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ON A MOVING GRID NUMERICAL SCHEME
FOR HAMILTON-JACOBI EQUATIONS

Bum I Hovng

1. Introduction

Analysis by the method of characteristics shows that if f and ug
are smooth and wuy has compact support, then the Hamilton-Jacobi
equation

ur+ flu) =90, 2€R, >0,

(H-J) u(x,0) = ug(z), z €R,

has a unique C'! solution u on some maximal tine interval 0 <t<T
for which lim;_,7u(z,t) exists uniformly; but this limiting function
is not continuously differentiable. Thus u, becomes discontinuous at
t = T. Crandall and Lions [2] showed both existence and uniqueness
of the generalized solutions that satisfy so called “viscosity” condition.
They also showed that viscosity solutions of (H-J) are stable in Lo
with respect to perturbation in the initial data, and consequently that
the space of Lipschitz continuous functions forms a regularity space for
(H-J). In one space dimension, Hong [3] has recensly shown that if fis
approximated in L*>(R) to order (2")73 by a C! piccewise quadratic
function f, and if u is approximated in L> by a continuous, piecewise
quadratic polynomial wq with 27 free knots, then the solution w(-.t)

of
we+ folw,) =0, zeR, t>0,

w(r,0) = wy(z). reR,
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1s again continuous, piecewise quadratic for all tiine and has no more
than C2" pieces for some C. As a result, u(-,¢) can be approximated
with an error not exceeding the error of approximation of u, plus
o((2")7?).

In this paper, we construct a moving grid numerical scheme using the
method of the characteristics that the continuous, piccewise quadratic
solution w(z.t) of Hamilton-Jacoli equations in ¢ne space dimension
may be approximated in L>®(R) fo within O(N %) by a continuous.
piecewise quadratic polynomial weix) with O(N) meshpoints.

To show this, we use the simple relationship besween the equations
of (H-J) and hyperbolic single conservation laws. This relationship is
very simple: if w is the viscosity solution of (H-J) then » = w, is the
entropy solution of scalar conservation laws

v+ flo), =0, zeR, 1t >0.
v(z.0) = vo(r) = w'(x). R

Therefore, if one calculates shocks of single conservation laws accord-
ing to the Rankine-Hugoniot jumjp condition and the entropy condi-
tion, then one can calculate the viscosity solution u (r,t) by integrating
v(z,t) with property that w(x,#) is continuous.

2. Stability of (H-J)

THEOREM 2.1. Suppose that f and g are Lipschitz continuous and
f(0) = ¢(0) = 0. If uy and wqy are bounded and Lipschitz continuous,
and u and w are the viscosity solutions of

U+ flug) =0 zeR, t>0,
u(r,0) = up(x) xR,

and
we+Fglw ) =0, 2€R, t>C,

w(x,0) = we(z), reR,
then for any t > 0,
(H)  luot) = w(o )] oo m) < lieo — woll oo iy + 11f — gl (3).

Proof. See Hong [4].
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3. A Construction of a Perturbed Equation

Suppose that f € W?>>(R) is strictly convex and f(0) = 0. Then
there is a C! piecewise, quadratic approximation fy to f with knots
at the point j/N for j = 0,1,..., N, that 1s defined by fi(5/N)
FUI/N). fn(0) =0; fuis strlc‘(ly convex. Moreover [[f — fn

ClIF D 1o )N~ where € = (9+ ) /2(£)% see [1] and [7).

We suppose that a Lipschitz continuous function uy having the sup-
port in [0.1] has no polynomial piece of degree < 1 and that the range
of ug is in [0, 1]. We also assume that u(()l) 1sin BV(R) for s = 0,1 and
that u{ is also in BV(R) outside a finite set of points {d;}*_, where
uy 1s discontinuous.

L>(x) <

Now construct a continuous, piecewise quadratic approximation wy
to up.

(1) choose 7; = i+ L fori=0,1,.... N as initial meshpoints.

(2yIf up(x) 1s dlscontlnuous at d,, then choose d; — ﬁa‘ and d; + ﬁg
and add these two points to the set of initial meshpoints.

