AN EXISTENCE OF SOLUTIONS FOR AN INFINITE DIFFUSION CONSTANT

Yoon Mee Ham

1. Preliminaries and Approximating solutions

The parabolic free boundary problem with Pushchino dynamics is given by (see in [3])

\[
\begin{cases}
v_t = Dv_{xx} - (c_1 + b)v + c_1 H(x - s(t)) & \text{for } (x,t) \in \Omega^- \cup \Omega^+,
v_x(0,t) = 0 = v_x(1,t) & \text{for } t > 0,
v(x,0) = v_0(x) & \text{for } 0 \leq x \leq 1,
\tau \frac{ds}{dt} = C(v(s(t),t)) & \text{for } t > 0,
s(0) = s_0, 0 < s_0 < 1,
\end{cases}
\]

where \(v(x,t)\) and \(v_x(x,t)\) are assumed continuous in \(\Omega = (0,1) \times (0,\infty)\). Here, \(D\) is a positive diffusion constant and, \(c_1 + b\) and \(c_1\) are positive constants. Moreover, \(\Omega^- = \{(x,t) \in \Omega : 0 < x < s(t)\}\) and \(\Omega^+ = \{(x,t) \in \Omega : s(t) < x < 1\}\). The velocity function \(C(\cdot)\) of the free boundary \(s(t)\) is represented by

\[
C(v) = \frac{2v - \frac{c_1 - 2a}{c_1 + c_2}}{\sqrt{(\frac{c_1 - a}{c_1 + c_2} - v)(v + \frac{a}{c_1 + c_2})}}
\]

where \(a, c_1\) and \(c_2\) are positive constants and \(-c_1 < b < \frac{c_1(c_2 + a)}{c_1 - a}\).

Received July 4, 1996.
1991 AMS Subject Classifications: Primary 35R35, 35B32; Secondary 35B25, 35K22, 35K57, 58F14, 58F22.

Key words and phrases: free boundary, Hopf bifurcation, Poincare-Bendixon theorem.

This present work was supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No. BSRI-96-1436.
The well posedness and the Hopf bifurcation for a finite diffusion constant of this problem was shown in [3,4]. In this paper, we shall show the behavior of the solutions as a constant D tends to infinity. We will construct a sequence of solutions $\{(v_m, s_m)\}_{m=1}^{\infty}$ as $D \uparrow \infty$. In order to this, we introduce the following lemma:

Lemma 1. Let $Q_T = (0, 1) \times (0, T)$. We have the following:
(i) $s \in C^1([0, T])$ and $\|s'\|_{L_\infty(0, T)} < \infty$
(ii) For some constant M, $-M \leq v \leq M$ in $[0, 1] \times [0, T]$.
(iii) For any $\eta \in (0, T)$, $\|v\|_{C^{1/2, 1/4}([0, 1] \times [\eta, T])} \leq \tilde{c}$ where \tilde{c} depend on η.

Moreover,
(iv) $\int \int_{Q_T} v_x^2 dx d\mu \leq \frac{\alpha}{D}$ for some constant α.
(v) For any $\eta \in (0, T)$, there exists a constant β which does not depend on η such that
\[
\int_\eta^T \int_0^1 v_x^2 dx d\mu \leq \frac{\beta}{\eta} \int_0^1 v_x^2(t) dx \leq \frac{\beta}{D t}
\]
for almost everywhere $t \in (0, T)$.

Proof. The proofs of (i), (ii) and (iii) are refer to [1, 4]. In order to show (iv), the first equation of (1) is multiplied by v and integrated on $(0, 1) \times (0, T)$, then by the integration by parts and the boundary conditions, we have
\[
\int \int_{Q_T} v_x^2 dx d\mu \\
\leq \frac{1}{D} \left(\int \int_{Q_T} (-v_t v - (c_1 + b)v^2 + c_1 H(x - s(\mu))v) dx d\mu \right) \\
\leq \frac{1}{D} \frac{1}{2} \left(v^2(x, T) - v^2(x, 0) \right) \\
+ \frac{1}{D} \left(\int \int_{Q_T} (-c_1 + b)v^2 + c_1 H(x - s(\mu))v) dx d\mu \right) \\
\leq \frac{\alpha}{D}
\]
An existence of solutions for an infinite diffusion constant

for some constant α.

For (v), we let $\eta \in (0, T)$ and $\mu \in (0, t)$. Multiplying μv_t and integrating on Q_t of (1), then

$$
\int \int_{Q_t} \mu v_t^2 \, dx \, d\mu
\quad = D \int \int_{Q_t} \mu v_{xx} v_t + \int \int_{Q_t} -(c_1 + b) \mu vv_t \, dx \, d\mu
+ \int \int_{Q_t} \mu c_1 H(x - s(\mu)) v_t \, dx \, d\mu
\quad = -Dt \int_0^1 v_x^2(x, t) \, dx + D \int \int_{Q_t} v_x^2 \, dx \, dt
+ \int \int_{Q_t} -(c_1 + b) \mu vv_t + \mu c_1 H(x - s(\mu)) v_t \, dx \, d\mu.
$$

By (ii), we obtain

$$
\int \int_{Q_t} \mu v_t^2 \, dx \, d\mu + Dt \int_0^1 v_x^2(x, t) \, dx \leq C_1 + D \int \int_{Q_t} v_x^2 \, dx \, dt
$$

for some constant C_1. Therefore, for a constant C, the following inequality is obtained

(2) \hspace{1cm} \int \int_{Q_t} \mu v_t^2 \, dx \, d\mu + Dt \int_0^1 v_x^2(x, t) \, dx \leq C.

