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THE EXISTENCE OF PRODUCT
BROWNIAN PROCESSES

JOONG SUNG KWON

1. Introduction

Many authors have studied multiple stochastic integrals in pursuit of
the existence of product processes in terms of multiple integrals. But
there has not been much research into the structure of the product
processes themselves. In this direction, a study which gives emphasis
on sample path continuity and boundedness properties was initiated
in Pyke[9]. For details of problem set-ups and necessary notations, see
[9]. Recently the weak limits of U-processes are¢ shown to be chaos
processes, which is a product of the same Brownian measures, see 2]
and [7]. A process Z = {Z(f): f € F} is called a Brownian process,
where (8,8, 1) is a measure space and F C L%(S, 1), if Z is a Gaussian
process with EZ(f) = 0 and

Cou(2(f).2(0) = [ fodn.  fgeF.

Let (Z,,F1) and (Z3, F3) represent two Brownian processes with
Fi C LYSi,u;), 1 = 1,2. Clearly we can define, by linearity, Z :=
Z1 X Z3 on the field generated by Fy x F, as, for f; € F;,i = 1,2,
Z(f1® fa) = Z\(f1)Z2(fa), where Fi x Fo={f1 @ fa: fi € Fi} and
f1® fa(x,y) = fi(x)f2(y) with x € S; and y = S;. We will refer
F1 x Fy as the set of product rectangle functions following set product
analogy.
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In this paper we continue the study of sample path property of prod-
uct processes. In the study of multiple stochastic integrals as well as
weak limits of U-processes, however, only products of the same process
are considered. When one concerns oneself with the study of product
processes, there is no reason to restrict oneself to the same factor only.
In section 2, tail probability bounds for product of Brownian processes
are derived. In section 3, as an application, the results of section 2 are
used to show the existence of product processes. The regularity on the-
sample paths to be considered here is uniform continuity with respect
to the L2-metric. Finally we give some comments for constructions of
product processes in section 4.

2. Probability Bounds

Let (Z;,F,) and (Z,, F,) represent two Brownian processes with
Fi C L¥S;,pi), ¢ = 1,2. Let {fii:e=1,2,--- ,n} and {fe; 17 =
1,2,---,m} be subsets of Fy and F, respectively, such that, for #
and j # ), fflz'fn'dﬂl = ffz;‘fzj'd#:e =0. Let f = Lz(ﬂl X pz) be of

the form

(2.1) f:ZZCijf]i®f2j: Zf1i® Z Cijf2j

i=1 j=1 i=1 jEK.
where ¢;; € R and K, := {j : ¢;; # 0}. Then L% norm of o NFIE =
Loiz1 2z 16 P f1ill*llf; 1% Define X; = Zy(f1,)/||f1il| and X :=
Z3(f25)/|| f2;ll (when || f1:]| = 0 or [| f2;11 = 0 it is understood X, or X;
to be 0 by convention). Then

Z(f)= Zzl(fli) > ciiZa(fzy)

JEK;

Solfll X (Y il fosll X
=1

JERK;

We will first condition on the second factor.
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For this, define 0({Z2(f2;)}) to be the c—field generated by Z(f,;)
with 1 < 7 < m. By normality

P(Z(f) > n) = E{P(Z(f) > nle({Z2(f2i)})} = E{P(£ > n/V|V)},

where ¢ is an N(0,1) random variable and V' is r.onnegative and inde-
pendent of ¢ with distribution given by

V= E{(Z(£)*o({Z2(f) 1)},

the indicated conditional variance of Z(f). In crder to have a prob-
ability bound of Z(f), we need some information of V2. For this
we will use Hanson-Wright inequality which is the following. Let
A = (ai5) = (leijll| frillll f25])i,jen and let ||A|| be the norm of A
considered as an operator norm /;, the index on the sequences in I,
taking on the values 1,2,---. Let A2(A) =Y,

2
i, 4ig-

LEMMA 2.1. Let {X;}32, be a sequence of random variables such
that for allz and all z > 0

POXIz) <M [T rtan

where M and « are positive constants. Let
N N
Sn =Y ai(XiX; - EX.X;)
i=n j=1

be a quadratic form of {X;}32,. Then there exist constants C; and
C: depending on M and v( but not on the coefficients a;;) such that
for every € > 0,

P(Sy > ¢e) < exp(— min{Ce/||A||,C,e?/A%}).

