A NOTE ON PATH-CONNECTED ORTHOMODULAR LATTICES

Eunsoon Park

1. Preliminaries

An orthomodular lattice (abbreviated by OML) is an ortholattice L which satisfies the orthomodular law: if $x \leq y$, then $y = x \lor (x' \land y)$ [5]. A Boolean algebra B is an ortholattice satisfying the distributive law: $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ $\forall x, y, z \in B$.

A subalgebra of an OML L is a nonempty subset M of L which is closed under the operations \lor, \land and \prime. We write $M \leq L$ if M is a subalgebra of L. If $M \leq L$ and $a, b \in M$ with $a \leq b$, then the relative interval sublattice $M[a, b] = \{x \in M \mid a \leq x \leq b\}$ is an OML with the relative orthocomplementation c on $M[a, b]$ given by $c^c = (a \lor c') \land b = a \lor (c' \land b)$ $\forall c \in M[a, b]$. In particular, $L[a, b]$ will be denoted by $[a, b]$ if there is no ambiguity.

The commutator of a and b of an OML L is denoted by $a \ast b$, and is defined by $a \ast b = (a \lor b) \land (a \lor b') \land (a' \lor b) \land (a' \lor b')$. The set of all commutators of L is denoted by $\text{Com}L$ and L is said to be commutator-finite if $|\text{Com}L|$ is finite. For elements a, b of an OML, we say a commutes with b, in symbols $aC b$, if $a \ast b = 0$. If M is a subset of an OML L, the set $C(M) = \{x \in L \mid xCm \forall m \in M\}$ is called the commutant of M in L and the set $\text{Con}(M) = C(M) \cap M$ is called the center of M. The set $C(L)$ is called the center of L and then $C(L) = \bigcap \{C(a) \mid a \in L\}$. An OML L is called irreducible if $C(L) = \{0, 1\}$, and L is called reducible if it is not irreducible.

A block of an OML L is a maximal Boolean subalgebra of L. The set of all blocks of L is denoted by \mathcal{A}_L. Note that $\bigcup \mathcal{A}_L = L$ and $\bigcap \mathcal{A}_L = C(L)$. An OML L is said to be block-finite if $|\mathcal{A}_L|$ is finite.

Received July 2, 1994.
1991 AMS Subject Classification: 06C15
Key words: Orthomodular lattice, Path-connected, commutator. Vertex.
For any e in an OML L, the subalgebra $S_e = [0, e'] \cup [e, 1]$ is called the \textit{(principal) section generated by e}. Note that for $A, B \in A_L$, if $e \in (A \cap B)$ and $A \cap B = S_e \cap (A \cup B)$, then $A \cap B = S_e \cap A = S_e \cap B$.

Definition 1.1. For blocks A, B of an OML L define $A^\omega B$ if and only if $A \cap B = S_e \cap (A \cup B)$ for some $e \in A \cap B$; $A \sim B$ if and only if $A \neq B$ and $A \cup B \leq L$; $A \approx B$ if and only if $A \sim B$ and $A \cap B \neq C(L)$.

A \textit{path} in L is a finite sequence $B_0, B_1, ..., B_n (n \geq 0)$ in A_L satisfying $B_i \sim B_{i+1}$ whenever $0 \leq i < n$. The path is said to join the blocks B_0 and B_n. The number n is said to be the \textit{length} of the path. A path is said to be proper if and only if $n = 1$ or $B_i \approx B_{i+1}$ holds whenever $0 \leq i < n$. A path is called to be \textit{strictly proper} if and only if $B_i \approx B_{i+1}$ holds whenever $0 \leq i < n$ [1].

Let A, B be two blocks of an OML L. If $A \sim B$ holds, then there exists a unique element $e \in A \cap B$ satisfying $A \cap B = (A \cup B) \cap S_e$ [1]. Using this element e, we say that A and B are \textit{linked at e (strongly linked at e)} if $A \sim B (A \approx B)$, and use the notation $A \sim_e B (A \approx_e B)$. This element e is called a \textit{vertex} of L and it is the commutator of any $x \in A \setminus B$ and $y \in B \setminus A$ [1]. The set of all vertices of L is denoted by V_L and L is said to be \textit{vertex-finite} if $|V_L|$ is finite.

