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SOME NECESSARY CONDITIONS FOR
ERGODICITY OF NONLINEAR FIRST
ORDER AUTOREGRESSIVE MODELS

CHANHO LEE

1. Introduction

Consider nonlinear autoregressive processes of order 1 defined by
the random iteration

(1) 4¥n+1:f("¥n)+fn+l (nZ(g)

where f is real-valued Borel measurable functicn on R', {en : n 2>
1} is an ii.d.sequence whose cornmon distribution F' has a non-zero
absolutely continuous component with a positive density, Ele,| < o0,
and the initial X is independent of {€, : n > 1}. The process {X,:
n > 0} is Markovian with (one-step) transition probability

(2) plz,B):=P(f(X)+ ¢, € B) (z€R'. BeB'),

where P is the probability measure on the underlying probability space
( on which X, {€, :n > 1} are defined), and E! is the Borel o-field
on R!. It may be noted that all Markov processes on (R',B') may be
generated by random iterations of the form X,41 = h(Xn. €n41). where
h is a real-valued measurable function on R? (See, e.g.. Kifer(1986),
pp.8, or Bhattacharya and Waymire (19901,pp.228). In our case
hiz.e) = f(z)+e

A Markov process {X, : n > 0}, or its transition probability in (2},
is said to have an invariant probability m if

(3) /p(x,B‘) m(dz) = 7(B) for every B € B'.
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The process {X, : n > 0}, or its transition probability p(z,dy),
will be said to be irreducible with respect to Lebesgue measure A on
(R',BY)if Y ,2 "p™(z,B) > 0 for every z and every B with A(B) >
0. -

Here p™ denotes the n-step transition probability. An irreducible pro-
cess is recurrant (or, A -recurrent)if, for every z and every B with

ADB) > 0.

P(X,eB forsome¢e n>1Xg=12)=1.

If the latter probability is less than 1 for some B with A(B) > 0 and
a set A of x such that A(A) > 0. then the process is transient. An
irreducible process is aperiodic if there do not exist d > 1 and disjoint
sets C'1,Cq, -+ ,Cyq such that A(C;) > 0 and p(z,Ci41) =1 for every
x € Cy. (with Cyyy :=C1), 1 <7< d. A Arecurrent aperiodic process
is ergodic,or Harris ergodic,if it has a unique invariant probability = ;
in this case
(4) sup |p™(z,B)—n(B)| =0 as n > o0, forevery z € R'.
BeB!
If the convergence in (4) is exponentially fast then the Harris ergodic
process 1s sald to be geometrically (Harris) ergodic.

Lee([3], [4]) provided sets of sufficient conditions for ergodicity and
for geometric ergodicity in terms of the quantities

(5) Q::li.lllz_»_x f(I) &= Ez..,_)o f(g)
T z
(6) g:=tm,__ 12 F.ofm,_. {8
N I z
For the special class with
(7) f(.T):(kxl{r<0}+,31‘1{120}, Fe; =0,

Petrucelli and Woolford[6] proved that ‘a < 1,5 < 1,a3 < 1 is neces-
sary as well as sufficient for ergodicity. This is of course not true for
the general nonlinear model(1) (for whicha =a 3= 3).

In this article, by proving some necessary conditions,we show that
sufficient criterion in [4] is nearly necessary.
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2. Some Necessary Conditions for Harris ergodicity

Consider the stochastic process {X, :n =0,1,2,3,---} defined by
recursively by

(8) X1 =f(Xn)+enpr (n20)

We make the following assumptions: f is real-valued Borel measur-
able functions on R! and continuous, {€, : n > 1} is a sequence of
i.i.d.random variables whose common distribution F' has a component
with an almost everywhere positive absolutely continuous density with
respect to Lebesgue measure. Also, Fe; = 0.

The initial random variable X is independent of {e, : n > 1}.

Define

(9) a = lim f(z) 3 = lim f(z)

T— 00 X r—oC x

THEOREM 2.1. Under the conditions on f and {€, : n > 1} specified
above and assumption that o and 8 exist, the Markov process {X, :

n > 0} is not(Harris) ergodic if one of the following two conditions
holds:

() a>lorg3>1.
(IT) 3 <0 and a3 > 1.