Let $\eta \in (0, T)$, $t \in (0, T)$ and $\mu \in (\eta, T)$. From (2), it is easily obtained

$$
\int_0^1 v_x^2(x, t) \, dx \leq \frac{C}{Dt}.
$$

We divide the equation (2) by t, then we have

$$
\frac{C}{t} \geq \frac{1}{t} \int_0^t \int_0^1 \mu v_t^2(x, \mu) \, dx \, d\mu + D \int_0^1 v_x^2 \, dx
= \int_0^1 tv_t^2(x, t) \, dx + D \int_0^1 v_x^2 \, dx.
$$
Again, divide by t and integrate on (η, T), then
\[
\int_{\eta}^{T} \int_{0}^{1} v_i^2 \, dx \, dt \leq \left| \int_{\eta}^{T} \int_{0}^{1} v_i^2 \, dx \, dt \right| \leq \left| \frac{1}{\eta} - \frac{1}{T} \right| D \log(\frac{T}{\eta}) \int_{0}^{1} v_x^2 \, dx \leq \frac{\beta}{\eta} \int_{0}^{1} v_x^2 \, dx
\]

for some positive constant β.

From (i) and (ii) in the above lemma, we apply the Azela-Ascoli theorem and thus we obtain the following theorem:

Theorem 2. There exists a sequence $D_m \to \infty$ as $m \to \infty$ and a corresponding sequence of solutions (v_m, s_m) and (ξ, ϕ) satisfying

(a) $(\xi, \phi) \in (C([0, 1] \times (0, T)) \cap L_2(0, t : H^1(0, 1))) \times (C^{0, 1}([0, T])$
(b) $v_m \to \xi$, uniformly in $[0, 1] \times [\eta, T]$ for all $\eta \in (0, T)$.
(c) $v_m \to \xi$, in $L_2(Q_T)$ and almost everywhere in Q_T.

Moreover, we obtain

(d) $v_{mx} \to \xi_x$, weakly in $L_2(Q_T)$.
(e) $v_{mt} \to \xi_t$, weakly in $L_2((0, 1) \times (\eta, T))$ for all $\eta \in (0, T)$
(f) $s_m \to \phi$, uniformly in $[0, T]$ and weakly in $H^1(0, T)$.

In the next two theorems, we shall find a problem which has a solution (ξ, ϕ). We call this system a limiting problem.

Theorem 3. The limiting function ξ is the only function of t.

Proof. By lemma 1, we have
\[
\frac{\beta}{\eta} \int_{0}^{1} v_{mx}^2 \, dx \leq \frac{\beta}{t D_m}
\]
and $v_{mx} \to \xi_x$, weakly in $L_2(Q_T)$. Thus,
\[
\int \int_{Q_T} \xi_x^2 \leq \liminf \int \int_{Q_T} v_{mx}^2 \leq \liminf \frac{\alpha}{D_m} = 0.
\]

Therefore, we have $\xi_x = 0$ a.e. and thus ξ is a function of t. \square

We now show the limiting problem of solutions.
An existence of solutions for an infinite diffusion constant

Theorem 4. If we have a sequence of solutions \((v_m, s_m)\) of (1) which converge to \((\xi, \phi)\) as \(m \to \infty\) then \((\xi, \phi)\) satisfy the following differential system

\[
\begin{aligned}
\xi'(t) &= -(c_1 + b)\xi + c_1(1 - \phi(t)) \quad \text{for } t \in (0, T] \\
\tau \phi'(t) &= C(\xi(t), t) \quad \text{for } t \in (0, T) \\
\xi(0) &= \int_0^1 v_0 \\
\phi(0) &= s_0
\end{aligned}
\]

(3)

Proof. Since \(s_m(t)\) satisfies that

\[
s_m(t) - s_0 = \frac{1}{\tau} \int_0^t C(v_m(s_m(\nu), \nu))d\nu,
\]

the limit \(\phi\) satisfy that

\[
\phi(t) - s_0 = \frac{1}{\tau} \int_0^t C(\xi(\nu), \nu))d\nu.
\]

Therefore

\[
\begin{aligned}
\tau \phi' &= C(\xi(t), t), \quad t \in (0, T) \\
\phi(0) &= s_0
\end{aligned}
\]

