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CONTROLLABILITY OF NONLINEAR
DELAY PARABOLIC EQUATIONS
UNDER BOUNDARY CONTROL

JONG-YEOUL PARK**, YOUNG-CHEIL, KWUN*
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1. Introduction

Let A(£,0) be a second order uniformly elliptic operator

n

A<s,a>u=—265 (aj(¢) 65 +Zb ag +e(€)u

Jik=1 4

with real, smooth coefficients a;, b;, ¢ defined on £ € , 2 a bounded
domain in R™ with a sufficiently smooth boundary T.

In this paper, we consider the following parabolic equation:

8x((9tl:€) = A(&,a)l‘(t,g) + F(t’éaxt(«g)\f- (OT] X Q’
(1) 2(t,€) = é,[-7,0]x Q
Bzlr = u, (0,T]xT

Here,

r: RxQ — R",
Ti(97€) = l‘(l‘—+—9,§), Vo S [_7‘70]7
F:RxQxC(R;R") - R"
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is nonlinear function and B is an associated boundary operator of the
usual form
B:z—> ar+ pr, at T

where r, is the exterior conormal derivative

Oz ou
T, = (—9; = Za”‘_k"k’

where n = unit exterior normal to I', with “sufficiently smooth” (real)
coeflicients, normalized so that a? + 3% = 1. We distinguish between -
and admit - the two cases (Dirichlet and Neumann)

D=1 =0
Nuia=90, g=1.

In an attempt to develop results for nonlinear control systems several
established techniques from nonlinear analysis have been employed.
An early example of this was the use of Nussbaum’s fixed point the-
orem([7]) to obtain controllability results for infinite-dimensional ab-
stract nonlinear systems([1]). Recently, in [4], they was the use of
Nussbaum’s fixed point theorem to obtain controllability result for de-
lay volterra control system.

In this paper, we will attempt to solve controllability for nonlinear
delay parabolic equations with boundary control -a semigroup approach-
using method by Nussbaum’s fixed point theorem

In section 2, establishing notation and formulating problem.

In section 3, we are to show the mild solution of (1) can be streered
from the origin to any final state.

2. Notation and Formulation

Let A : D(A) C L*(Q) — L%Q) be the operator Af = A(£,0)f
for f € D(A) where

D(A) = {z € L*(Q) : Az € L*(Q), Bz|. = 0}.
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It is well known that A generates a analytic semigroup S(t) on L*(2).
Without loss of generality, we can assume that the spectrum of A 1s
on the right of the complex plane and 0 € p(A), so that the fractional
powers of A are well defined ([9]).

Let X = L*(Q), W = L*T'). With « a real ncn-negative index, let
XY and {W2} be continua of Hilbert spaces su.ch that
p
X cX2c...cX’=X
o , ap >az >0
W cwxc..cW' =W

where the injections are continuous.
We next extend the definition of {X*} and {W°} by setting

X—~2a — [D(A*)a]l
VV——Za — [W2a]l

for all @ > 0, so that the inclusions X C --- X 72 C X% and W C
W2 ¢ W~ also hold.
Finally, for the purpose of uniformity of notation, we fined it con-
venient to introduce the symbol

D(A™®) = [D(A™)]

for all a > 0.

We now formulate our basic assumptions concerning D(A®) and the
operator G.

Assume that G € L(W — X) has regularity ag, ag 2> 0, with
respect to (W2, X*); i.e. that

G : W2 o X?Zotieo
is a linear bounded map for o > 0.
(2) D(A®) = X* for 0<a<aq,
the identification being set theoretically and topologically; 1.e.,

||| x2a equivalent to || A%z x.
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That above assumption is fulfilled when where of course
X'(Q), s< % (Dirichlet), s < g (Neumann)
with topology given by
lzlip(aey = |A%2||x, o < % (Dirichlet), a < %, a# %(Neumann)
G is the Green's map defined by
Gv = v iff A(,0)v =0 in Q

Byl = u on L.
The Dirichlet map

(3) Gp : W2 X20+2-%

the Neumann map

(4) Gy : Wie , x2o+2:3

is the bounded linear operator. By (2), (3) and (4), we then have
range of Gp = GpW C D(A’J“%””), p >0,
range of Gy = GyW C D(AS“L%_"), p > 0.

