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A NOTE ON PATH-CONNECTED
ORTHOMODULAR LATTICES

EUNSOON PARK

1. Preliminaries

An orthomodular lattice { abbreviated by OML ) is an ortholattice
L which satisfies the orthomodular law: if z <y, theny = zV (z' Ay)
[5]. A Boolean algebra B is an ortholattice satisfying the distributive
law: rV{yAz) = (aVy)A(zVz) VYr,y, 2z € B.

A subalgebra of an OML L is a nonempty subset M of L which
is closed under the operations V. A and . We write M < L if M
is a subalgebra of L. If M < L and a,b € M with a < b, then the
relative interval sublattice Mla,b] = {.T € M|a<uz <b}isan
OML with the relative orthocomplementation * on Mla,b] given by
cd=(aVecYAb=aV(cdAb) Vr& Mla,b]. In particular, L{a, b} will
be denoted by |a, b] if there is no ambiguity.

The commutator of a and b of an OML L is cenoted by a * b, and
is defined by a* b = (aVv b) AlaVb)A(a" VbiA(a VD) The set
of all commutators of L is dencted by ComL and L is said to be
commutator-finite if |ComL| is finite. For elements a, b of an OML,
we say a commutes with b, in symbols aCh ifaxbh =20 If Misa
subset of an OML L, the set C(M) = {r € L|2aCm Vm ¢ M} is
called the commutant of M in L dnd the set Cen(M) = C(M)N M
is called the center of M. The set C(L) is called the center of L
and then C(L) = [{C(a)|a € L}. An OML L is called irreducible if
C(L) = {0,1}. and L is called reducible if it is nct irreducible.

A block of an OML L is a maximal Boolean subalgebra of L. The
set of all blm‘ks of L is denoted by Arp. Note that |J A, = L and
NA, = L). An OML L is said to be block-finite if |A| is finite.
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For any € in an OML L, the subalgebra S, = [, €'} U[e, 1] is called
the (principal) section generated by e. Note thas for A, B € Ay, if
e€ (ANB)and ANB=5N(AUB), then ANB=S.NnA=5,NB.

DEFINITION 1.1. For blocks A4 B of an OML L define A % B if
and only if AN B =S, N(AUB) for some e € ANB; A~ B if and
only if A # Band AUB < L; A~ B if and only if A ~ B and
ANB # C(L).

A path in L is a finite sequence By, By, ..., B, (n > 0) in A,
satisfying B; ~ B,;; whenever 0 < : < n. The path is said to join
the blocks By and B,. The number n is said to be the length of the
path. A path is said to be proper if and only if n = 1 or B; = B,
holds whenever 0 < ¢ < n. A path is called to be strictly proper if
and only if B; = Bi;; holds whenever 0 < ¢ < n [1].

Let A, B be two blocks of an OML L. If A ~ B holds. then there
exists a unique element ¢ € AN B satisfying ANB = (AUB)N S, [1].
Using this element e, we say that A and B are linkea at ¢ (strongly linked
ate)if A ~ B (A =~ B), and use the notation /A ~, B (4 ~, B).
This element e is called a vertez of L and it is the commutator of any
€ A\ Band y € B\ A [1]. The set of all vertices of L is denoted by
Vi and L is said to be vertez-finite if |V | is finite

Note that A ~ B implies A ~ B, and A ~ B implies 4 ¥ B. Some
authors, for example Greechie, use the phrase “A and B meet in the

section S.” to describe 4 X B (3].

DEFINITION 1.2. Let L be an OML, and A4,B € A;,. We will
say that A and B are path-connected in L, strictly path-connected in
L if A and B are joined by a proper path, a strictly proper path,
respectively. We will say A and B are nonpath-connected if there is no
proper path joining A and B, and L is called nonpath-connected if there
exist two blocks which are nonpath-connected. An OML L is called
path-connected in L, strictly path-connected in L if any two blocks in
L are joined by a proper path, a strictly proper path, respectively.
An OML L is called relatively path-connected iff each [0,r] is path-
connected for all r € L.

The following lemma and propositions are well kxnown.
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LEMMA 1.3 [BRuNS]. IfL,, Ly are OMLs, L = Ly x Ly, A,B € Ap,
and C.D € A;,, then A x C ~ B x D holds in L if and only if either
A=BandC~DorA~Band ("= D. If A ard B are linked at a
then A x C and B x C are linked at (a,0). If C and D are linked at ¢
then A x C and A x D are linked at (0,¢) {1].

PRrRoOPOSITION 1.4. Every finite direct produc: of path-connected
OMLs is path-connected |7].

