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AN EXISTENCE OF SOLUTIONS FOR
AN INFINTE DIFFUSION CONSTANT

Yoon MEE HAM

1. Preliminaries and Approximating solutions

The parabolic free boundary problem with Pushchino dynamics is
given by (see in [3])
((vy = Dvgy — (1 + b + c H(z — s(t)) for(z,¢) € QU QT
v.(0,t) = 0 =v,(1,¢) fort >0,
(1) v(z,0) = vo(z) for0<r <1,
ds

Tar
‘9(0) = S0, 0< sg < 17

= C(v(s(t),t)) fort >0,

where v(z,t) and v, (r,t) are assumed continuous in = (0,1) x (0, o).
Here, D is a positive diffusion constant and, ¢; + b and ¢, are positive
constants. Moreover, Q= = {(z,t) € @ : 0 < r < s(¢t)} and QF =
{(z,t) € Q : s(t) < = < 1}. The velocity function C(-) of the free
boundary s(t) is represented by

Yy — fa—2ae
C(U) — c1+¢
1= a
\/( Ccl+:-z o v)(v + C1+‘—2_)

c1{cz2ta)

where a,c; and ¢y are positive constants and —c. < b < Py
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The well posedness and the Hopf bifurcation for a finite diffusion
constant of this problem was shown in [3,4]. In this paper, we shall
show the behavior of the solutions as a constant D tends to infinity.
We will construct a sequence of solutions {(vm,$,,)}%_; as D 1 oc. In
order to this, we introduce the following lemma:

LEMMA 1. Let Q7 = (0,1) x (0, T). We have the following:

(i) s € C'([0,T]) and ||s'|| 1, 0,1y < 20

(ii) For some constant M, —M < v < M in [0,1] x [0, T).

(iii) For any n € (0, T), ||v|lc1/2:1/4(j0,1) x[n,77) < ¢ Where ¢ depend on

Moreover,
(iv) [ fQT v2dedp < 4 for some constant a.

(v) For any n € (0,T), there exists a constant (3 which does not
depend on n such that

T 1 1 s
g B

2 < = 2 < —

/1; »/(; K dzd'u - 77/ Uz(t)dll - Dt

for almost everywhere t € (0,T).

Proof. The proofs of (i), (ii) and (iii) are refer to [1, 4]. In order
to show (iv), the first equation of (1) is multiplied by v and integrated
on (0,1) x (0,T), then by the integration by patrs and the boundary
conditions, we have

/ / v, drdu
T

< %(/ QT(—vtv —(c1+d)v? + ¢y H(z — 3(#))”)dmd/‘)

t ( / /Q (e B ey H(r é(ﬂ))v)dfdﬂ>

< 5 (0%(@, T) = v¥(2,0))

IA
ol e
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for some constant a.
For (v), we let € (0,T) and p € (0,t). Multipling gv, and inte-
grating on @, of (1), then

// poidedy
:D// ,uv”v,—*—// —(e1 + b)uvvidrdy
+// pey H(z — s(p))vedzdpy
1 t
:-—Dt/ vi(ac,t)dac+D// vidzdt
0 t

4 [ [ e+ Byt ey Hex — stu)wu)ded
By (ii), we obtain

1
// pvldrdy +Dt/ vi(z,t)dz < Cy + D// v2drdt
¢ 0 ¢

for some constant C;. Therefore, for a constant C, the following in-
equality is obtained

1
(2) // pvidrdy + Dt/ vi(z,t)de < C.
t 0

Let n € (0,T), t € (0,T) and p € (n,T). From (2), it is easily

obtained
! 2 C
Yz < —.
/; vz(z, t)dz < Dt

We divide the equation (2) by ¢, then we have

% / / pvi(z, p da:du+D/ vidr
:/ tv?(z, t)d3:+D/ 2d.r
0

633

l\/



Yoon Mee Ham

Again, divide by t and integrate on (1, 7T), then

T 1 T !
/ / 2dedt < / / dmdtl ‘— — — — Dlog(— )/ vide
n T 0

<8
for some positive constant /3.

< vﬁ dx
n

From (i) and (ii) in the above lemma, we apply the Azela-Ascoli
theorem and thus we obtain the following theoren:;

THEOREM 2. There exists a sequence D, such that D, — o as
m — oo and a corresponding sequence of solutions (v, sy ) and (€, @)
satisfying

(a) (&,¢) € (C([0,1] x (0,T)) N Ly(0.#: H'(0,1))) x (C**([0.T7)

(b) vy, — &, uniformly in [0,1] x [, T] for all n € (0, T).