Note that $A \approx B$ implies $A \sim B$, and $A \sim B$ implies $A^\omega B$. Some authors, for example Greechie, use the phrase \textit{"A and B meet in the section S_e"} to describe $A^\omega B$ [3].

Definition 1.2. Let L be an OML, and $A, B \in A_L$. We will say that A and B are \textit{path-connected in L}, \textit{strictly path-connected in L} if A and B are joined by a proper path, a strictly proper path, respectively. We will say A and B are \textit{nonpath-connected} if there is no proper path joining A and B, and L is called \textit{nonpath-connected} if there exist two blocks which are nonpath-connected. An OML L is called \textit{path-connected in L}, \textit{strictly path-connected in L} if any two blocks in L are joined by a proper path, a strictly proper path, respectively. An OML L is called \textit{relatively path-connected} iff each $[0, x]$ is path-connected for all $x \in L$.

The following lemma and propositions are well known.
Lemma 1.3 [Bruns]. If \(L_1, L_2 \) are OMLs, \(L = L_1 \times L_2 \), \(A, B \in A_{L_1} \) and \(C, D \in A_{L_2} \), then \(A \times C \sim B \times D \) holds in \(L \) if and only if either \(A = B \) and \(C \sim D \) or \(A \sim B \) and \(C = D \). If \(A \) and \(B \) are linked at \(a \) then \(A \times C \) and \(B \times C \) are linked at \((a, 0)\). If \(C \) and \(D \) are linked at \(c \) then \(A \times C \) and \(A \times D \) are linked at \((0, c)\) [1].

Proposition 1.4. Every finite direct product of path-connected OMLs is path-connected [7].

Proposition 1.5. Every infinite direct product of path-connected OMLs containing infinitely many non-Boolean factors is nonpath-connected [6].

Proposition 1.6. Let \(L \) be an OML. Then the following are equivalent:

1. \(L \) is relatively path-connected;
2. \(C(x) \) is path-connected \(\forall x \in L \);
3. \(S_x \) is path-connected \(\forall x \in L \) [7].

2. Path-connected Orthomodular Lattices

Recall that the set of all vertices of an OML \(L \) is denoted by \(V_L \) and \(L \) is said to be vertex-finite if \(|V_i| \) is finite. Then \(V_L \subset \text{Com} L \). We define \(V_L^y = \{ \beta \in V_L | \beta \leq y \} \), for \(y \in L \). Note that \(0 \in (\text{Com} L) \setminus V_L \).

Lemma 2.1. If \(C_0 \sim v_1 \ C_1 \sim v_2 \ C_2 \sim v_3 \ \ldots \sim v_{n-1} \ C_{n-1} \sim v_n \ C_n \) is a proper path in \(L \), then \(\bigwedge_{i=1}^{n} v_i \in \bigcap_{i=0}^{n} C_i \).

Proof. By induction on the length \(n \) of a proper path: If \(n = 1 \), then we have \(C_0 \sim v_1 \ C_1 \) and hence \(v_1 \in C_0 \cap C_1 \). Let \(n > 1 \) and assume the conclusion is true for all proper paths with length less than or equal to \(n-1 \). Let \(C_0 \sim v_1 \ C_1 \sim v_2 \ C_2 \sim v_3 \ \ldots \sim v_{n-1} \ C_{n-1} \sim v_n \ C_n \) be a path with length \(n \) in \(L \). We claim that \(\bigwedge_{i=1}^{n} v_i \in \bigcap_{i=0}^{n} C_i \). For \(1 \leq k \leq n-1 \), \(\bigwedge_{i=1}^{k} v_i \in \bigcap_{i=0}^{k} C_i \) and \(\bigwedge_{i=k+1}^{n} v_i \in \bigcap_{i=k}^{n} C_i \) by induction hypothesis since the paths \(C_0 \sim v_1 \ C_1 \sim v_2 \ C_2 \sim v_3 \ \ldots \sim v_{n-1} \ C_{n-1} \sim v_n \ C_n \) and \(C_k \sim v_{k+1} \ C_{k+1} \sim v_{k+2} \ \ldots \sim v_n \ C_n \) are proper. Thus \(\bigwedge_{i=1}^{n} v_i \in C_k \) \((1 \leq k \leq n-1)\) since \(\bigwedge_{i=1}^{n} v_i \in C_k \) and \(\bigwedge_{i=k+1}^{n} v_i \in C_k \). Similarly, \(\bigwedge_{i=1}^{n} v_i \in C_0 \) since \(\bigwedge_{i=2}^{n} v_i \in C_1 \) by induction hypothesis. \(v_1 \in C_0 \), \(C_0[v_1, 1] = C_1[v_1, 1] \).
and \(\bigvee_{i=1}^{n} v_i \geq v_1 \). Similarly, \(\bigvee_{i=1}^{n} v_i \in C_n \) since \(\bigvee_{i=1}^{n-1} v_i \in C_{n-1} \) by induction hypothesis, \(v_n \in C_n \), \(C_{n-1}[v_n, 1] = C_n[v_n, 1] \) and \(\bigvee_{i=1}^{n} v_i \geq v_n \). Thus \(\bigvee_{i=1}^{n} v_i \in \bigcap_{i=0}^{n} C_i \).