With this preliminary background, by semigroup formulation with s =
0, it is given by

z4(¢)(0) =2(t)
(5) =S(1)9(0) + / (S(t = $)F(s, 24(6))
+ ATFPS(t — §)AT PG pu(s)]ds
; Dirichlet case
z4(¢)(0) ==(t)
(6) =5(00(0)+ [ 150~ 5)F(s,2(6))
+ ATTPS(t — $)AT PG yu(s)]ds

; Neumann case
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It follows directly ( or by the convolution theorem ) that

i
/ ATHPS(t — )AT P L0, T; W) — C([0,T]; X27), e > 0,
0

; Dirichlet case

t
/ AY*PS(t — $)ATTP L L®(0,T; W) — C([0, T X57), € >0,
0

: Neumann case

is linear and bounded. Put

1

i p : Dirichlet case
0' fvrnt

3

1 p : Neumann case,

1

=_ £ : Dirichlet case

4 2
a = {

3 ¢

— — = : Neumann case,

4 2

G p : Dirichlet case
D=

Gn : Neumann case,

Rewrite (5) and (6) then
(7)

£(6)(0) = S(£)$(0)+ / [S(t—s)F(s,4(6))+A 7S (t—s)A? Du(s)]ds.

Put X, = D(4%) = X** with norm
[zlla = llzllpeas) = 1A%, = € X

Let Wy = Co(R*; W), the space of all bounded and continuous W-
valued functions with the usual supremum norm, then the boundary
control or the perturbation function u is given in W C W.

We shall denote by C, the Banach space of continuous functions
C([-r,0]; Xo) with the norm

lollc. = _sup [A%6(O)l].

—-r<8<
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Let ¢ € C([—-r,0]; X4).
If ,(¢) is an element in C([—r,0}; X,) then which has point wise
definition

z(@)(0) = z(o)(t+6), for 6 € —r 0]

In [8], they are to solve the existence problem of milde solution of
(1) under following assumptions:

(F) the nonlinear function
F(,};R x Ci[-r,0]: Xo) = X

is continuous, F'(¢,0) = 0 for ail ¢t > 0, there exists an L > 0 and
w > 0 so that

1E(t,0) — F(t, )| < e™'Llj¢ - ¢llc,
and the following inequality holds for some constant A, > 0

JA®S(H)|| < Mat™%e %,

3. Controllability

In this section, we consider the controllability of the system (7).

We desire to transfer the nonlinear system (7 from x(0) = ¢ to
rp(¢) = v. Here u € L*(0,T; W), a Banach space of possible control
actions.

Assume that the following inequality holds for some constant M, >
0,
[A°S(H)]| < Mat™?.

The result dependes on the exact controllability of the linear system

(8) z(3)(0) = / A'"YS(t — s)A° Du(s)ds.
0
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We assume that it can be streered to the subspace V then Range G D V
where

T
Gu :/ A'778(t — s)A” Du(s)ds.
0

Actually we can assume, without losing generality, that Range G =
V and that we can construct an invertible operator G defined on

L*(0,T:W)/KerG([1]). Then, the control can be introduce

T
u(s) = G_][v—/ S(T — s)F(s,zs(8))ds](s).
0

This control is substituted into (7) to provide the operator
t
Pz4(¢)(0) = / S(t — s)F(s,z4(9))ds
0

¢ T
+/ Al—”S(t-s)A”DG—l[n—/ S(T — s)F(s,24(¢))ds](s)ds.
0 0]

Notice that ®x7(¢)(0) = v, which means that the control u streers
the nonlinear system from the origine to v in time T provided we can
obtain a fixed point of the nonlinear operator ®.