ProprosiTioN 1.5. Every infinite direct product of path-connected
OMLs containing infinitely many non-Boolean factors is
nonpath-conn ected [6].

PROPOSITION 1.6. Let L be an OML. Then the following are equiv-
alent:
(1) L is relatively path-connerted;
(2) C(z) is path-connected Vi € L;
(3) S; is path-connected Vz € L [7].

2. Path-connected Orthomodular Lattices

Recall that the set of all vertices of an OML L is denoted by V;, and
L 1s said to be vertex-finite if |V | is finite. Then V, C ComL. We
define V! = {3 € Vi | 3 <y}, for y € L. Note that 0 € (ComL)\ V.

LeMMma 2.1, If CY() ~ C'l ~uy C‘Q ~Nyg e My, Cn—-l ~ v Cn is a
proper path in L, then \/7_, v, € (|, C..

Proof. By induction on the length n of a proper path: If n = 1, then
we have Cy ~,, C; and hence vy € CyNC;. Let n > 1 and assume the
conclusion is true for all proper paths with length less than or equal to
n—1 Let Cy ~,, Cy ~y, C2 ~yy oo~y Cny ~,, Cp be a path with
length n in L. We claim that \/] v, € (\_,C:. For 1 <k <n -1,
\/f:1 v, € ﬂf::o C,and VI, v € (i, Ci by induction hypothesis
since the paths Cq ~, 7~y Oy ~y oo~y Cr and Cy ~ vk
Ck4t ~v4yq o ~v, Cr are proper Thus \/:’=1 e Cr(1<k<n~1)
since \/:::1 v, € Ci and \/:;,“rl v; € Ci. Similarly, V[, vi € Cy since
Vi, v € O by induction hypothesis, v; € Cj, Coln, 1] = Cqlvy, 1]
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and \/I_, v; > vy. Similarly, \/i_, vi € C, since \/?z—l1 v; € Chy by
induction hypothesis, v, € Cp, Cn_1[vn, 1] = Cplvn,1] and VI, vi >
vn. Thus V:l:l v; € ﬂ?:o C;. L

We have the following corollary.

COROLLARY 2.2. If L is a path-connected OCML such that \/Vp
exists, then \/ V, € C(L).

Proof. Let A be a block of L. Then A is path-connected with all
blocks of L. Thus each vertex of L belongs to at least one proper
path from A. For each path 7 from A to another block B of L, let
cr = V{v|v isavertexin =}. By Lemma (2.1), \V ¢, € A. Thus
V VL = V{cn | 7 is a path from A to another block of L} € A since A
is subcomplete, \/ ¢, € A and \/ V7, exists by the given hypothesis. =

PROPOSITION 2.3. Let L be an OML and let y € L. Then Vi, =
Ve

Proof. Let v € Vjg ). Then there exist distinct blocks A, B € Ajg y)
with 4 ~, B in [0,y]. In particular, v < y. Let D € Agy). Then
A® D ~ygo B® D by Lemma (1.3) and hence v = V} so that V5 C
V}. To show the reverse inclusion. let v € V. Then there exist distinct
blocks E,F € Ay such that E ~, F'in L and v < y. In particular,
E{0,v] ~, F[0,v] in L[0,v]. Let G € Apjg . such that y’ € G. Then
(E[0,v]®G) ~yao (F[0,v]®G) by Lemma (1.3) in C(v) and, therefore,
in L. In particular, y' € E[0,v] @& G € A and y’' € F[0,v] & G € AL
since y' € G so that y € E[0,v]¢& G € Ay and y € F[0,v] @& G € Ay.
Therefore v € Vg . n

We need the following theorem to prove Theorem (2.5).

THEOREM 2.4 [GREECHIE & HERMAN]. Let L be an OML. Then
the set CA(L) of all central Abelian elements ¢f L is the set of or-
thocomplements of the upper bounds for the set ComL, and CA(L)
exists if and only if \/ ComL exists. If h = \/ComL exists, then
CA(L) = [0,h'] and [0,h] contains no nonzero elements which are
central Abelian elements of [0, h] ‘and, therefore, of L) [4].