We have the following corollary.

Corollary 2.2. If \(L \) is a path-connected OML such that \(\bigvee V_L \) exists, then \(\bigvee V_L \in C(L) \).

Proof. Let \(A \) be a block of \(L \). Then \(A \) is path-connected with all blocks of \(L \). Thus each vertex of \(L \) belongs to at least one proper path from \(A \). For each path \(\pi \) from \(A \) to another block \(B \) of \(L \), let \(c_\pi = \bigvee \{ v | v \text{ is a vertex in } \pi \} \). By Lemma (2.1), \(\bigvee c_\pi \in A \). Thus \(\bigvee V_L = \bigvee \{ c_\pi | \pi \text{ is a path from } A \text{ to another block of } L \} \in A \) since \(A \) is subcomplete, \(\bigvee c_\pi \in A \) and \(\bigvee V_L \) exists by the given hypothesis.

Proposition 2.3. Let \(L \) be an OML and let \(y \in L \). Then \(V_{[0,y]} = V^y_L \).

Proof. Let \(v \in V_{[0,y]} \). Then there exist distinct blocks \(A, B \in \mathcal{A}_{[0,y]} \) with \(A \sim_v B \) in \([0,y]\). In particular, \(v \leq y \). Let \(D \in \mathcal{A}_{[0,y']} \). Then \(A \oplus D \sim_{v \oplus 0} B \oplus D \) by Lemma (1.3) and hence \(v \in V^y_L \) so that \(V_{[0,y]} \subseteq V^y_L \). To show the reverse inclusion, let \(v \in V^y_L \). Then there exist distinct blocks \(E, F \in \mathcal{A}_L \) such that \(E \sim_v F \) in \(L \) and \(v \leq y \). In particular, \(E[0,v] \sim_v F[0,v] \) in \(L[0,v] \). Let \(G \in \mathcal{A}_{L[0,v']} \) such that \(y' \in G \). Then \((E[0,v] \oplus G) \sim_{v \oplus 0} (F[0,v] \oplus G) \) by Lemma (1.3) in \(C(v) \) and, therefore, in \(L \). In particular, \(y' \in E[0,v] \oplus G \in \mathcal{A}_L \) and \(y' \in F[0,v] \oplus G \in \mathcal{A}_L \) since \(y' \in G \) so that \(y \in E[0,v] \oplus G \in \mathcal{A}_L \) and \(y \in F[0,v] \oplus G \in \mathcal{A}_L \). Therefore \(v \in V_{[0,y]} \).

We need the following theorem to prove Theorem (2.5).

Theorem 2.4 [Greechie & Herman]. Let \(L \) be an OML. Then the set \(\mathcal{C}A(L) \) of all central Abelian elements of \(L \) is the set of orthocomplements of the upper bounds for the set \(ComL \), and \(\mathcal{C}A(L) \) exists if and only if \(\bigvee ComL \) exists. If \(h = \bigvee ComL \) exists, then \(\mathcal{C}A(L) = [0, h'] \) and \([0,h]\) contains no nonzero elements which are central Abelian elements of \([0,h]\) (and, therefore, of \(L \)) [4].

