AN EXISTENCE OF SOLUTIONS FOR AN INFINTE DIFFUSION CONSTANT

YOON MEE HAM

1. Preliminaries and Approximating solutions

The parabolic free boundary problem with Pushchino dynamics is given by (see in [3])

given by (see in [3])
$$\begin{cases}
v_t = Dv_{xx} - (c_1 + b)v + c_1 H(x - s(t)) \text{ for } (x, t) \in \Omega^- \cup \Omega^+, \\
v_x(0, t) = 0 = v_x(1, t) \text{ for } t > 0, \\
v(x, 0) = v_0(x) \text{ for } 0 \le x \le 1, \\
\tau \frac{ds}{dt} = C(v(s(t), t)) \text{ for } t > 0, \\
s(0) = s_0, \ 0 < s_0 < 1,
\end{cases}$$

where v(x,t) and $v_x(x,t)$ are assumed continuous in $\Omega = (0,1) \times (0,\infty)$. Here, D is a positive diffusion constant and, $c_1 + b$ and c_1 are positive constants. Moreover, $\Omega^- = \{(x,t) \in \Omega : 0 < x < s(t)\}$ and $\Omega^+ = \{(x,t) \in \Omega : s(t) < x < 1\}$. The velocity function $C(\cdot)$ of the free boundary s(t) is represented by

$$C(v) = \frac{2v - \frac{c_1 - 2a}{c_1 + c_2}}{\sqrt{(\frac{c_1 - a}{c_1 + c_2} - v)(v + \frac{a}{c_1 + c_2})}}$$

where a, c_1 and c_2 are positive constants and $-c_1 < b < \frac{c_1(c_2+a)}{c_1-a}$.

Received July 4, 1996.

¹⁹⁹¹ AMS Subject Classification: Primary 35R35, 35B32; Secondary 35B25, 35K22, 35K57, 58F14, 58F22.

Key words and phrases: free boundary, Hopf bifurcation, Poincare-Bendixon theorem.

This present work was supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No. BSRI-96-1436.

Yoon Mee Ham

The well posedness and the Hopf bifurcation for a finite diffusion constant of this problem was shown in [3,4]. In this paper, we shall show the behavior of the solutions as a constant D tends to infinity. We will construct a sequence of solutions $\{(v_m, s_m)\}_{m=1}^{\infty}$ as $D \uparrow \infty$. In order to this, we introduce the following lemma:

LEMMA 1. Let $Q_T = (0,1) \times (0,T)$. We have the following:

- (i) $s \in C^1([0,T])$ and $\|s'\|_{L_{\infty}(0,T)} < \infty$
- (ii) For some constant $M, -M \leq v \leq M$ in $[0, 1] \times [0, T]$.
- (iii) For any $\eta \in (0,T)$, $||v||_{C^{1/2,1/4}([0,1]\times [\eta,T])} \leq \tilde{c}$ where \tilde{c} depend on η .

Moreover,

- (iv) $\int \int_{Q_T} v_x^2 dx d\mu \leq \frac{\alpha}{D}$ for some constant α .
- (v) For any $\eta \in (0,T)$, there exists a constant β which does not depend on η such that

$$\int_{\eta}^T \int_0^1 v_t^2 dx d\mu \leq \frac{\beta}{\eta} \int^1 v_x^2(t) dx \leq \frac{\beta}{Dt}$$

for almost everywhere $t \in (0,T)$.

Proof. The proofs of (i), (ii) and (iii) are refer to [1, 4]. In order to show (iv), the first equation of (1) is multiplied by v and integrated on $(0,1)\times(0,T)$, then by the integration by patrs and the boundary conditions, we have

$$\int \int_{Q_{T}} v_{x}^{2} dx d\mu
\leq \frac{1}{D} \left(\int \int_{Q_{T}} (-v_{t}v - (c_{1} + b)v^{2} + c_{1}H(x - s(\mu))v) dx d\mu \right)
\leq \frac{1}{D} \frac{1}{2} (v^{2}(x, T) - v^{2}(x, 0))
+ \frac{1}{D} \left(\int \int_{Q_{T}} (-(c_{1} + b)v^{2} + c_{1}H(x - s(\mu))v) dx d\mu \right)
\leq \frac{\alpha}{D}$$

for some constant α .