THEOREM 2.5. Let L be a relatively path-coanected vertex-finite
OML and o € Com L. Then o = \J V.
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Proof. Let @ € Com L and consider L[0,a]. Then L{0,a| has no
nontrivial Boolean factor by Theorem (2.4) since \/ Com L[0,a] = a.
And \/ V exists since L is vertex-finite. Let v =/ V. Then v €Cen
(L[0,a]) by Corollary (2.2). Thus L[0,a] = L[0,v] ® L[0,v" A o]. We
claim that L[0,v' A @] is a Boolean algebra. Suppose that L[0,v' A a] is
non-Boolean. Then there exists a commutator 0 :¢ § € Com L[0,v" A
a]. Thus there exist at least two distinct path-connected blocks 4, B in
L[0,v"Aa] since L[0,v' Aa] is path-connected by hypothesis. Therefore
there exists at least one vertex w in L[0,v’ A a] and hence in L by
Proposition (2.3); then w < v A v’ = 0 so that w := 0, a contradiction.
Thus L[0,v' A a] is Boolean. Moreover L[0,v’ A a is a trivial Boolean
factor since L[0, @] has no nontrivial Boolean factcr. Thus a = v. This
completes the proof. .

Since each commutator-finite OML is a relatively path-connected
vertex-finite OML [2, 6], the following two corollaries immediately fol-
low from Theorem (2.5).

COROLLARY 2.6. L isarelatively path-connected vertex-finite OML
if and only if L 1s commutator-finite.

Two elements a, b of an OML L are said to perspective if there exists
z€ Lsuchthatavz=5bvV:=1landaAz=bA:=0. A p-idealin L
is a lattice ideal which is closed under perspectivity.

COROLLARY 2.7. Every irreducible commutator-finite OML is sim-
ple [4].

Proof. The conclusion follows since each commutator-finite OML
is a vertex-finite relatively path-connected OML and each irreducible
path-connected OML such that no proper p-ideal of L containus infin-
itely many vertices is simple [7].

Now the following two corollaries hold.

COROLLARY 2.8, IfL is a commutator-finite GML and a € Com L,
then a = \/ VP

COROLLARY 2.9. If L is a commutator-finite OML,
then \/ Com L = \/ V.
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The following propositions (2.10) and (2.11) give us some properties
of path-connected OMLs, but it is not known whether there is an OML
for which the conclusion of (2.10) fails.

PROPOSITION 2.10. Let L be a path-connected OML, and z € L\
C(L). Then there exist two blocks B,C € Ay, such that ¢ € B\ C and
BuC <L

Proof. Ag(s) is properly contained in Ay since ¢ ¢ C(L). Thus
there exist two blocks D. E such that D € Ag(;) and E € A\ Ag(y)-
There exists a proper path {(B,)}}_, from D = E, to E = By, since L
is path-connected. Let k be the minimal index such that By ¢ Ag(s)-
Then By_; € Ag(y)- Let By_y = B and By = C. Then z € B\ C and
B ~ C. This completes the proof. .

PROPOSITION 2.11. Let L be a path-connected OML, and A,B €
Ap with A # B. If AN B # C(L), then A and B are strictly path-

connected.

Proof. If one of the proper paths from A to i3 has length n > 2,
then that path is a strictly proper path by the definition. Otherwise,
every path from A to B has length 1 and so is a strictly proper path
since AN B # C(L). »

Let L be an OML, and A4, B € A;. We define A = B if and only if 4
and B are strictly path-connected. Then = is an equivalence relation
in .AL.

Bruns and Greechie have proved the following lemma for an OML
L under the conditions that L is & path-connected OML without non-
trivial Boolean factor [2]. We improve the lemma with no restriction
except for the path-connectedness.

LEMMA 2.12. Let L be a path connected OML, and (B;)(: € I) be
the equivalence classes of A; modulo =. Then each |JB;(i € I) is a
subalgebra of L with A g, = B;.

Proof. To prove that | B, (: € I) are subalgebras, it is sufficient to
show that a, b € |JB, implies a/ b € |JB;. If « € C(L), then this
1s immediate. Thus we may assume a ¢ C(L). There exist 4 € B;
and B € A, such that a € A and a,a Vb € B. Then A and B are
strictly path-connected by Proposition (2.11) sitce A N B # C(L).
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Thus A = B, that is B € B;. Thus a Vb € | JB,. Therefore UB.isa
subalgebra, and A g = B; since each block belongs to one and only
one of equivalence classes. .

We do not know whether each path-connectec. OML L has a maxi-
mal Boolean factor, but we know if L is path-conrected and not strictly
path-connected then L has a maximal Boolean “actor as in Corollary

(2.16).

LEMMA 2.13. If there exists a block A of an OML L such that
A C C(L), then L is Boolean.

Proof f A C C(L), then L - CC(L) CC(4) = A C L. Hence
L = A so that L is a Boolean algebra and, therefore, L = C(L). "

LEMMA 2.14. If L is an OML with ClL)=ANB =5,NA4 for
some r € A and A,B € A, then L = Ly & Ly where Ly 1s a Boolean
algebra and L is an irreducible {)ML.