LEMMA 2.2. For any = > 0 we have

T — 2 T — 22
P(V? > z) < exp (-Cl_l#L) + exp (_Cz( ||J|‘|’]|jl ) ) |
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Proof. First notice that

2

\
wa{ﬁ}ﬂum/

JER

which is a quadratic form of {Z,( f;;)}. Hence it is possible to apply
Hanson-Wright inequality to obtain a bound on the tails of V2. For
this we need to identify the matrix of V2 corresponding to f. Let K;
denote an m x 1 matrix and K an m x m matrix i the following way:

K o= (lealll full I forlls feel| Frell [ fazlls - s leam [ Frill § faml])!

1< <n

and

where K' denotes the transposed matrix of K. Let A = K!'K. Then
we have: V2 = YA'Y, where Y = (X], X},... 3" ). Also a simple
calculation shows that A*(K) = || f]|* and A%(A) < ||f|I*. Next note
that since ||A||; is the maximum of the absolute value of the cigenvalues
of A and since the largest eigenvalue of a square matrix B is bounded
by the square root of the trace of H!B,

A, < (Trace(A' A)) A2(A)1/2 .

Summing-up, finally we have

P(VE>az)=P (VI —|f|* >« - |f]*)

el (_ x—nml)

SeW( Al )* PO )
wa r—wm) N (C<x—wu )

s p<c’um2 ree\ ~CTrE )
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THEOREM 2.3. Let f € L*(u; x p2) be of the form in (2.1). Then,
forn > 0,

P(Z(f) > n) < Kyexp(—=Kan/| fl),
where K| and K, are constants not depending on f.
Proof. By lemma 2.2 and the standard bound for the tail of a normal

random variable after conditioning, we have

P(Z(f) > n) < E{(V/n)exp(-n*/2V?) A 1}
< E((V/n)exp(—n*/2VZ) A1 - 1jy25,)
+ E((V/n)exp(—n*/2V*) A1 1jyvacy)

T (2 — I£]2)?
< exp (‘C‘W[rizll )“’"p <C nyll“ )
+ VT /nexp(—n?*/2z).

Since 1 > 2| f]|. we can assume that = > 2||f||*. Then

P(Z(f) > n) < 2exp(—c12/2||f|*) + Vo /n exp(=n*/22).

Making the two exponents equal, we have z = 7||f|| and we finish the
proof.

Next we will consider a product of the same Brownian process. Let
(Z1,F1) denote a Brownian process indexed by Fi and F; C L*(p).
Let f € L*(pu x ) be such that f =37 Z;"zl ci; fi ® f;, where ¢;;
are real constants, and {f;:¢=1.2,--- ,m} a subset of (Z, F;) such

that [ ffjdu =0, for 7 # j. For f.

(2.2) 2y x Zu(f) = Zuf,uX Y cllfillX;

=1 JEK

where X, := Z,(fi))/|fil|, for i = 1,2,--- ;m, and {X; : 1 < ¢ < m}
are independent N(0,1) random variables. Denote A = 5" ¢,/ fil|*.
Then we have the following theorem.
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THEOREM 2.4. Let fe Lz(p X ﬂ) and A = ((T,’j”f,‘” . “f]”) be the
corresponding matrix of f. Then, for all n > 4A + | fll and for some
constants K, and K, independent of A,

. - (n—44)
P(Zl x Zl(f) > T)) < K, exp (—Rz'—?"”T”—) .

Proof. First, assume that A is symmetric. Lemma 2.1 gives the
following.

P(Z1x21(f) > n) < exp(=K1(n—=A)*/|| f1I*)+exp (—K2(n — A)/|IFI),

for all n > A and for some constants K; and K, Next consider the
case when A is upper (or lower) triangular matrix. Let f' be the
function corresponding to the transpose A' of A and let A+ A! be the
corresponding matrix to the function f+ f/. Then A+ At is symmetric
and we have the following equality.

Zl XZl(f+fl)=Zl XZ[(f)+Z1 XZl(f’) in law

Z] X Zl(f) = Zl X Z](f,) in law.
Thus, we have, from |f + f'||? < 4|/f)|?,

P(Z1 x Zy(f) > n) < exp(—Ki(n — 28)//f||?)
+exp(—Ky(n —24)/1I£[) .

for all 7 > 2A and for some constants K; and k5. Lastly consider
a general case. Write A = A'+ A", where A' andA® are the lower
and the upper triangular matrix of A in the obvious sense. Let f!
and f* be the functions corresponding to A! and A respectively, then

f=f"+f*and
Zy X ZW(f) =21 x Z1(fY + Zy x Z3(f*)  in law.