For (v), we let $\eta \in (0,T)$ and $\mu \in (0,t)$. Multipling μv_t and integrating on Q_t of (1), then

$$\begin{split} \int \int_{Q_t} \mu v_t^2 dx d\mu \\ &= D \int \int_{Q_t} \mu v_{xx} v_t + \int \int_{Q_t} -(c_1 + b) \mu v v_t dx d\mu \\ &+ \int \int_{Q_t} \mu c_1 H(x - s(\mu)) v_t dx d\mu \\ &= -Dt \int_0^1 v_x^2(x, t) dx + D \int \int_{Q_t} v_x^2 dx dt \\ &+ \int \int_{Q_t} (-(c_1 + b) \mu v v_t + \mu c_1 H(x - s(\mu)) v_t) dx d\mu. \end{split}$$

By (ii), we obtain

$$\int \int_{Q_t} \mu v_t^2 dx d\mu + Dt \int_0^1 v_x^2(x, t) dx \le C_1 + D \int \int_{Q_t} v_x^2 dx dt$$

for some constant C_1 . Therefore, for a constant C, the following inequality is obtained

(2)
$$\int \int_{Q_t} \mu v_t^2 dx d\mu + Dt \int_0^1 v_x^2(x,t) dx \le C.$$

Let $\eta \in (0,T), t \in (0,T)$ and $\mu \in (\eta,T)$. From (2), it is easily obtained

$$\int_0^1 v_x^2(x,t) dx \le \frac{C}{Dt}.$$

We divide the equation (2) by t, then we have

$$\begin{split} \frac{C}{t} &\geq \frac{1}{t} \int_0^t \int_0^1 \mu v_t^2(x,\mu) dx d\mu + D \int_0^1 v_x^2 dx \\ &= \int_0^1 t v_t^2(x,t) dx + D \int_0^1 v_x^2 dx. \end{split}$$

Again, divide by t and integrate on (η, T) , then

$$\begin{split} \int_{\eta}^{T} \int_{0}^{1} v_{t}^{2} dx dt &\leq \left| \int_{\eta}^{T} \int_{0}^{1} v_{t}^{2} dx dt \right| \leq \left| \frac{1}{\eta} - \frac{1}{T} - D \log(\frac{T}{\eta}) \int_{0}^{1} v_{x}^{2} dx \right| \\ &\leq \frac{\beta}{\eta} \int_{0}^{1} v_{x}^{2} dx \end{split}$$

for some positive constant β .

From (i) and (ii) in the above lemma, we apply the Azela-Ascoli theorem and thus we obtain the following theorem;

THEOREM 2. There exists a sequence D_m such that $D_m \to \infty$ as $m \to \infty$ and a corresponding sequence of solutions (v_m, s_m) and (ξ, ϕ) satisfying

- (a) $(\xi,\phi) \in \left(C([0,1]\times(0,T))\cap L_2(0,t:H^1(0,1))\right)\times (C^{0,1}([0,T])$
- (b) $v_m \to \xi$, uniformly in $[0,1] \times [\eta, T]$ for all $\eta \in (0,T)$.
- (c) $v_m \to \xi$, in $L_2(Q_T)$ and almost everywhere in Q_T .

Moreover, we obtain

- (d) $v_{m_x} \to \xi_x$, weakly in $L_2(Q_T)$.
- (e) $v_{mt} \to \xi_t$, weakly in $L_2((0,1) \times (\eta,T))$ for all $\eta \in (0,T)$
- (f) $s_m \to \phi$, uniformly in [0,T] and weakly in $H^1(0,T)$.