Theorem 2.5. Let \(L \) be a relatively path-connected vertex-finite OML and \(\alpha \in Com L \). Then \(\alpha = \bigvee V^\alpha_L \).
Proof. Let $\alpha \in Com L$ and consider $L[0, \alpha]$. Then $L[0, \alpha]$ has no nontrivial Boolean factor by Theorem (2.4) since $\bigvee Com L[0, \alpha] = \alpha$. And $\bigvee V_L^\alpha$ exists since L is vertex-finite. Let $v = \bigvee V_L^\alpha$. Then $v \in Cen (L[0, \alpha])$ by Corollary (2.2). Thus $L[0, \alpha] = L[0, v] \oplus L[0, v' \land \alpha]$. We claim that $L[0, v' \land \alpha]$ is a Boolean algebra. Suppose that $L[0, v' \land \alpha]$ is non-Boolean. Then there exists a commutator $0 \neq \beta \in Com L[0, v' \land \alpha]$. Thus there exist at least two distinct path-connected blocks A, B in $L[0, v' \land \alpha]$ since $L[0, v' \land \alpha]$ is path-connected by hypothesis. Therefore there exists at least one vertex w in $L[0, v' \land \alpha]$ and hence in L by Proposition (2.3); then $w \leq v \land v' = 0$ so that $w = 0$, a contradiction. Thus $L[0, v' \land \alpha]$ is Boolean. Moreover $L[0, v' \land \alpha]$ is a trivial Boolean factor since $L[0, \alpha]$ has no nontrivial Boolean factor. Thus $\alpha = v$. This completes the proof.

Since each commutator-finite OML is a relatively path-connected vertex-finite OML [2, 6], the following two corollaries immediately follow from Theorem (2.5).

Corollary 2.6. L is a relatively path-connected vertex-finite OML if and only if L is commutator-finite.

Two elements a, b of an OML L are said to be p-ideal in L is a lattice ideal which is closed under perspectivity.

Corollary 2.7. Every irreducible commutator-finite OML is simple [4].

Proof. The conclusion follows since each commutator-finite OML is a vertex-finite relatively path-connected OML and each irreducible path-connected OML such that no proper p-ideal of L contains infinitely many vertices is simple [7].

Now the following two corollaries hold.

Corollary 2.8. If L is a commutator-finite OML and $\alpha \in Com L$, then $\alpha = \bigvee V_L^\alpha$.

Corollary 2.9. If L is a commutator-finite OML, then $\bigvee Com L = \bigvee V_L$.
The following propositions (2.10) and (2.11) give us some properties of path-connected OMLs, but it is not known whether there is an OML for which the conclusion of (2.10) fails.

Proposition 2.10. Let \(L \) be a path-connected OML, and \(x \in L \setminus C(L) \). Then there exist two blocks \(B, C \in \mathcal{A}_L \) such that \(x \in B \setminus C \) and \(B \cup C \leq L \).

Proof. \(\mathcal{A}_{C(x)} \) is properly contained in \(\mathcal{A}_L \) since \(x \notin C(L) \). Thus there exist two blocks \(D, E \) such that \(D \in \mathcal{A}_{C(x)} \) and \(E \in \mathcal{A}_L \setminus \mathcal{A}_{C(x)} \). There exists a proper path \(\{(B_j)\}_{j=0}^n \) from \(D = B_0 \) to \(E = B_n \) since \(L \) is path-connected. Let \(k \) be the minimal index such that \(B_k \notin \mathcal{A}_{C(x)} \). Then \(B_{k-1} \in \mathcal{A}_{C(x)} \). Let \(B_{k-1} = B \) and \(B_k = C \). Then \(x \in B \setminus C \) and \(B \sim C \). This completes the proof.

Proposition 2.11. Let \(L \) be a path-connected OML, and \(A, B \in \mathcal{A}_L \) with \(A \neq B \). If \(A \cap B \neq C(L) \), then \(A \) and \(B \) are strictly path-connected.

Proof. If one of the proper paths from \(A \) to \(B \) has length \(n \geq 2 \), then that path is a strictly proper path by the definition. Otherwise, every path from \(A \) to \(B \) has length 1 and so is a strictly proper path since \(A \cap B \neq C(L) \).