We now show about the limit of \(\xi'\). Since \(v_m \to \xi\), uniformly in \([0, 1] \times [\eta, T]\) for all \(\eta \in (0, T)\), \(\int_0^1 v_m(x, t)dx \to \xi\), uniformly in \([\eta, T]\) for all \(\eta \in (0, T)\). Let \(\eta\) and \(t\) in \((0, T)\) be such that \(\eta < t\) and integrate the first equation in (3) on \((0, 1) \times (\eta, t)\), then we obtain

\[
\int_0^1 v_m(x, t)dx = \int_\eta^t \int_0^1 \left(- (c_1 + b)v_m + c_1 H(x - s_m)\right)dx d\mu + \int_0^1 v_m(x, \eta)dx.
\]

We deduce that

\[
\int_0^1 v_m(x, t)dx = \int_0^t \int_0^1 \left(- (c_1 + b)v_m + c_1 H(x - s_m)\right)dx d\mu + \int_0^1 v_0(x)dx.
\]
In order to show that \(\int_0^1 v_m(x, t) \, dx \) converges to \(\xi \), calculate the difference between them

\[
\left| \int_0^t \int_0^1 \left(-(c_1 + b)v_m + c_1 H(x - s_m) \right) \, dx \, d\mu
- \int_0^t \int_0^1 \left(-(c_1 + b)\xi + c_1 H(x - \phi) \right) \, dx \, d\mu \right|
\leq \int_0^t \int_0^1 (c_1 + b) |v_m - \xi| \, dx \, d\mu
+ c_1 \int_0^t \int_0^1 |H(x - s_m) - H(x - \phi)| \, dx \, d\mu
\leq (c_1 + b) \sqrt{T} \|v_m - \xi\|_{L^2(Q_T)} + c_1 T \|s_m - \phi\|_{L^\infty(0,T)}
\rightarrow 0 \quad \text{as} \quad m \rightarrow \infty.
\]

Thus, we obtain that

\[
\xi(t) = \int_0^t \int_0^1 (c_1 + b) \xi \, dx \, d\mu + \int_0^t \int_0^1 (-(c_1 + b)\xi + c_1 H(x - \phi)) \, dx \, d\mu
= \int_0^t \int_0^1 \left(-(c_1 + b)\xi + c_1 H(x - \phi) \right) \, dx \, d\mu.
\]

Hence we prove the theorem. \(\square \)

The limiting problem of (1) has at most one solution so that in fact \(v \rightarrow \xi \) and \(s \rightarrow \phi \) as \(D \uparrow \infty \) (see [1, 2]).

2. The stability for the limiting problem

In this section, we shall examine the stability of solutions for the problem (3). The stationary solutions \((\xi^*, \phi^*)\) of (3) is a solutions of the following problem

\[
\begin{align*}
0 &= -(c_1 + b)\xi - c_1 \phi + c_1 \\
0 &= \frac{1}{\gamma} C(\xi)
\end{align*}
\]

(4)
The equation $C(\xi) = 0$ has a solution $\xi = \xi^* = \frac{c_1 - 2a}{2(c_1 + c_2)}$. From the first equation in (3), ϕ^* satisfy that

$$-c_1 \phi^* = (c_1 + b)\xi^* - c_1.$$

We finally obtain the following theorem:

Theorem 5. The critical point (ξ^*, ϕ^*) is a stable equilibrium point of (3) and there is no nontrivial periodic solutions.

Proof. We define a vector field \mathcal{X} by

$$\mathcal{X} = \left(- (c_1 + b)\xi - c_1 \phi + c_1, \frac{C(\xi)}{\tau} \right).$$

The divergence of \mathcal{X} is

$$\text{div}\mathcal{X} = \frac{\partial}{\partial \xi} \left(- (c_1 + b)\xi - c_1 \phi + c_1 \right) + \frac{\partial}{\partial \phi} \left(\frac{C(\xi)}{\tau} \right)$$

$$= -(c_1 + b) \neq 0.$$

By the Poincare-Bendixson theorem, (3) has no nontrivial periodic solutions.

We now show the (ξ^*, ϕ^*) is stable. The linearized eigenvalue problem at (ξ^*, ϕ^*) of (4) is

$$\begin{cases}
(c_1 + b)\xi - c_1 \phi = \lambda \xi \\
\frac{1}{\tau} C'(\xi^*)\xi = \lambda \phi.
\end{cases}$$

where $C'(\xi^*) = \frac{c_1}{2(c_1 + c_2)} > 0$. The eigenvalue of $D\mathcal{X}$ is

$$(c_1 + b + \lambda)\lambda + c_1 \frac{C'(\xi)}{\tau} = 0$$

and thus, the eigenvalues are

$$\lambda = \frac{-(c_1 + b) \pm \sqrt{(c_1 + b)^2 - 4c_1 \frac{C'(\xi^*)}{\tau}}}{2}.$$

Therefore, the eigenvalues have negative real parts thus, the equilibrium solutions are locally stable. \[\square\]
Yoon Mee Ham

References

Department of Mathematics, Kyonggi University, Suwon 442-760, Korea