In the next two theorems, we shall find a problem which has a solution (ξ, ϕ) . We call this system a limiting problem.

THEOREM 3. The limiting function ξ is the only function of t.

Proof. By lemma 1, we have

$$\frac{\beta}{\eta} \int_0^1 v_{mx}^2 dx \le \frac{\beta}{t D_m}$$

and $v_{m_x} \to \xi_x$, weakly in $L_2(Q_T)$. Thus,

$$\int \int_{Q_T} \xi_x^2 \le \liminf \int \int_{Q_T} v_{m_x}^2$$

$$\le \liminf \frac{\alpha}{D_m}$$

$$= 0.$$

Therefore, we have $\xi_x = 0$ a.e. and thus ξ is a function of t. \square

We now show the limiting problem of solutions

THEOREM 4. If we have a sequence of solutions (v_m, s_m) of (1) which converge to (ξ, ϕ) as $m \to \infty$ then (ξ, ϕ) satisfy the following differential system

(3)
$$\begin{cases} \xi'(t) = -(c_1 + b)\xi + c_1(1 - \phi(t)) & \text{for } t \in (0, T] \\ \tau \phi'(t) = C(\xi(t), t) & \text{for } t \in (0, T) \\ \xi(0) = \int_0^1 v_0 \\ \phi(0) = s_0 \end{cases}$$

Proof. Since $s_m(t)$ satisfies that

$$s_m(t) - s_0 = \frac{1}{\tau} \int_0^t C(v_m(s_m(\nu), \nu)) d\nu,$$

the limit ϕ satisfy that

$$\phi(t) - s_0 = \frac{1}{\tau} \int_0^t C(\xi(\nu), \nu)) d\nu.$$

Therefore

$$\left\{ \begin{array}{ll} \tau\phi'=C(\xi(t),t), & t\in(0,T)\\ \phi_t(0)=s_0 \end{array} \right..$$

We now show about the limit of ξ' . Since $v_m \to \xi$, uniformly in $[0,1] \times [\eta,T]$ for all $\eta \in (0,T)$, $\int_{-1}^{1} v_m(x,t) dx \to \xi$, uniformly in $[\eta,T]$ for all $\eta \in (0,T)$. Let η and t in (0,T) be such that $\eta < t$ and integrate the first equation in (3) on $(0,1) \times (\eta,t)$, then we obtain

$$\int_{0}^{1} v_{m}(x,t) dx = \int_{\eta}^{t} \int_{0}^{1} \left(-(c_{1} + b)v_{m} + c_{1}H(x - s_{m}) \right) dx d\mu + \int_{0}^{1} v_{m}(x,\eta) dx.$$

We deduce that

$$\begin{split} \int_0^1 v_m(x,t) \, dx &= \int_0^t \int_0^1 \Big(-(c_1+b) v_m \\ &+ c_1 H(x-s_m) \Big) dx d\mu + \int_0^1 v_0(x) dx. \end{split}$$

In order to show that $\int_0^1 v_{m}(x,t)dx$ converges to ξ , calculate the difference between them

$$\begin{split} & \left| \int_0^t \int_0^1 \Big(-(c_1 + b) v_m + c_1 H(x - s_m) \Big) dx d\mu \right| \\ & - \int_0^t \int_0^1 \Big(-(c_1 + b) \xi + c_1 H(x - \phi) \Big) dx d\mu \right| \\ & \leq \int_0^t \int_0^1 (c_1 + b) \left| v_m - \xi \right| dx d\mu \\ & + c_1 \int_0^t \int_0^1 \left| H(x - s_m) - H(x - \phi) \right| dx d\mu \\ & \leq (c_1 + b) \sqrt{T} \ \| v_m - \xi \|_{L_2(Q_T)} + c_1 T \| s_m - \phi \|_{L_\infty(0, T)} \\ & \to 0 \quad \text{as} \quad m \to \infty. \end{split}$$