(¢) vy — &, in Ly(Qp) and almost everywhere in Q.

Moreover, we obtain

(d) vy = €x, weakly in L2(Q7T).

(e) vy — &, weakly in Ly((0,1) x (n,T)) for all n € (0,T)

(f) $m — ¢, uniformly in [0, T] and weakly in H'(0,T).

In the next two theorems, we shall find a problem which has a solu-
tion (£, ¢). We call this system a limiting problem.

THEOREM 3. The limiting function £ is the only function of t.

Proof. By lemma 1, we have

) e
s / o 2z < —2
n ~tD,,

and vy, — &, weakly in Ly(Qr). Thus,

/ ﬁngliminf// Vg
Qr Qr

. . &}
< liminf

m

= 0.
Therefore, we have £, = 0 a.e. and thus £ is a function of . O

We now show the limiting problem of solutions
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THEOREM 4. If we have a sequence of solutions (v, $m) of (1) which
converge to (£, ¢) asm — oo then (&, ¢) satisfy the following differential
system
£'(t) = —(cr + ) +ei(1—¢(t)) for t € (0,7]
r¢'(t) = C(E(1)t) for t € (0,T)
£0) = [y v
$(0) = s

(3)

Proof. Since s,,(t) satisfies that

1/ ;
S(t) — 859 = — Clom(sm(v), v))dy,
1)=s0= 1 [ Clonlsnlv)

T

the limit ¢ satisfy that

¢m—%=%ACmﬂqu

Therefore
{rwzcmﬂﬂ,teW$)
$0) = sy .

We now show about the limit of £/. Since v,, — £, uniformly in
[0,1] x [, T] for all n € (0,T) f] Vm(z,t)dr — ¢, uniformly in [n, T
for all € (0,T). Let  and ¢ in (0,T) be such that n < t and integrate
the first equation in (3) on (0,1) x (n,t), then we obtain

1 t pl
/ vz, t)dz = / / (— (c1+b)vm + e H(x — sm)) dxdu
0 n JO

1
—I—/ vm{z,n)dz.
0
We deduce that

/ (I‘tdl“‘// —(ey + b)v
0

1
—{—clH(x—-sm))d:cdy—}—/ vo{z)dzx.
0
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In order to show that fol vm(x,t)dz converges to £, calculate the differ-
ence between them

—(c1 +b0)vm + 1 H(z — sm)>d:rd,u

/ / (c1 4 B+ e H(x — ¢))d:cdp ]

s/o / (c1 + ) [om — ] dedy

i 1
H(zr—-s,)— H(z - dxzd
+c1/0/01 (2~ $m) — H(z — ¢)|dedy
<(e1 + VT |lom — EllLr0m + 1

—0 as m — oo.

— L)

Thus, we obtain that

- / t / M e 4 b)E dad + / t /¢ :m(_(‘“ )+ 1) dedp
- /Ot/OI (_ (cy + b)Y+ c1H(z — ng))dmdu.

Hence we prove the theorem. O

The limiting problem of (1) has at most one solution so that in fact
v—fand s — ¢ as D T oo (see [1, 2]).

2. The stability for the limiting problem

In this section, we shall examine the stability of solutions for the
problem (3). The stationary solutions (£*, ¢*) of (3) is a solutions of
the following problem

(c1+b0) —c1d+c1
(4) {0~%C() .
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The equation C(£) = 0 has a solution £ = £* = From the first

equation in (3), ¢* satisfy that

i —2a
2(c1+c2)”

—c19" =(c1 +b)E" — 1.
We finally obtain the following theorem:

THEOREM 5. The critical point (£€*, ¢*) is a stable equlibrium point
of (3) and there is no nontrivial periodic solutions.

Proof. We define a vector feild X’ by
C(ﬁ))

T

X = (—(Cl+b)§—cl¢+cl~,

The divergence of X is

o C
div = a%(—(cl FHE—ad ) + ool f))
= —(c;+b) #0.

By the Poincare-Bendixson theorem, (3) has no nontrivial periodic so-
lutions.

We now show the (£*, ¢*) is stable. The linearlized eigenvalue prob-
lem at (£, ¢*) of (4) is

{ —(e1 +b) —c1é = A
1C'(£7)E = 2o,
1

where C’(f*) = m

> 0. The eigenvalue of DX is

¢'(§)

T

(cp + b4+ XA+ =0

and thus, the eigenvalues are

~(er 4 b) (e +b) — de, L&D
5 .

Therefore, the eigenvalues have negative real parts thus, the equlibrium
solutions are locally stable. O
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