We assume the following hypothesis:
(F1) the nonlinear function
F(,):10,T] x C({-r,0]: Xgo) -+ X
is continuous and satisfies a Lipschitz type condition

[F(t.0) = F(t,v)l| < r(t)lle —vlic.

where r(||¢]|, |[¥||) = r({) is continuous on [0,T].7(t) — 0 as

t—0and F(¢,0)=0,0<t <T.
(H1) The linear system (8) is exactly controllable to the subspace

V.
(H2) St)re XnViorallze X, t2>0

1S(H)zlly < g)llzll,  lgllezx) = €1 < oo
(H3) « is chosen so that the following conditions hold
sup (cz + eser(t))r(fl¢(t)]],0) < & < 1.
lIll<~

(H4) The semigroup S(¢) on X is compact operator for each t > 0.
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THEOREM 1. ([7]) Suppose that S is closed, bounded convex subset
of a Banach space X. Suppose that ®,,®, are continuous mappings
from S into X such that

(i)
(21 +@,)5 C S,
(ii)
@17 — ®12'||x < k|lz — o' for all z,2' € S
where k is constant and 0 < k < 1.
(i) ®5(S) is compact.
Then the operator ® + ®, has a fixed point in S.

LEMMA 1. Let constant « satisfy 1 —a > 0 then, for0 <t < T,

t
I [ A4St = s)es)asl < eallluzie
0

By similar estimation of Lemma 1, we get following Lemma 2.

LEMMA 2. Let constant a,o satisfy 1 — 2(a + 7 — o) > 0 then, for
0<t LT,

H / ATHOS(— ) ATDu(s)ds]) < es(-)llull o)

where c3(-) is increasing, c3(0) = 0.

THEOREM 2. Hypothesis (H1)-(H4) and (F1) are satisfied. Then
the state of the system (7) can be streeded from the ¢ to any final
state v, satisfying

lollv < Q_Lm

in the time interval [0, T).
Proof. We now defined

®,24(4)(0) = /(; S(t —s)F(s,z4(¢))ds
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and

®224(4)(0)
¢ ) T
:/ Al“"S(t——s)A"DG_I[v—/ S(T — s)F(s,z4(¢))ds](s)ds
0 0

We can now employ Theorem 1 with

S = {zde)(-) € C([=r.T): Xa)s[lz:(¢)llca <7}

Then the set S 1s closed, bounded and convex. From the definition

®z4(9)(0) = 2124(8)(0) + B224(0)(0).
Thus for any =+(¢)(:) € S, using Lemma 1, 2

”(I'It(¢)”0 = ]lAa(I’It(¢)(9)|§
-||A°<I>rt+e ¢)(0)ll

t+6
—| / AS(t + 6 — $)F(s,2,(¢))ds + / AH1=TS(46 — 5)
0 0

. T
x A’DG™ v — / S(T — s)F(s,x4(¢))ds](s)ds||

< car(t)lizs(@)llc. + esllvllrzo,rx) + cscrr(t)|za(8)l c.
=(c2 + cre3)r(t)|zs(d)c. + csllvllL20,7:%)
<kvy+(1-k)y =7, ~h<6<0.

Hence

sup_ Ilq’rt(¢)lla = |@zi(¢)llc. < 7
—h<8

Hence ®1z+(¢)(0) + <I>2xt(¢:)(0) € S for all z+(¢) € S, which means
that part (i) of Theorem 1 is satisfied.

To show that ®, and ®; are completely contiruous. We consider

1@1(z4(@) + 1) — D124(d)lla
=||A%® (ze40(@) + 1)(0) = A® 1z 46(0)(0)]]

t4-8
= / A®S(t 46— $)[F(s,2,(6) + 1) — Fls,z.(6))]ds]

Scor()lnllc. - 0 as -0
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Thus, we have

[@2(ze(@) +7') — Bo24(0)]|a
= [[A°®2(22+6(¢) + n')(0) — A%®3 (214 4($))(0)]]
<C3C17‘ ”77 “ —hg()SO, 0:th

Consequently

Sup_ H‘I’Z(JM(G5 +1') = ®2(z4($))||a
—h<

~ (e (o )+ 1") = Ba(xd(8))]lc,
<car)ln'llc, =0 as  p -0,

Thus &, and ®, are continuous.
Using the Arzela-Ascoli Theorem we show tha ®, maps S into a
precompact subset of S. We consider

t+8
rz,(¢)(0) = / A'T7S(t+ 6 —s)
0
x A°DG~ v - / S(T — s)F(s,z4())ds](s)ds

We now define
t+6—¢
D,_.z(0)(0) = / A'TOS(t+ 6 - s)
0
~ T
x A°DG™ v — / S(T — s)F(s,z5(¢))ds](s)ds
0

for all z,(¢) € S. Then

t+6-—¢
D, _.x4(0)(F) :S(E)/ ATOS(t 46— )