Proof. First,we prove part . Without loss of generality,consider the
case 3 > 1(8 < o). Then, for X,, > 0,n > 0, E(X, 11| X,) = f(Xn).

Since 8 = limz—no ﬂzﬂ, there exists a M, such that r > M,
implies

T < nz < f(z).
Thus for any 1 < n < 4, and X, > M,(n > 0),
P(X 41 <270+ 1)Xa|X,)

SP(4|‘Yn+1 - E(Xn+1|)(n)| 2 2_1‘ /R l)XHIXn)
<E(|Xnt1 — E(Xnt1|Xn)|1Xn) - 2((n = D)X0) 7
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But
‘Yn--}-l - E(‘X.n+1

Xo) = .
So we get
(10)  P(Xn11 <27 (n+1)X0|X0) S 2Eey|- ((n—~ 1) X"
Let ¢ = 2E|e,|[{n — 1)M]~!. Choose M > 0 such that
2E|e\|[(n — M) < 1.
Then, whenever X; > maz{M,, M}, (10) implies that
P(X; <27+ )X |Xy) < e

and thus ;
P(Xy>27'(n+ 1)X,[1Xy) > (1 - ¢),

and
P(X3>27n+ DXe, X2 > 27 n + 1) X, X,)
=E [P(X3 > 27" (n+ DXa|X2)1x, 50 1 (b 1) X3 -
On the other hand,
2E|e1|[(n — 1)Xo) " S2Eley|{(n — 1)27 (5 + 1) X,
=c-2(n+ 1) = 5.

on the set {X; > 27'(y +1)X,, X, > M} where v =2(p+1)7' < L.
So,

P(Xy > 27 (n+ )Xy, X2 > 27 (n + 1)X1IX1) > (1= 7e)(1 = ¢).

Continuing in this manner,whenever X, > maz{,, M},

P(Xer1>27 (n+1)X,, £=1,2, - a]X) 211 - v
=1

>(l--¢)7™=7 forall n.

Consequently for any X, € R!,

P(X, — o0|X) >(1 - ¢)T7 P(X; > max{M,, M}
>0

Xo)

Hence, {X,} is not ergodic for 5 > 1.

To prove that (II), we prove two lemmas.
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LEmMMA 2.1. If 3 < =1, af > 1, then, for 1l < n < af, there
exists My > 0 such that X,_, > M, implies
E(Xn'Xn—Q) = TIXn—Zs n>2.

Proof.
E(Xn.Xn—2) :E(f(f(‘)(n 2)+€n I)'I(]’(Xn 2\,+(,1_1S0‘)|Xn—2)
+E(f( ‘Xn 2 +fn 1) I
For a given X,,_o = x(> 0),
E(anXn—2:‘r) :E(f(f( )+€n I)I(f +en_1§;0))
+ E(f(f(x) 4 €n1) I f(x)4en.1>0))

Xn_2).

For 1 < n < aB, choose 8 > 0 such that o« +6 <0, 3+ 6 < —1 and
l<n<(a+6)(3+80) < ab.
By our hypotheses, there exist My > 0 and M'(; > 0 such that

O<{a+8)x < flz) if v < —M,,

and

flz)<(B+8)a <0 if x> M,
Hence, for @ > AI;,
E(f(Xn )| Xn2=2z)>(a+8)(F+68)z- - P(fix)+ €n-1 < —Mps)
+E[f(fle) + €n-1) Lo My<f(2)enz: <))
+ (8 — 60)Ele,|
+ E[f(f(z)+€n1)- I(ogf(z)+cn._1§1v1;)]

Let m; be the minimum of f(f(x)+ €,-1) on Sy where S; = {w :
—Ms < f(z)+en—1(w) <0} and my be the minimum of f(f(z)+en_ 1)
on Sy where S; = {w:0< flz) 4 €,_(w) < '\/19 Then, for z > AI(,,

E(f(Xo-)|Xna=2)>(a+6)(F+8)x P(flz)+en < —Ms)
+my +ma+ (3 — 8)E]e].

