermore, the system (2.1) is exact controllable in time T if and
only if the system (2.4) is continuously observable on [0, T].

Proof. Define G: W2P(0,T;U) -—— X by
T
Gu = / S(T — s)@ou(s)ds, we W2H0.T;U).
0

then from the assumptions and Theorem 3.1 it follows that Rp = Lp =
X. Hence, since W2P(0,T;U) is reflexive it is equivalent to the fact
ImG D Im1I where I is the identity operator. Therefore there exists a
constant My such that

1l < Mr[|@*S*(- ) fl|(war)uds
for each f € X*. The proof of theorem is completc.
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