By applying the second case to the two terms of the right hand side,
we have the theorem.
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3. Existence of Product Brownian Processes

Let (Z,,F1) and (Z3, F,) represent two independent Brownian pro-
cesses or (Z1,F,) and (Z,,F,) be the same Brownian process with
Fi;C L%S;,p;), it = 1,2. Set Z = Z, x Z,. To prove the existence the-
orem, we need to restrict our index family in terins of metric entropy.
Let (S, p) denote a separable pseudo metric space. For § > 0, let S(6)
denote a finite §-net for S with respect to the metric p.

DEFINITION 3.1. For § > 0, let

v(6,8, p) = min{cardS(é) : S(8)is a é-net for S with respect to
the metric p}.

Then the metric entropy of S with respect to p is defined by
H($,8,p) = log v(8,S, p).

It is well known that fol H(u,S,p)%du < oo endures the a.s. sample
path continuity of Brownian process (Z,S). In this section, the metric
space is (F,dz2), where Fy x Fo C F C L%(y; > po) and dp2(f,g) =
1f =l

Assume that F satisfies the following:

AssuMPTION 1.
(1) f) H(u, F,dpz)du < oc.
(2) H(u) > log(logu)2.

AsSSuMPTION II. There exists a geometrically decreasing sequence
{0n}n>0 such that for all n,

(1) any member of the é,-net of F is a rectiiinear function,

(2) the difference of any two members of the é,-net of F is recti-
linear,

(3) the difference of any two members of the é,-net and é,4,-net
of F is also rectilinear and

(4) any member f of the net F(6,) have Af = 0.
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REMARK. The condition (4) of assumption II will be used in the
proof of product of the same Brownian process. If the case, we have
the same type of probability bounds in theorem 2.3 and 2.4. Also this
restriction appears in the study of multiple Wiener integrals, see [3]

and [10].

THEOREM 3.1. Let {(Y,,S)} be a sequence of random elements
with 8 a complete separable metric space and suppose that there exist
a sequence of positive numbers e, which satisfies the following:

(1) Y0 en < oc.
(2) Z?:] P(|Ya = Yaoill 2 €n) < oc.

Then there is a random elemernt Y such that ¥ = lim,_ o Y¥5,.

Proof. Let A, = [||Y, — Yu_i| > €,) and A, = limsup, . A,.
From (2) and the Borel-Cantelli lemma P(A4 ) = 0, so that P(4,.) =
1. The relation w € A, means that w belongs only to finitely many
Ay; therefore there exists an Ny = Ny(w) such that [|[¥, — Y, || < en
for all n > N;(w). Since

HYn+k - Ynl

S ||Yn+l - y’n

Yo = Yo+ + 1Yok — Yagr—1ll,

we have
H},n—f—k_yynH S5n+i +5n+2+"‘ En+k

oG

when n > Nj(w). Let ¢ > 0 be given. Since the series 2% ¢,
converges, there is an Ny = N,(&) such that E:(:':n-}-l £ < ¢ for n >
Nj. Let Ny = No(w,e) = max[Nj(w), Na(¢)], then it follows that
|Ynik — Ya|| <€ for n > Ny. This implies that the sequence {Yo(w)}
converges for all w € 4 .

COROLLARY 3.2. Let {X,} be a sequence of random variables and
suppose that there esists a sequence of positive numbers ¢, such that

(1) 1 &n < 0C
(2) 3222 P(|X,] > en) < .

n=1

o
Then the infinite series Y. X, is almost surely convergent.
n==1
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THEOREM 3.3. Assume that F satisfies Assumption I and II. Then
for any f € F. Z(f) is defined uniquely as a limit of a sequence
{Z(fn)}, where {f,} denote an approximating sequence of f.

Proof. Assume f is itself rectilinear, then, as we mentioned above,
Z(f) can be defined easily. Assume that f is any member of F, let
fs dencte a member of the é-net F(é) satisfying ||f — fs|| < . Note
that by Assumption 11, fs is rectilinear. Let 1,. n > 0 be a sequence
of positive real numbers whose specific values will be determined later.
Let {6n}n>0 be the same as in Assumption I. Write f, for fs and
consider

€n 1= P[IZ(fn) ~ Z(fu41)| > 11a] -

If we can show 3>~ 7, < oo and }_ o7 | €, < oo. then by theorem 3.1,
Z(fn) converges almost surely to a limit. Since |Z(f,) — Z(fro+1)| =
|Z( fr— fr41)| we have P(|Z(fn)—Z(fn+1)] > na) < maxy P(|Z(f)| >
7n ), where the maximum on the right hand side is over all f in F with
|| f]| < 26, that are rectilinear functions. By theorem 2.3 and 2.4,

max P(|Z(f)| > nn) < Kyexp(—HKin,/26,)

where K; and K, are constants.

