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WEAKLY WELL-DECOMPOSABLE
OPERATORS AND AUTOMATIC CONTINUITY

TAE GEUN CHO AND HYUK HAN

1. Introduction

Let X and Y be Banach spaces and consider a linear operator
6 : X — Y. The basic automatic continuity problem is to derive
the continuity of # from some prescribed algebraic conditions. For
example, if 8 : X — Y is a linear operator intertwining with T €
L(X) and S € L(Y), one may look for algebraic conditions on T and
S which force 6 to be continuous.

The study of continuity of a linear operator @ intertwining with T'
and S was initiated by Johnson and Sinclair [J3]. In [JS] necessary
conditions on T and S for the continuity of 8 were obtained for the
operator S with countable spectrum.

In 1973 Vrbova presented an automatic continuity result concern-
ing an intertwining operator with operators having suitable spectral
decomposition properties [Vr72].

In 1986 Laursen and Neumann introduced super-decomposable op-
erators in [LN] in order to consider necessary conditions for automatic
continuity of intertwining operators; this class of operators contains
most of interesting examples of decomposable operators. Since [LN],
the study of automatic continuity of intertwining linear operators has
been closely related to the classification of decomposable operators.

In this paper, we introduce the class of weakly well-decomposable
operators to study the continuity of intertwining operators. This class .
is a subset of the class of operators having the weak 2-spectral decompo-
sition property (weak 2-SDP), and contains all the super-decomposable
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operators. For this class, it is possible to give a very useful algebraic
representation of the analytic spectral subspaces. From this represen-
tation we present some applications to automatic continuity theory.
We give necessary and sufficient conditions on a decomposable opera-
tor T' defined on a Banach space X and a weakly well-decomposable
operator S defined on a Banach space Y in order that every linear op-
erator # : X — Y which intertwines with 7 and S be automatically
continuous. This generalizes the works of [AEN], [LN] and [LW].

2. Preliminaries

Throughout this paper we shall use the standard notions and some
basic results on the theory of decomposable operators and automatic
continuity theory as presented in [CF], [EL], [EW], [Va] and [Si76]. Let
L(X) denote the Banach algebra of all bounded linear operators on a
Banach space X over the complex plane C. Given an operator T €
L(X), let Lat(T) denote the collection of all closed T-invariant linear
subspaces of X, and for an Y € Lat(T) T|Y dencte the restriction of
T onY.

DEFINITION 2.1. Let T : X — X be a linear operator on a Banach
space X. Let F be a subset of the complex plane C. Consider the
class of all linear subspaces Y of X which satisfy (T — A\)Y =Y for
all A ¢ F and let Ep(F) denote the span of all such subspaces ¥ of
X. Ep(F) is called an algebraic spectral subspace of T .

It is clear that (T — X\)Ep(F) = Ep(F) for all A ¢ F as well so
that 1t is the largest linear subspace with this property. It is known
that the algebraic spectral subspace preserves intersections of subsets
F of C [La88]. It is also clear from the definition that

Er(F)C [ (T-X)"X.
AgF neN

A linear subspace Z of X is called a T-divisible subspace if

(IT'-XN)Z =2 forall AeC.
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Hence E7(Q) is precisely the largest T-divisible subspace. For an oper-
ator T € L£(X), it is easy to show that only closed T-divisible subspace
is {0}. There is an operator which has non-trivial divisible subspaces.
Indeed, the Volterra operator has a non-trivial divisible subspace [LN].
On the other hand, many important operators do not have non-trivial
divisible subspaces. For example, hyponormal operators on Hilbert
spaces do not have non-trivial divisible subspaces [Pul].

LEMMA 2.2. Let T € L(X) and let M be the maximal T-divisible
subspace of X. Then M is characterized by M being maximal sub-
space with respect to

(T—-MM =M forall Aeo(T)

where o(T) denotes the spectrum of T

Proof. Let M be the maximal subspace with the property (T —
MM = M for all X € o(T). It is enough to show that (T —pu)M = M
for all u € p(T), where p(T) denotes the resolvent set of T'. For each

p€p(T)