0

T
x A”DG~'[v — é S(T — s)F(s,z4(¢))ds)(s)ds.
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By hypothesis (H4), S(€) is compact operator. Thus the set
Ky (lzd(0)(0)] = {®2_cz:(0)(0) : 24(8) € S}

is precompact. Also

”@2xt(¢) - ¢2—ezt(¢)l'a
t-+ 6 ~
= A°H1=78(t 4 § — $)A° DG
t4+8-—¢

T
<lo= [ ST - 9 o)dl(s)ds]
<c(e){llvlizzo,mx) + ar®lzs()llc,] =0 as  e—0.
Hence

sup |[|®2z4(@) — Po—cx4(d)]la
—h<O<0

= ||@224(0) — @2_c4(d)] c,

<ecz(O)llvllz2orx) +ear®)lles(o)lc.] =0 as  e—0.
Thus there are precompact sets arbitrarily close to the set
I\’z[l't ( ] = {@zl‘t (6 . E S}

and therefore Ky{z¢(¢)(6)] is precompact.

We next show that ®; maps the function in S into an equicontinuous
family of functions. For equicontinuity from the left we take ¢ > ¢ >
t' > 0 then

’i(I)?xt(¢) - ¢2-Tt——t’(¢)“a

t+6 )
:H/ ATI=98(t + 0 — s)A° DG !

0

T
X [v— / S(T — s)F(s,z4(9))ds)(s)ds
0
t—t'+8 )
- / A°tI=78(t —t' + § — s)A"DG ™!
0

T
X [’U—/; S(T — s)F(s,z4(0))ds](s)ds||
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t+6—¢ .
<| / A0St 4 ) 4T DE!
0

T
<= [ ST F(s 2. tepdsfis)ds
t+60—e¢ ’ ~
- / AHI=TS(t — ¢! 4§~ $)4° DG
0

T
<lo= [ ST~ )P (0))dsl(s)ds |
0
t+6 .
+ ASTI=G(t 4+ — 5)A" DG
t40—¢

.
XW—A S(T — $)F(s,,(9))ds](s)d:]|

t+6—t' .
+ | AHI=o8(t 4§ —t' — s)A°DG!
t+0--¢

T
X [v— /) S(T — $)F(s,x,(¢))ds](s)ds||
t+0-—¢ .
<[5 +¢) - S(e)] / |ASH 17 S(t — ¢/ 46 - 5 — ) A" DG
r
« [v —/O S(T — $)F(s,24(6))ds](s)|ds

t+8 5
+ / A1 =7S(t + 0 — s) 4" DG 1
t+6-—¢c

T
x [v —/(; S(T = s)F(s,x4(¢))ds](s)ds

t+6—t' .
+ / |ASHI=9S(t + 6 —t' - 5)A° DG !
t+6—¢

T
X [v —/; S(T — s)F(s,z4(¢))ds](s)||ds
SIS +e) = S(e)lles(t + 6 ~ e)llul + ea(e)ull + cs(e — t')|jull — 0
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as € = 0, by ¢3(t) — 0 as t — 0 and S(¢) is continuous. Thus we have

sup || ®224(¢) — P22¢—v(8)]la
—h<8<0

=||®22¢(¢) — Pozi—v(d}]lc, — O as t 0.

The equicontinuity from the right is similar. Finally we must have a
Lipschitz condition for the operator @;.

Consider z¢(¢), £:(¢) € S,
”@]It((p) - (Pljt(d))”a

t+6
- / A°S(t - $)[F(s,24(8)) — F(s, 24()))ds]
< car(®)lles(6) — 34(D)llc.

Consequently,

sup || @17¢(¢) — ®124(9)lfa
—R<H<0

= H@].’l‘t((ﬁ) - ¢]jt(¢)|lca
S CzT(t)”rs(d’) - j8(¢)“ch .

Therefore, by Theorem 1, the proof of Theorem 2 is complete.
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