(3) Insert least number of meshpoints in the interval where uj(x) is
smooth so that

‘1+1_T1|/ ul¥ | de < N2|U0|BWIR {di})-

(4) Construct a continuous, piecewise quadratic function wq(z) as
follows. Let I, = [r;,7iy1]. Set wo(m) = uo(7;) and wy(ripy) =
up(Ti+1). Now we need one more information to determine an unknown
coefficient for wo(z). Let M; = sup;, ug(z) and m, = infy, uf(z). Then
choose any number for wy satisfying m,; < min;, wi(z) < max;, wy(z)
< M;.

(5) Insert new meshpoints 7; satisfying wy(r;, = -.-(7 for all j =
07 PR ,J’\/T.

From these two approximations fn and wg, we have the following
properties,

LEMMA 3.1. ‘wb(l‘”BV(Hﬁ) < 3’11,6(17”3‘/(1]&).

Proof. Consider one interval I; = [r;,7i41]. Let A; = L], M; =

supy, ug, and m; = inf, ufj. Let s, be the slope of w{ on [r;, Tis1].
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Then since |wy|py (1) = [si[A&i < Mi —mi < [uglgv(z),

D lwblsvo <Y luplava,
[} i

< Jup(2)| By (m
We now measure the jump |wi(r,") — wj(r;7)|. Since
lwo(m ) — wh(r7)] < (M, = mi) + (M) —mig)
< Tvolsvay + [uglbv g,
3l ) —wi(r O < X iubl gy +ubl By ) < 2lub(e) sr)-
Hence ]wo iBV(IR) < Blug(z) gy x)-

LEMMA 3.2. Suppose that s is a piecewise lincar interpolation to f
at 0 =1y <t <...<tn_y <ty =1, and the t;’s are chosen so that

tigs 1 o
(fH_] —‘tl)/ 'f”!dl‘ "\: ﬁ’flla‘([ﬂy]) for all i,
[ *

then ||f — sl < ﬁflf”BV([O,l])'
Proof. See [3].

LEMMA 3.3. If uy(x) has k number of discortinuities. then there
are at most (6|uf| gy ) + 6)N + 6k — 1 meshpoints.

Proof. Step (1) and step (2) give at most 2k + V + 1 meshpoints. By
de Boor [1], step (3) gives at most N new meshpoints. We now count
the number of meshpoints 7; inserted by step (5). If call it v»; and order
them. then each interval [¢;,;1; may or may not contain previously
inserted meshpoints. If [¢,, ¢4 1] does not contain any old meshpoint
generated by (1), (2) and (3), then ¥, and #;;,; are two adjacient

points (‘on%tructod by (5). Therefore [wi(y) — uj(vi4q)] = .Li\r_l -4
or 4 — J—N— = = for some j. So the total number of meshpoints in this

case 1s no more than 2|wg|py(g)V < 6luglpv)N. If [ vigy] does
contain any old meshpoint, then, since the number of old meshpoints
is 2k + 2N + 1, at most (2k +2N - 1) number of the interval [v:;. v'i4]
may contain old meshpoints. So the total number of meshpoints of
this kind is no more than 2(2k + 2N — 1) = 4k + 4N — 2. Therefore
step (5) adds no more than (6|uf| 5y g) +4)N + 4k — 2 number of new
meshpoints. So we complete the proof.
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THEOREM 3.4.
1 1,
luo — woll oo (ry < NTgH“()‘BV(IR) + Z|U0|BV(H&—{d,»}))-

Proof. Let B be the union of /; = [r;,7;4,] containing a point at
which uf is discontinuous. Let A == [0,1] — B. Then

o — wol| oo ) < sup |ug — wol + sup [ug — wy
A

= max sup luog(Ti) — wo(7i) + / 4((16(3) — wy(s)) ds|
I .