(T = M(T =)' M = (T — )T -~ \)M
=(T—p)"'M

for all A € o(T), it follows that (T — p¢)™'M C M by the maximality

of M. Hence we have

M = (T = u)(T - p)~'M (T - )M
C(T— A+ (A= )M
cCM O

Let T € £(X)and z € X. Then f(A) =(T — X\)"!z is an analytic
function on p(T'). This function may have an analytic extension to an
open set properly containing p(7T). If any two such extensions must
agree on their common domain, then T is said to have the single-valued
ertension property. In this case f(A) must have the maximal analytic
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extension which we denote by z(}). We now define the local resolvent
pr(z) of z as follows:

pr(z) = {X € Dom(z())) : (T~ A)z(A) =z on a neighborhood of A}

and the local spectrum aT(:r) of z is defined to be op(z) := C\ pr(2).
The set or(z) is a compact subser of C and op(.r) C o(T). It is easy
to show that op(z) = 0 if and only if z = 0. It is also easy to see that
for FCC

‘Xr' _{J'E,X O'[()CF

i1s a T-invariant (in fact, hyper-invariant) linear s.1bspace of X . This
space 1s sald to be an analytic spectral subspace. 11 general, this space
X7(F) need not be closed even if F is closed. For a given T € L(X)
having the single-valued extension property, using « standard argument
of the theory of local spectral theory it is easy to show that the inclusion
X7p(F)C Ep(F) forall F CC.

The single-valued extension property passes to the restrictions of
the given operator. The proof of the following lemrma is in [EL].

LEMMA 2.3. Let T € L(X) have the single-va.ued extension prop-
erty and let Y € Lat(T). Then T|Y has the single-valued extension
property and

o1(y) C ory(y) for every y € Y.

The proof of the following proposition is in [CF].

PROPOSITION 2.4. Consider T € £(X) with the single-valued ex-
tension property. If Xp(F') is closed, then

a(T\Xp(F o(T)NF.
An operator T € L(X) is called decomposable if, for every open

covering {U,V} of the complex plane C, there exist Y, Z € Lat(T)
such that

(1) oTIY)CU, o(TIZ)CV and ¥V + 7 = X.

In (1), if it is only required that the sum Y +Z be dense in X, then we
say that the operator T has the weak 2-spectral decomposition property
(weak 2-SDP).

Let F(C) denote the family of all closed subsets of C and let S(X)

denote the family of all closed linear subspaces of X .
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DEFINITION 2.5. (1) A map &(-) : F(C) — S(X) is called stable if
it satisfies the following two conditions:
(i) &) ={0}, &(C)=X.
(i) E(NL, Fn) =Now, E(Fn) for any sequence {F,} in F(C).

(2) A map £(-): F(C) — S(X) is called a spectral capacity if £(-)
is stable and satisfies the following condition:

(i) X =3, £(G;) for every finite open cover {G;} of C.

We say that £(-) is order preserving if it preserves the inclusion
order. Clearly a stable map is order preserving. [t is well known that
T is decomposable if and only if there exists a spectral capacity &(-)
such that £(F) € Lat(T) and o(T|E(F)) C F for each closed set
F C C. In this case the spectral capacity of a cloted subset F of C is
uniquely determined and it is the analytic spectral subspace X7(F).

We shall also consider an important subclass of the class of all de-
composable operators on X. An operator T € L£(X) is called a gen-
eralized scalar operator if there exists a continuons algebra homomor-
phism @ : C°(C) — L(X) satisfying ®(1) = and ®(z) = T where
I is the identity operator on X and z is the identity function on C.
Every linear operator on a finite dimensional space as well as every
spectral operator of finite type is a generalized scalar operator.

REMARK 2.6. For a generalized scalar operator T € £L(X) and a
closed set F of C, Vrbova proved the existence of a natural number
p such that

Xe(F)= [ (T - \'X
AgF

[Vr73]. From this equality, we have

Ex(F)C () (T-X"XC [ (T-N'X=Xr(F)
AgF neN AEF

Hence X7(F) = Ep(F) for a closed subset F' of C. In particular,
generalized scalar operators do not have non-trivial divisible subspaces.
Let @ be a linear operator from a Banach space X into a Banach

space Y. The space

S(8) :={y € Y : there is a sequence z, — 0 in X and 6z, — y}
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is called the separating space of 6. 1t is easy to see that &(6) is a closed
linear subspace of Y. By the closed graph theorem, # is continuous if
and only if &(8) = {0}. The following lemma is found in [Si76].

LEMMA 2.7. Let X and Y be Banach spaces. If R is a continuous
linear operator from Y to a Banach space Z, and if  : X — Y is
a linear operator, then (R&(8))” = G(Rf). In particular, R6 is
continuous if and only if RG(8) = {0}.