Let \(L \) be an OML, and \(A, B \in \mathcal{A}_L \). We define \(A \equiv B \) if and only if \(A \) and \(B \) are strictly path-connected. Then \(\equiv \) is an equivalence relation in \(\mathcal{A}_L \).

Bruns and Greechie have proved the following lemma for an OML \(L \) under the conditions that \(L \) is a path-connected OML without non-trivial Boolean factor [2]. We improve the lemma with no restriction except for the path-connectedness.

Lemma 2.12. Let \(L \) be a path connected OML, and \((\mathcal{B}_i)_{i \in I} \) be the equivalence classes of \(\mathcal{A}_L \) modulo \(\equiv \). Then each \(\bigcup \mathcal{B}_i \) \(i \in I \) is a subalgebra of \(L \) with \(\mathcal{A}_{\bigcup \mathcal{B}_i} = \mathcal{B}_i \).

Proof. To prove that \(\bigcup \mathcal{B}_i \) \(i \in I \) are subalgebras, it is sufficient to show that \(a, b \in \bigcup \mathcal{B}_i \) implies \(a \lor b \in \bigcup \mathcal{B}_i \). If \(a \in C(L) \), then this is immediate. Thus we may assume \(a \notin C(L) \). There exist \(A \in \mathcal{B}_i \) and \(B \in \mathcal{A}_L \) such that \(a \in A \) and \(a, a \lor b \in B \). Then \(A \) and \(B \) are strictly path-connected by Proposition (2.11) since \(A \cap B \neq C(L) \).
Thus $A \equiv B$, that is $B \in B_i$. Thus $a \vee b \in \bigcup B_i$. Therefore $\bigcup B_i$ is a subalgebra, and $A_{\cup B_i} = B_i$ since each block belongs to one and only one of equivalence classes.

We do not know whether each path-connected OML L has a maximal Boolean factor, but we know if L is path-connected and not strictly path-connected then L has a maximal Boolean factor as in Corollary (2.16).

Lemma 2.13. If there exists a block A of an OML L such that $A \subseteq C(L)$, then L is Boolean.

Proof. If $A \subseteq C(L)$, then $L = CC(L) \subseteq C(A) = A \subseteq L$. Hence $L = A$ so that L is a Boolean algebra and, therefore, $L = C(L)$.

Lemma 2.14. If L is an OML with $C(L) = A \cap B = S_r \cap A$ for some $r \in A$ and $A, B \in A_L$, then $L = L_0 \oplus L_1$ where L_0 is a Boolean algebra and L_1 is an irreducible OML.

Proof. Let L be an OML with $A, B \in A_L$ such that $C(L) = A \cap B = S_r \cap A$ for some $r \in A$. Then $C(L) = A \cap B = A[0, x'] \oplus \{0, x\}$. If $y \in A[0, x']$, then $y \in S_r \cap A = C(L) = \bigcap A_L$. Hence $A[0, x'] \subset (\bigcap A_L) \cap [0, x'] = \bigcap A[0, x] = Cen[0, x']$. Therefore $A[0, x') = [0, x']$ by Lemma (2.13) since $A[0, x']$ is a block of $[0, x']$. Hence $L = L[0, x'] \oplus L[0, x] = A[0, x'] \oplus L[0, x]$ since $x \in C(L)$ and $L[0, x'] = A[0, x']$. Furthermore, $Cen(L[0, x]) = \{0, x\}$ since $A[0, x], B[0, x] \in A_L[0, x]$ and $A[0, x] \cap B[0, x] = \{0, x\}$. Thus $L[0, x']$ is irreducible. Let $L_0 = A[0, x'] = L[0, x']$ and $L_1 = L[0, x]$. Then $L = L_0 \oplus L_1$ satisfies the requirements of the lemma.

We have the following two corollaries.

Corollary 2.15. If L is an OML with $A \cup B \leq L$ and $A \cap B = C(L)$ for some $A, B \in A_L$, then $L = L_0 \oplus L_1$ where L_0 is a Boolean algebra and L_1 is an irreducible OML.

Proof. We may assume that L is not a Boolean algebra. Then $A \neq B$ and there exists a unique element $x \in A \cap B = C(L)$ satisfying $A \cap B = S_r \cap (A \cup B) = S_r \cap A$. Thus the assertion holds by Lemma (2.14).
COROLLARY 2.16. If an OML L is path-connected but not strictly path-connected, then $L = L_0 \oplus L_1$ where L_0 is a Boolean algebra and L_1 is an irreducible path-connected OML which is not strictly path-connected.