Now set &, = 6p3" for some &, € (0,1) and 8 € (0,1). And let
Nn = K33"logn with KyK3 = 46,. Then Y. 7, < oo and since
exp(—HAann/26n) = 1/n*, we have Y o &, < co. Notice that we did
not use Assumption II yet, but to prove the independence of the choice
of approximating sequences we need that assumpsion. For this let {g,}
be another such approximating sequence of f. Consider

(3.1) en = PZ(fu)— Z(gn)|l > m).

Again if we can show ) >~ n, < oo and 37 | €, < 00, then by corol-
lary 3.2, we have > > (Z(fn) — Z(gs)) is almost surely convergent,
which says that Z(f,) — Z(g.) converges to zero almost surely, that is,
{Z(fn)} and {Z(gn)} have the same limits.

Now |Z(fn) — Z(ga)l = |Z(fn — gn)|, we have P(|Z(fn) ~ Z(gn)| >
nn) < maxz P(|Z(f)| > n,), where the maximum on the right hand
side is over all f in F with|| f|| < 26, that are rectilinear functions. By
theorem 2.3 and 2.4,

(3.2) max P(|Z(f)| > 1n) < K1 exp (~K270/262)
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where K and K, are constants. Combining (3.1) and (3.2) gives
€n < Kyexp(2H(6,) — Kann/26,,).
Take n, = GK’Q—IH(én)én and 6, = 69" for some &y € (0,1), then
€n < Ky exp(—H(6,)) and
o

H(u)du > " (6n—6ng1)H(6,) = (1-5) D H(E)=CY
n=2 n=2 n=1\

0

where C' = K38(1 — 3)/6. Thus Assumption I implies the convergence
of the series >~ | n, and, since

exp(—H(6,)) < exp(—log (log 6,)%) < (nlog 8 + log é5) 2,
which implies "7 &, < oo. This finishes the proof of the theorem

3.3.

THEOREM 3.4. Assume that F satisfies Assumption I and II. Then
a product Brownian measure Z can be defined on F whose trajectories
are uniformly continuous with respect to the || - ||-metric.

Proof. In view of theorem 3.3, it suffices to prove that Z is uniformly
continuous over F almost surely. Let ¢ > 0 and 7 >> 0 be given. Claim
that there exists § = §(e, ) > 0 such that

P(sup{|Z(f) - Z(g)l: fge F.f gl <5} >n) <

For any f, g € F and n > 1, we have

(3:3) 12(f)=2(9| < 12(£)=Z(fn)|+12(9)~Z(gn)|+]Z(fn)— Z(gn)].

Let n be such that 377 nx < n/3 and Y ;o €x < €/3 with {5} and
{ex} as the same as in the proof of the last half of theorem 3.3, then
we have

P (s;p \2(F) - Z(5)] > n/a) <3,



The existence of product Brownian processes 329

which bounds the first two terms on the right hand side of (3.3). For the
third term, note that if || f —g|| < é,,, then by the triangular inequality,
| £ — gnll < 36,. Following lines of the proof of theorem 3.3 we have

P taax Z n -Z n ‘1> 3
fyyef,lff—gu<3an| (fn) (gn)l >n/

(3'4) <K, exp(zH(én-H) - 77/36n)'

By assumptiom II, §H(§) < f: H(u)du — 0, as § — 0. It follows
therefore that the bound in (3.4) is less than ¢/3 when &, is sufficiently
small. This is always possible just by increasing n if necessary, and
this increase does not affect the two previous restrictions placed on n.
Take 6 = 6(e,n) to be the resulting value of 6,. This completes the
proof of the theorem.

Let F and G denote the envelopes of F, and F, respectively. And
let

Wl = Z] - Z](F)/i] and W2 = Zz - ZQ(G)[.LQ

be tied-down Brownian processes. Then the product tied-down Brown-
ian process is defined by

W] X W2 = Zl X Zz — ZI(RF)(,U'I X Zg)
= Z2(G)( 2y ¥ pa) + Z1(F)Z2(G) (g1 X pz),

where the first and the fourth terms are the product of (independent
or the same) Brownian processes and the product measure of p#1 and
#2 respectively, and Z; x gy (or gy X Z3) is a Gaussian process. Thus
theorem 3.3 and 3.4 give the following corollary.

COROLLARY 3.5. Assume that F satisfies Assumption I and II.
Then a product of tied-down Brownian processes can be defined on
F, whose sample paths are uniformly continuous with respect to the
| - ll-norm on L%(p; x Ly).
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4. Other Possible Constructions

In this section we give some comments and surveys about possi-
ble (1mplicit) construction of product Brownian process as a limit of
(some) sequence of product processes, appearing in [2], [7] and [9]. Let
£1,&,, ... be independent observations taken from a distribution P on
a set X, and F be a class of real-valued symmetric functions on X x X.