Since (a +6)(8+6) > n, and P(f(z)+en_1 < -Myg) T 1asz — oo,
there exists M, such that z > M, implies

EX, ) Xp o=2)=E(fiX ) Xn2=2)>nz. O
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LEMMA 2.2. Assume that fl(:l') exists for sufficiently large values
of |z| and is bounded at too(i.e..there exists A > 0 such that f(z)
exists for |z| > A and sup ;)5 4 |f iz)] < o0.)

Then there exists My > 0 such that

Elf(flz)+e) - Ef(f(a)+e&)| S <o

for some &, for all x > M,.

Proof. Choose 6 > 0 such that 3+ 6 < —1, « + 8 < 0. For that
6, there exists My > 0 such that r > My implies (3 — )r < f(z) <
(3 + 6)x < 0 and there exists JM‘; > 0 such that z < —My implies
0 <(a+6b)z< flz)< (a—06).

Choose My largely enough that r > My implies

flz) < (B4 8)x < —M,.

For z > My such that f(z)+ ¢ < — Me,

[f(f(2)+e) = f(fla))] < sup £ (@)l el
zf:'mar{—}\/fé,zwg(ﬁ-i—a)}
<|(« — )l
and thus

E{f(f(z)+e)-f(f(x))}- I(f(r)+51<_M;)]
<|(a — 8)|Eley|

<0C.
For ¢ > Mjy such that f(z)+ ¢ > —M,,

E{f(f(z)+e)— (if('r))}-‘[(f(z){—ﬁZ—-M;)]
<c +(ﬂ—~0) 2 P(f(s)+ € > M) + (8 — 6)|Eles]
+ (= O)|(B =)z P(f(r)+e > —AM,;) for some C
Ele,]

T = fla) + Mol

Eley|

+ [(a = 6)j(3 - 8)]- = f() — M|
R o — 4 0

<Ci+(8-6)z +1(8 — 0)|Ele|
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Ele,|
<Ci+ (8- 8)z-
SO
F18— B)IEler] + (e — O)II(8 — O - —
| — (B34 8)z — M|
Since lim,_, . —(—m)———r = '—ﬁ < 8y < 1 for some 6y, there
exists M* such that
z
> M* implie - < 8y < 1.
T implies R Y 0

Let M, = max{My, M*}, then z > M; implies, for some £,
2-Elf(fla)+e) - f(f(@)] S €< o0
Proof of Theorem 2.1(II). Let M be a number such that

M > max{M;, M,} and c=2¢(n-1M]"" <1

Forany 1 <np<af and Xpp,-1) > M, n2l,

P(Xn <2741+ 1) Xp(n-1)|X2(n-1))
< (by lemma 2.1)
< P(X2n — E(X2n|Xo(n-1))
<27 + D Xgn-1) — 1X2(n-1)|X2(n-1))
= P(X2n, — E(X2n|X2(n-1)) < =27 (n = D) X3(n-1) | X2(n=1))
< P(|X2n = E(X2n|Xa(n-1)l €271 (0 = D) X3(n-1)| X2(n-1))
< E(|Xzn — B(Xan Xa(n-1) | X2(a—1)) - 2[(n = 1)M] ™!
<2-[(n-1)M]7' <1 {by lemma 2.2)

Then, whenever X, > M,

P(‘Y4 > 2_1('f_7+ 1)X2|X2) Z 1-c.



234 Chaiho Lee
P(Xg>2"Yn+ 1)X4,X4 > 27+ 1) X, X))

P(Xe>27' (n+1.X4|Xe > 27+ 1) X0 X2)-
P(X4 >27Yn+1X3|Xy)
(X
(

]

I
“U

6 > 27+ 11X X, > 27 (4 1)X,)
X: > 27 (n +11X,]X,)
(because {Xy,.n > 0} is a Merkov process. )
2(L—=c27 i+ 1)) (T=c)=(1—ye)(1 - ¢)
where v =2(n+ 7' <1

P

Continuing in this manner, whenever X, > M,

P(Xp41y > 27 (n+ 1) X g0, €=1,2,

n

> [[a-ez0-am

1=1

7

For any zy € R!, P(Xy > M|Xy) >0, and thus

P(Xgn, — 20|Xg) > (1= )75 - P

[1X0) > 0
Hence, {X;,} is not ergodic, neither is {X,}. O
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