The next lemma states that a certain descending sequence of sepa-
rating space which obtained from # via a countable family of contin-
uous linear operators is eventually constant. This lemma is proved in
[JS], [La75] and [Si76].

STABILITY LEMMA. Let 6 : Xq — Y be a linear operator between
the Banach spaces X, and Y with separating space 6(0), and let
(Xi:i=1,2,...) be a sequence of Banach spaces. Ifeach T;: X; —
X;—1 Is continuous linear operator for i = 1, 2,..., then there is an
no € N for which

S(6\T,...T,) = 68T, T, . ..Ty,) for all n > n,.

The following lemma, known as localization of the singularities, is

adopted from [La92].

LEMMA 2.8. Let X and Y be Banach spaces. Suppose that Ex :
F(C) — S(X) is an order preserving map such that X = Ex(U) +
Ex(V) whenever {U,V} is an open cover of C. And suppose that
Ey : F(C)—> S(Y) is a stablemap. If : X — Y s a linear operator

for which
S(6|Ex(F)) C Ey(F) for every F € F(C),

then there is a finite set A C C for which &(8) C Ey(A).

This lemma tells us that under appropriate assumptions on a linear
operator which have a large lattice of closed invariant subspaces the
separating space will be contained eventually in a small closed invariant
subspace.

We need the next theorem, known as Mittag-LefHer Theorem of
Bourbaki, which is found in [Bo].
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MITTAG-LEFFLER THEOREM. Let (X, :n = 0,1,2,...) be a se-
quence of complete metric spaces, and for n == 1,2,..., let f, :
X, — X,_1 be a continuous map with f,(X,) dense in X, ;. Let
gn = f10---0 fu. Then ﬂ:O:Ign(Xn) is dense in Xg.

3. Weakly well-decomposable operators and automatic con-
tinuity

In this section we introduce a class of operators which have a new
type of spectral decomposition that we call weakly well-decomposable
operators. And we consider the automatic continuity of the operators
of this type.

For a given T € L£(X), we define the commutator C(T') acting on
L(X) by

C(TYA:=TA— AT for A€ L(X).

For a natural number n, define C'(T)" to be the n-th composition of
the operator C(T'). That is

n

C(T)"A = C(T)" " H(TA- AT) = _ (

k=0

n

k)(——l)’“T"""AT".
We define I(T') as follows:
I(T)={Ae L(X):C(T)"A =0 for some n € N}.

DEFINITION 3.1. A bounded linear operator 7" on a Banach space

X is said to be weakly well-decomposable if for every open covering
{U,V} of C there exist Y,Z € Lat(T') such that

oTIYYCU. o(T|Z)CV
and there exist sequences (P;), (Q;) in I(T) such that

Pi(X)CY, Q;(X)CZ and P;+Q; — I(WOT).

Here, P; + Q; — I(WOT) denotes that the sequence (P; 4+ Q;)
converges to I in the weak operator topology in £(X).
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The notion of super-decomposability of a linear operator is intro-
duced in [LN]. Every super-decomposable operator is weakly well-
decomposable and every weakly well-decomposable operator has the
weak 2-SDP, by the definition. Spectral operators in the sense of Dun-
ford, normal operators on Hilbert spaces, and operators with totally
disconnected spectrums are super decomposable. Hence these opera-
tors are all weakly well-decomposable.

THEOREM 3.2. If T € L(X) is weakly well-decomposable, then T
has the single-valued extension property.

Proof. Let T be weakly well-decomposable, I' an open subset of
C.and f:D — X an analytic X valued function satisfying

(T —-A)f(A)=10 forall Ae D
We may also suppose that D is connected. Let ¢; and GG, be open
discs in D with G, N G, = 0. Cli)ose another open set H; such
that {Gy,H,} covers C and G; |\ H, # 0. Since T is weakly well-
decomposable, there exist X, and Y; € Lat(7T) with

o(T|X,) €CGy. o{T|Y1)C H,

and there are sequences (P;) and (Q;) in Z(T) such that for each
re X, ue X*

(2)  lm ju(z — Pjz - Q;z)| =0, Pj(X)CX; and Q;(X)C Y.