1

+ max sup [uo(7;) — wo(Ti) + / (up(s) —wp(s)) ds
g I; r

< max sup / lug(s) — wh(s)|ds
B 1 . 11'

+maxsup [miyy - Tillupls) — wils)l ey
1

< max sup — [ul

< mgx SI?P e UgiBV (1))

L1
N

up — Woll 1= (a)
<—1—~'u'\ , +—1-'—-———-[u”—u'”| ) )
S yaltolBve + (53 ive — wolavE—{a)

1 1
—VS(WB!BV(R) + Z]‘UZ),{BV(HR—{d,;.))-
4

Il

Here the first part of the third inequality is because the area of the set
of points that are greater than uj but less than wy plus those points
that are less than uj but greater than w{ is obviously less than or
equal to |ripy — 7i| = 5 times |u)|py (s, because wh is in between
sup;, uy and infy, ug, and the second part of the fourth inequality is
valid because of (3) in the construction of wq(z).

4. A Moving Grid Numerical Scheme for Perturbed Equa-
tion
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Let vo(z) = wy(x). Then vo(r) is discontinaous piecewise linear
having support in [0, 1].

By the method of characteristics, we calculate the solution of the
perturbed single conservation laws

ve+ fy(v)r =0, ze€R, ¢t>0,
v(r,0) =vo(x), zeR.

Lax [6] showed the general theory of hyperbolic conservation laws. If v
is continuous on [7;(t), 7,4, (¢)], then v is linear on [r;(t), ;4 ,(1)] since
fn is quadratic. So it is enough to find the ncdal values using the
Rankine-Hugoniot jump condition and the entropy condition. That is

to determine the evolution of shocks. Let v {(t) = lim y- vlr.t)

T—=T1 {1
and vi(t) = m, .+ v(z,t). Since fy is strictly convex and vy
15 continuous, the following two inequalities (the entropy condition)
trivially hold. Let v(«r,#) be discontinuous at 7;(¢). Then

Ix(ilt) = fn(ort)) | fn(n) — fulei(t)

1 .
VT T 2T e

if v}(#) > vi(t), or

It ~ (i)  faln) = falelle)
'1'1(1‘ — N(t) - 7 - 1)f(t)

for 7 € [v4(0). vi(t)]

forn e [17f(t), vi(f)]

if v}(t) < vi(t). Therefore no meshpoints are generated during the
evolution of v because fy is strictly convex and 1y is continuous. The
meshpoint moves along the characterics and the solution » is constant
along the trajectory 7; = 7;(t) which propagates with speed. due to
Rankine-Hugoniot jump conditior..

dr. [ R, ) = vi(),
(3) — = . o
dt It ‘;((lzim{uﬂ D oif vi(t) # vi(t).
So if » is continuous on [r;{t), 74 (F) , 4n is constant and du ()
, - t dt dt
_d_%# = () because
(4)
dvf(t) 0, f vi(t) = vi(t),
- () —viT 1 (v (1) - fn (05 (1)) ) .
dt :—, l)~:‘_1 ))(flV L;(i),_bfv;(tz; w fan(oH1))), otherwise,
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and

() ,

dvi(t) { 0, if vj(t) = vy(),
- t

Sy ! . i _ i
dt 1 (t) IT()( ;\7(?/y;(t))_ fa v/ (1) f.'\(lr(l)))~

Tt ) otherwise.

Ti41 (t)—‘ﬂ(l)

\ : dv(r(t), (), ov(r (1), i
(4) and (5) are directly from l(rd(,t) b av(ra(tt) ) 4 dlé:‘((?) t) drdgt).

To determine where the shocks occur, we solve the above equations
between shock interaction times. Therefore it is equivalent to find
the trajectory of meshpoint 7;. We use the fact that the conservation
of mass holds near the discontinuity to find the shock trajectory as
follows. Let, to the right of the shock, (respectively, to the left of the
shock) fL(v) = a,v? + 2b,v + ¢, and let v have the initial slope s,.
(fl\(v) = a;v? + 2bp + ¢; and let » have the initial slope s;.) Suppose
that 7, 1s the initial shock point.