Proof. Let L be a path-connected but not strictly path-connected OML. Then there exist two distinct blocks $A, B \in \mathcal{A}_L$ with $A \cap B = C(L)$ and $A \cup B \leq L$. This completes the proof by Corollary (2.15).

If L is a path-connected OML with a maximal Boolean factor, then the following structure theorem holds.

THEOREM 2.17. If L is a path-connected OML with a maximal Boolean factor L_0, then $L = L_0 \oplus L_1 \oplus L_2 \oplus \ldots \oplus L_n (n \geq 0)$, where $L_i (1 \leq i \leq n)$ are irreducible non-Boolean path-connected OMLs.

Proof. We may assume that L is non-Boolean. Thus $L = L_0 \oplus L_s$ where L_s is a path-connected OML which has no nontrivial Boolean factor. If L_s is irreducible, then there is nothing to prove. Thus we may assume that L_s is reducible. Then L_s has only finitely many irreducible non-Boolean path-connected factors, otherwise L_s and therefore L would not be path-connected by Proposition (1.5).

It is well known that if L be a path-connected OML with a trivial Boolean factor and $(\mathcal{B}_i)_{i \in I}$ are the equivalence classes of \mathcal{A}_L modulo \equiv, then either L is strictly path-connected, or L is the horizontal sum of the family $\{\bigcup \mathcal{B}_i | i \in I\}$ of subalgebras [2]. We improve on this result as in Theorem (2.18).

THEOREM 2.18. Let L be a path-connected OML, and $(\mathcal{B}_i)_{i \in I}$ be the equivalence classes of \mathcal{A}_L modulo \equiv. Then L is either strictly path-connected or the weak horizontal sum of the family $\{\bigcup \mathcal{B}_i | i \in I\}$ of subalgebras.

Proof. Let L be a path-connected OML. We may assume L is not strictly path-connected. Therefore $L = L_0 \oplus L_1$ where L_0 is a Boolean algebra and L_1 is an irreducible path-connected OML by Corollary (2.16). Thus it is sufficient to prove that L_1 is the horizontal sum of the family $\{\bigcup \mathcal{B}_i | i \in I\}$ of subalgebras of L_1 where $\mathcal{B}_i (i \in I)$ are the equivalence classes of \mathcal{A}_{L_1} modulo \equiv. Then each $\bigcup \mathcal{B}_i (i \in I)$ is a subalgebra of L_1 with $\mathcal{A}_{\bigcup \mathcal{B}_i} = \mathcal{B}_i$ by Lemma (2.12). Moreover
(\bigcup B_i) \cap (\bigcup B_j) = \{0,1\} \text{ if } i \neq j, \text{ otherwise there exist two blocks } A \in \bigcup B_i, C \in \bigcup B_j (i \neq j) \text{ such that } A \cap C \neq \{0,1\} \text{ and hence } A \text{ and } C \text{ are strictly path-connected by Proposition (2.11) contradicting } A \neq C. \text{ This completes the proof. }

It is not known whether each block of a non-Boolean OML has a nonzero commutator, but the following partial answer for the path-connected OMLs as in Corollary (2.19) is known.

Corollary 2.19. If \(L \) is a non-Boolean path-connected OML, then every block \(A \) of \(L \) which is not a horizontal summand of \(L \) contains a vertex \(v \neq 0,1 \).

Proof. By Theorem (2.18), \(A \) is either strictly path-connected with each block of \(L \) or \(A \) is belong to one and only one strictly path-connected subalgebra \(\bigcup B_i \) of \(L \). If \(A \) is strictly path-connected with each block of \(L \), then there exist another block \(C \) such that \(A \approx_v C \) since \(L \) is non-Boolean. Thus \(v \neq \{0,1\} \) since \(A \cap C \neq C(L) \). Similarily, if \(A \) belongs to a strictly path-connected subalgebra \(\bigcup B_i \) of \(L \), then the desired conclusion follows by applying the above argument to \(\bigcup B_i \).

References

Department of Mathematics
Soongsil University
Seoul 156-743, Korea