] o0

For each ; € N, there is an n € N such that C(T)"Q, = 0. It follows
that C(T — A\)"Q; = 0 for all A ¢ D. Hence C(T — X)"Q;f()\) =0
for all A € D. That is

(3) Z (Z)(—l)k(T ~A)"RQ;(T — \)*f(A) =0 forall Xe D.
k=0

In (3), since (T'— A)f(A) =0 for all A € D, it follows that

(T—A)"Q,f(A)=0 forall Ae.D.
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Since Q;f(A) €Yy forall A € D and o(T|Y1) C Hy, we have
Q;f(A\) =0 forall j €N and A€ G \H,.
In (2),set = = f(A) fora A€ G, \ H,. Then we have

(4) Tim JulF(0) - (P, fO)] =0,

Since X, is a weakly closed subspace, from (4) and P;f()\) € X; we
have

f(A) e X, forall Ae Gy \H,.

Because D is connected, by the Hahn-Banach thesrem and the identity
theorem of analytic function, we have

(5) fA) e X, forall AeD.

By a similar argument we can find X, € Lat(T) with o(T|X3) € G
and

(6) f(A\) € X, forall e D.
Then by (5) and (6)
f()\) XN X, for all A € D.

Since G, is disc and o(T|X;NX;) can be partitioned by the bounded
components of p(T|X1), o(T|X1NX;) C G;. Also we obtain a(T\ XN
X,) C G,. Since Gy NG, = 0, we have

X, nX,={0}.

Hence f =0 on D, this completes the proof. []

THEOREM 3.3. If T € L(X ) is weakly well-decomposable, then
X1(F) is closed for every closed subset F of C

Proof. Let F be a closed subset of C. For each A ¢ F' we define
1 :
Gr={peC:|p—-A< —Q—dist(z\\F)},

1
Hy={pueC:lu—-A> gdist(/\,F)}.
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Clearly {Gx,Hx} covers C, hence by the weak well-decomposability
of T there exist Y),Zy € Lat(T) and (P;), (Q,) in Z(T) such that

U(TIY,\)QG,\, G’(T!Z,\)QH)‘
and foreach r € X, u e X*

(1) lim Ju(z — Pjz — Q;z)] =0, P;(X)CY, and Q;(X) C Z,.
j—oo

For a given z € Xp(F) and for each j € N we want to show
that P;z = 0. Since P; € I(T), there is some n € N such that
C(T)"P; = 0. Let z(\) be the X-valued analytic function on pr(z)
satisfying

(8) (T = XNz(A) ==z.
Define y(A): pr(z) — X by

n—1 .’L‘(k)
(9 v =Y (nremrp

k=0

Clearly y(A) is X-valued and analytic on pr(z). We shall show that
(T =Ny = Py on pr(a).
For this, if we differentiate the identity (8) k-times, then we have

(10) | (T = Nz®(N) = kz2®*~V(A) for all A ¢ pp(z).
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Using the relation (8), (9) and (10), we obtain

(T~ M) = i(—l)k(T _ ne(m)p, R )

k!
k=0

= Z( *TC(T)*P; =

-1

n—1 n—1 A
— Z( ) C(T)IH—IP ()" Z kC(T “U(k)()‘)

k!
k=0 k=0
()
_Z( DEe(T k—
n—1 n—1
= Y (-D*C(T)*P;= ),("""-+Z< 1*C(T)*Py(T - A)‘”(Z“)
k=0 k! k=0 )
n—1 .’L‘(k) .
=) (-D*c(m) k'(/\"]-+P]~(T-,\)m(X)
k=0 '
nl 2k
+ Y (nremrpyr - )
k=1
n—1 .
= Z(—l)kC(T)k“P]‘m(klz,(/\) + Pj(z)
k=0

n—-1 .’If(k_—l)(‘A)
+Y (=*C(T)*P 1)

= Pj(z).

So we have
UT(PJ'.T) g O'T(.’L‘).

But by Lemma 2.3 we obtain o7(P;z) C Gx. Hence
UT(P]'.I‘) Q O'T(l‘) N G)\ g Fn G,\ - @
Therefore, we have

(11) Pjz =0 forall z € Xy(F) and j € N.
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Thus for each = € X7(F) and v € X*, (7) and (11) imply

(12) lim Ju(z) — u(Q,z)| = 0.

Since @z € Z) and Z) is a weakly closed subspace, (12) implies that
x € Zx. Hence Xp(F) C Zy. Since A is an arbitrary element of the
complement of F, we obtain

(13) Xp(F)C[){Zx: A ¢ F}.

We will show that the reverse inclusion of (13) holds.