Proof. Let L be an OML witli A, B ¢ Ap such that C(L) = 4N
B = 5:NA for some 7 € A Then C(L) = ANB = A0, 2] &
{0.0). Ify e A[0.2']. then y € S, N 4 = (L) = [ Ar. Hence
A0, '] N ALIND, »'] = N Apo »} = Cen[0, 2']. Therefore A0, o' =
[0,2'] by Lemma (2.13) since A[0. r'l is a block of [0,z']. Hence L =
L[0, 2" i L]0, ] = A[0,2'] & L[0, 2} since 2 € C(L) and L{0.2'] =
A[0.2'|. Furthermore, Cen(L[0, rf) = {0,x} sivee A0, 7)., B[0,1] €
Apfory and A[0.x] 1 B(0,r] = {0 r}. Thus L[0, -] is irreducible. Let
Lo = Al0.r'l = L{0.+s" and Ly = L[0.z]. Then I = Ly Ly satisfies

the requirements of the lemma. .

Il

We have the following two corcllaries.

COROLLARY 2.15. IfL is an OML with AUB < Land ANB = C(L)
for some A,B ¢ A;. then L = Lo 0y Ly where Ly is a Boolean algebra
and Ly is an irreducible OML.

Proof. We may assume that L is not a Boolear algebra. Then 4 #
B aud there exists a unique element r € AN F = C(L) satisfying
ANB =5, M({AUB)=5,n0A4. Thus the assertion holds by Lemma
(2.14). .
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COROLLARY 2.16. If an OML L is path-connected but not strictly
path-connected, then L = Lo & Ly where L is a Boolean algebra and
L, is an irreducible path-connected OML which is not strictly path-
connected.

Proof. Let L be a path-connected but not strictly path-connected
OML. Then there exist two distinct blocks A, B € A with ANB =
C(L) and AU B < L. This completes the proof by Corollary (2.15). =

If L is a path-connected OML with a maximal Boolean factor, then
the following structure theorem holds.

THEOREM 2.17. If L is a path-connected OML with a maximal
Boolean factor Ly, then L = Lo & Ly ® Ly & ... @ L,(n > 0), where
L;(1 <t < n) are irreducible non-Boolean path-connected OMLs.

Proof. We may assume that L is non-Boolean. Thus L = Lo & L,
where L, is a path-connected OML which has no nontrivial Boolean
factor. If L, is irreducible, then there is nothing to prove. Thus we may
assume that L, is reducible. Then L, has only finitcly many irreducible
non-Boolean path-connected factors, otherwise L, iind thefore L would
not be path-connected by Proposition (1.5). n

It is well known that if L be a path-connected OML with a trivial
Boolean factor and (B);c; are the equivalence classes of A7 modulo =,
then either L is strictly path-connected, or L is the horizontal sum of
the family {|JB;|i € I} of subalgebras [2]. We improve on this result
as in Theorem (2.18).

THEOREM 2.18. Let L be a path-connected OML, and (B;)ic1 be
the equivalence classes of A, modulo =. Then L is either strictly
path-connected or the weak horizontal sum of the family {|J B;|i € I}
of subalgebras.

Proof. Let L be a path-connected OML. We may assume L is not
strictly path-connected. Therefore L = Ly @& Ly where Ly is a Boolean
algebra and L; is an irreducible path-connected OML by Corollary
(2.16). Thus it is sufficient to prove that L; is the horizontal sum
of the family {{JB,|: € I} of subalgebras of L; where B; (: € I) are
the equivalence classes of Ay, modulo =. Then each |JB; (1 € I)
is a subalgebra of L, with Ayug, = B; by Lemma (2.12). Moreover
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(UBi) N (UB;) = {0,1} if « # j, otherwise there exist two blocks
A€eUBi, C e UB; (i # j) such that ANC # {0,1} and hence A
and C are strictly path-connected by Proposition (2.11) contradicting
A # C. This completes the proof. .

It is not known whether each block of a nonBoolean OML has a
nonzero commutator, but the following partial answer for the path-
connected OMLs as in Corollary (2.19) is known.

COROLLARY 2.19. IfL is a non-Boolean path-connected OML, then
every block A of L which is not a horizontal sumiand of L contains a
vertex v # 0, 1.

Proof. By Theorem (2.18), A is either strictly path-connected with
each block of L or A is belong to one and only one strictly path-
connected subalgebra | B; of L. If A is strictly path-connected with
each block of L, then there exist another block C such that A ~, C
since L is non-Boolean. Thus v # {0,1} since ANC # C(L). Similary,
if A belongs to a strictly path-connected subalgebra \UBi of L, then
the desired conclusion follows by applying the above argument to U Bi.
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