We define the U-process {S,(f): f € F} by

Y fléng) for feF

1<i#j<n

If F is degenerate, that is, if [ f(z,)dP =0forall f € F and z € X,
then the covariance kernel c(f,g)is 1dent1cally zero. In this cace for
each f, the random variables n™15,(f) converge in distribution to an
infinite weighted sum of independent y? random variables. In [2] and
[7], they showed that under some conditions, {n~'S,} converges in
distribution to a limit ), a version with sample paths in C(F. P & P).
In this result we are interested in the process ). which defined as follow:
Consider the Hermite polynomials {hg, k& € N} on R defined by the
series expansion

exp)\r——— Z A, reR.

The Hermite polynomials form an orthonomal basis of Ly(R, v, ), where
71 is the canonical Gaussian measure. If k € NN ie. k= (ki kg, ...).
ki€ N, with |k] = >, ki < o0, set, for

H&(l‘) = hkl{l‘] )hkz(Zz) s

Then {Hg,k € NN} forms an orthonomal basis of Lo(RN,~) where
¥ = Yoo 18 the canonical Gaussian product measure on RN. A function
fin Ly(7) can be written as f = >, Hgfx where fx = [ fHidy and

the sum runs over all k’s in NN. We can also write

F=Y 1D Hefe | =D Quf.
d=0

d=0 \ k|=d
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Qaf is named the chaos of degree d of f. Since ko = 1, Qo f is simply

the mean of f; hi(z) = z, so chaos of degree 1 are Gaussian series
> ; gia;. Chaos of degree 2 are of the type

(4.1) Zg,‘gjoz,‘j—FZ(g?-—l)a,‘,

1#] 1

where (g;)ien is a sequence of independent standard Gaussian random
variables. The first term of the right hand side of (4.1) is the same
modulo coefficients as (2.2).

Second possible construction can arise as a weak limit of a sequence
of product partial sum posscess, as mentioned ia [9]. We define the
product(smoothed) partial sum process S, corresponding to {X;} and
{Y;} indexed by subsets of the d-dimentional unit cube I by, for 4 € A,

Sa(A):= > Y Xi¥jlnAn Cyl,

fl<n jI<n

where Cjj is d-dimentional unit cube whose Lebesgue measure is 1
and the upper right corner has a coordinate (i,j) with i € N% and
j€ N%. When 4 =B x C, by nomalizing with n~4/2 n=425 (4) =
n=%25,(B x C) converges to product of Gaussian random variables
depending on B and C. From this observation, it is possible to see that
a product Brownian process could be the weak limit of a sequence of
product partial sum processes. See [5] for the proof of the tightness of
n~%/28, under some conditions on the random variables.

References

1. Adier, R. J., An Introduction to Continuity, Exirema and Related Topics for
General Gausstan Processes, IMS Lecture Notes-Monograph Series, IMS, Hay-
ward, 1990.

2. Arcones, M. A.| and Giné E., Limit theorems for U-processes, Ann. Probab. 21
(1993), 1494-1542.

3. Engel, D. D., The multiple stochastic integral, Memoirs of A.M.5. 38 No. 265
(1982).

4. Hanson, D. L., and Wright, F. T., A bound on tail probabilities for quadratic
forms in independent random variables, Ann. Math. Statist. 42 (1971), 1079-
1083.



332 Joong Sung Kwon

5.

6.
7.

10.

11.

Hong, D. H, and Kwon, J. S., A Tightness theorem for product partial sum
processes indexed by sets, J. Korean Math. Soc. 32 (1995), 141-149.

Ité, K., Multiple Wiener integral., J. Math. Soc. Japan 3 (1951), 157-169.
Nolan, D., and Pollard, D., Functional limit theorems for U-processes, Ann.
probab. 16 No. 3 (1988), 1291-129%.

- Perez-Abreu, V., Product Stochastic Measures, Center for Stochastic Processes.

Technical Report No. 118, Dept. of Statistics, University of North Carolina,
1985.

- Pyke, R., Product Brownian measures, Analytic and Geometric Stochastics Ed,

by D.G. Kendall, Supplement to Adv. Appl. Prob. 18 (1986).

Surgailis, D., On L? end non-L2multiple stochastic integration, Lecture Notes
in Control and Information Sci. Springer, New York 36 (1981), 212-226.
Wiener, N., The homogeneous chaos. Amer. J. Math. 55 (1938), 897-936.

Department of Mathematics
Sun Moon University
Asan, Chungnam 337-840, Korea