Let z € (\{Zx: A ¢ F}. Since o(T|Zy) C H,
op(z) Copz,(z) Co(T|Zy) C Hy forall A ¢ F.

Then
) C({H.: ¢ F}=F

So ¢ € Xp(F).
Therefore, X7(F)=(Y{Zx: A ¢ F}, thus, Xp(F) is closed. O

THEOREM 3.4. If T € L(X) is weakly well-decomposable and has
no non-trivial divisible subspaces, then

Xr(F)=Ep(F) foreach closed subset F of C.

Proof. Let F be a given closed subset of C. Since T has the single-
valued extension property, the inclusion Xp(F) C Ep(F) is clear.
Thus we need only to prove Ep(F) C Xp(F). Since Xp(-) preserves
countable intersection, it suffices to prove that Ep F') is contained in
X7(V), where V denotes an arbitrary open neighborhood of F. We
choose an open subset U of C such that F C U C U C V. Then
{V,C\U} is an open cover of C. Since T is weakly well-decomposable,
there are sequences (P;) and (Q;) in Z(T) such ~hat

P;+Q; —» I(WOT)
and there are Y. Z ¢ Lat(T) such that

(14) o(TIY) SV CV, o(T|Z)CC\UCC\U
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and

Pi(X)CY, Q;(X)C Z forally € N.
By Lemma 2.3 and (14) we have

(15) Pi(X)C Xp(V), Q;(X)<CXp(C\T).
Let M be the maximal subspace of X7(C\ U) such that
(T—A\M =M forall A¢ i~
Then by Proposition 2.4, we have
o(T|XT(C\U:)CC\UCC"F.

Hence the maximality of the space M implies that M is actually
T-divisible. Therefore, M = {0} by our assumption on 7.

Now we shall prove that Ep(F) € Xp(V). For this, it is enough
to show that Q,;(E7(F)) = {0} for all j € N. Indeed, for each z €
Ep(F), from the fact (P; + Q;)r — z weakly in X and (15), we
obtain z € X (V) provided that Q,(Ep(F)) = [0} forall ; € N. We
will prove that Q;(E7(F)) = {0}. Given Q; there is an n € N such
that C(T)"Q; = 0. Consider the algebraic linear subspace

W= Q,(Er(F)) + TQ;(Er(F)) + - + T ' Q;(Ex(F))

of X. Since Q;(Er(F)) C X7(C\ U) and since the latter space is
invariant under T, we conclude that W C X¢(C\U). Moreover, from
C(T)"Q; = 0 we deduce that W’ is invariant under T. In particular,
it follows that (T — A\)W C W holds for all A ¢ F. In order to prove
the opposite inclusion W C (T — M)W, let A ¢ F and w € W be

arbitrarily given. Then we have

n—1
w = Z TkQ]-ak for suitable ag,aq,..., 1,—1 € Ep(F).
k=0

From simple calculation, the system of linear equations

n—1

Z (;)('A)i_kbi =ag for k=0,1,....n—1

=k
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has a unique solution by, b1,...,b,_; in Ep(F). For this solution we
obtain
n—1 ] » n—1
(T = 2)'Q;b; = Z Z ( ) “N)'TATRQ b = Y THQjax = w.
t=0 t=0 k=0 k=0

Hence w = (T — Au + Q;by for some u € W. Now, by the defining
property of E7(F), there exists some ¢ € E7(F) such that by =
(T — A)™cy. Since

0=C(1)"Q, =T =11, = Y- (1) (-0HT -0, -

k=0
we obtain the representation

Qb0 = Q;(T — A)" Z( ) (=1)* (T — )R QT — M) e

k=0

and therefore Q;by = (T — A)v for some v € W. We have shown
that w € (T — A\)W. Hence W satisfies (T — M)W = W for all
A ¢ F and consequently W C M == {0}. In particular, it follows that
Q;(Er(F)) = {0}. Hence we conclude that

ET(F) C XI‘(F)

This complete the proof. O

For the weakly well-decomposable operators, this theorem allows us
to combine the analytic tools associated with the space Xp(F) with
the algebraic tools associated with the space Ep(F).

Let T and S be bounded linear operators on Banach spaces X
and Y, respectively. A linear operator § : X — Y is said to be an
intertwining linear operator (or intertwiner) with T and S if S8 = 67.

PROPOSITION 3.5. Assume that T € £(X) has the single-valued
extension property and that a weakly well-decomposable operator S €
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L(Y) has no non-trivial divisible subspaces. Then every linear trans-
formation 6 : X — Y with the property S8 = @1 necessarily satisfies
the following:

6X1(F) CYs(F) for all closed subsets ' of C.