We use the fact that mass is conserved near the discontinuity to find
the shock trajectory. Let the triangle ABC having the vertices A(x,t).
B{r;.0) and C(x,.0), where r; <. 7; < x,. Let the characteristic line

from B to A (recpectively, from C to A) be
) =T+ tf“gv(’(ﬁ(‘l'])) where v; = byg + by1.r,
(z =z, +tfy(ve(z,)) where v; = by + by 2 respectively.)

where v; and v, are polynomial pieces to the left and right hand sides
of 7; respectively.

Suppose that the shock curve joining the point (7,,0) and A(x,t) is
inside the triangle ABC', then v must solve the equation weakly on the
triangle ABC;

0= / (v + fv(v),] dedt
JAABC

=t(—fh(vd) + £ (o))l er))
+ t(f&(l/'r(-l/'r)} . R”('Ur(lr))l E))

—/'l’l(.’l‘)d(l‘ ,_/ rvr(x')dz,

The second equality simplly follows if one uses the divergence theorem.
One can plug in the formulas for f%, f%, 1, 2., v and v,. Then one can
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get rid of z; and z, from the systen: (6) and (7) through a process called
“elimination”. We just use built-in eliminate commands in Macsyma
or Maple. Finally r and ¢ satisfy the following polynomial equation.

0 =(2bi1a1at + 1)(2by1a99t + 1)
(2b11b21a22t2% — 2by1bgyaysta? — baiz? 4 by 2?
—4a11bi1byragst® s + dagy by 1byyaratie + 4b1ob21a00tx
—4baobriarats + 2ay, byt 2a11b11tz — 2byox + 2bygx
+ 8azebi1baazaggt® — 8ayobirbaarzazyt® + 2a%,b11b2ag,t?
—2a3,by1b21a;2t% — 467 b1 a10a291? + 4b3,b11a)zaq,t*
— 4bioa11by1azst? + daggby agyt? — aobyyagyt?
+ dbggaz;byat? + dagebyyaiat’ — dayghyyo gt ~ as by t?
+a? b t? + 2b2,a,5t — 2b% Gy 5t + 2bggas, t
—2bjganit + lagyt — 2a;t).

Let the last factor be P(x,t) = 0. Then P has total degree three, and
quadratic in z. So we can write

P(z,t) = Pi(t)2® + Py(t)x + Py(¢),

where P;(t) has the degree 7 in ¢, and z(t) can be calculated by the
quadratic formula. The behavior is rather complicated. Newton
claimed to classify all cubic curves, and he drew many useful diagrams.
This is contained in his collected mathematical works published by
Cambridge University Press. To find which branch we go on, we start
with the fact that we normalized the shock curve to begin at the point
(0,0), so that tells you the sign of the discriminant. We also need to
know which branch (plus or minus) to choose. However it is sufficient
to see which branch goes through (0,0) again according to Newton's
mathematical works.

Once all 7;(¢) have been found, we compute the viscosity solution

w(z,t) of

wt+fN(wx) =0, z¢ Ra t>0.

(P) w(x[)) = u)o(l'), T € R-,
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as follows; We know that w(z,t) and v(z,t) have the same compact
support; see [5]. To the left side of 79(), w(z,t) = 0 because v(z,t) = 0.
Because w(z,t) = f:j(t) v(s,t)ds and w(z,t) is continuous at all 7;(¢),
the constant of each quadratic piece of w(z,t) can cbtained successively
from 7y(¢).

THEOREM 4.1. Let f € W3>(R) be strictly convex. Let a Lipschitz
continuous function ug have the support in [0.1] having the range in
[0,1). Suppose that u((]l) is in BV(R) for : = 0,1 with u] € BV(R)
outside a finite set of points {d;}*_, where v} is discontinuous. As-
sume that u(x,t) is the viscosity solution of (H-J) If the approximate
solution w(z,t) of (P) obtained by above numerical scheme, then

| =

u( 1) = w( )] peomy <

o

\ 1
TS [l“IOIBv(m) + Z‘“MBV(EE—{d, b

+ CtHf(S)

L (&)

where C = (9 + %)\/g(f)s.

Proof. It directly follows from Theorem 2.1, Lemma 3.3 and Theo-
rem 3.4.

This shows that this scheme achieves O(N %) approximation w be-
cause wg has O(N ) meshpoints.
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