Thus, we obtain that

$$\xi(t) = \int_0^t \int_0^{\phi(\mu)} -(c_1 + b)\xi \, dx d\mu + \int_0^t \int_{\phi(\mu)}^1 (-(c_1 + b)\xi + c_1) \, dx d\mu$$
$$= \int_0^t \int_0^1 \Big(-(c_1 + b)\xi + c_1 H(x - \phi) \Big) dx d\mu.$$

Hence we prove the theorem. \Box

The limiting problem of (1) has at most one solution so that in fact $v \to \xi$ and $s \to \phi$ as $D \uparrow \infty$ (see [1, 2]).

2. The stability for the limiting problem

In this section, we shall examine the stability of solutions for the problem (3). The stationary solutions (ξ^*, ϕ^*) of (3) is a solutions of the following problem

(4)
$$\begin{cases} 0 = -(c_1 + b)\xi - c_1\phi + c_1 \\ 0 = \frac{1}{\tau}C(\xi) \end{cases}$$

The equation $C(\xi) = 0$ has a solution $\xi = \xi^* = \frac{c_1 - 2a}{2(c_1 + c_2)}$. From the first equation in (3), ϕ^* satisfy that

$$-c_1\phi^* = (c_1 + b)\xi^* - c_1.$$

We finally obtain the following theorem:

THEOREM 5. The critical point (ξ^*, ϕ^*) is a stable equlibrium point of (3) and there is no nontrivial periodic solutions.

Proof. We define a vector feild \mathcal{X} by

$$\mathcal{X} = \left(-(c_1+b)\xi - c_1\phi + c_1, \frac{C(\xi)}{\tau}\right).$$

The divergence of \mathcal{X} is

$$\operatorname{div} \mathcal{X} = \frac{\partial}{\partial \xi} \left(-(c_1 + b)\xi - c_1 \phi + c_1 \right) + \frac{\partial}{\partial \phi} \left(\frac{C(\xi)}{\tau} \right)$$
$$= -(c_1 + b) \neq 0.$$

By the Poincare-Bendixson theorem, (3) has no nontrivial periodic solutions.

We now show the (ξ^*, ϕ^*) is stable. The linearlized eigenvalue problem at (ξ^*, ϕ^*) of (4) is

$$\begin{cases} -(c_1 + b)\xi - c_1\phi = \lambda\xi \\ \frac{1}{\tau}C'(\xi^*)\xi = \lambda\phi. \end{cases}$$

where $C'(\xi^*) = \frac{c_1}{2(c_1 + c_2)} > 0$. The eigenvalue of $D\mathcal{X}$ is

$$(c_1 + b + \lambda)\lambda + c_1 \frac{C'(\xi)}{\tau} = 0$$

and thus, the eigenvalues are

$$\lambda = \frac{-(c_1 + b) \pm \sqrt{(c_1 + b)^2 - 4c_1 \frac{C'(\xi^*)}{\tau}}}{2}.$$

Therefore, the eigenvalues have negative real parts thus, the equlibrium solutions are locally stable. \Box

Yoon Mee Ham

References

- 1. A. Fasano and M. Primicerio, General Free-Boundary Problem for the Heat Equation I., J. of Mathematical Analysis and Applications 57 (1977), 694-723.
- 2. J. K. Hale, Ordinary differential equations, Wiley-interscience, New York, 1969.
- 3. Y. M. Ham and S. S. Yum, The well posedness in a parabolic double free boundary problem, J. of PDE 8 (1995), 211-218.
- 4. Y. M. Ham and B. I. Seung, The Hopf Bifurcation in a Parabolic Free Boundary Problem with Pushchino Dynamics, J. Korean Math. Soc. 32 (1995), 237-250.

DEPARTMENT OF MATHEMATICS, KYONGGI UNIVERSITY, SUWON 442-760, KOREA