Proof. Since Xp(F) C Ep(F),
8 X7(F)COEp(F)=6(T — NEr(F) = (5 — A\)8Ep(F)

for every A € C\ F. This shows that 8Ep(F) C Es(F') and since
Egs(F) = Yg(F), by Theorem 3.4, the proof is complete. [

There are two results implying the existence of discontinuous inter-
twining linear operators which are presented below as Proposition 3.6
and Theorem 3.7. To discuss these results, we need some definitions.
Let T € £(X) and S € L(Y). A complex number A € C is said to be
a critical ergenvalue of the pair (T,S) if (T — )X is of infinite codi-
mension in X and X is an eigenvalue of S. An operator T is called
algebrasc if there is a non-zero polynomial p such that p(T) = 0. From
Caley-Hamilton theorem every linear operator on a finite dimensional
space is algebraic. It is easy to see that T is algebraic if and only if
the spectrum of T consists of a finite number of eigenvalues [Au].

The following proposition is found in [JS] but we include the proof
of the proposition for convenience:.

PROPOSITION 3.6. Let T € L(X) and S € L(Y). If (T,5) has
a critical eigenvalue, then there is a discontinuous linear operator  :

X - Y with 56 = 6T.
Proof. Let p be a critical eigenvalue of (7,5). Since X/(T — u)X

is of infinite dimension, we can find a discontinuous linear functional
Jf on X such that f((T —pu)X)={0}. Let y # 0 be a u-eigenvector
of Sin Y, and let #: X — Y be defined by #(z) = f(z)y for all
z € X. Then 6 is discontinuous and (T — pI) := (S — pl)6 = 0 and
so S8 =6T. (]

The following theorem is proved in [Si74] but the proof is not simple
and we do not present here.
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THEOREM 3.7. Let T € L(X) and S € L(Y . If T is not alge-
braic, and if Y has a non-trivial S-divisible subspace, then there is a
discontinuous linear operator 8 : X — 'Y satisfying 56 = 6T.

THEOREM 3.8. Suppose that T € £(X) is decomposable and that
S € L{Y) is weakly well-decomposable. Then the following assertions
are equivalent:

(a) Every linear operator 8 . X — Y for which 8T = 56 is
necessarily continuous.

(b) The pair (T,S) has no critical eigenvalues, and either T is
algebraic or S has no non-trivial divisible subspaces.

Proof. (a) = (b) By Proposition 3.6 and Thecrem 3.7, it 1s clear.

(b) = (a) Assume that the condition (b) is fulfilled, and consider
an arbitrary linear operator #: X -— Y satisfying 56 = 6T. To prove
the continuity of 6, it suffices to construct a non-trivial polynomial p
such that p(S)6(8) = {0}. Indeed if we do so, all injective factors
S — A of p(5) may be removed from p(S); what 15 left still annihilate
G(6). Thus we have obtained a polynomial p. al of whose roots are
eigenvalues of S. Let A\ be a root of p. Since (77, §) has no critical
eigenvalues, (T — A)X is of finite codimension in X. This means that
p(T)X is of finite codimension in X. Hence the open mapping theorem
implies that p(T)X is closed and that p(7') is an open mapping from
X onto p(T)X. Since p(S)S(F) = {0}, by Lemma 2.7. p(5)0 = 6p(T)
is continuous on X, and hence # is continuous.

Now, if T is algebraic, we choos: a non-zero polynomial p satisfying
p(T) =0 and observe that

p(S)S(8) C p(5)H8(X) C 6(p(TH X)) = {0}.

Hence 8 is continuous.

It remains to consider the case that S has no non-trivial divisible
subspaces. From Proposition 3.5, we infer that 8 X(F) C Ys(F) for
all closed subsets F of C. Since X(F') is the spectral capacity and
Ys(F) is stable, by Lemma 2.8, there is a finite set A of C such that
6(0) C Ys(A). An application of the Stability Lenuna to the sequence
T — A, where X € A, yields a polynomial p for which

S(8p(T)) = &(6p(T)(1T - X)) for every A € A.
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Since 8 intertwines T and S, this means that by Lemma 2.7
(S = Xp(S)6(8))” = (piS)6(F))” for every A € A.

Applying Mittag-LefHler Theorem, there exists a dense subspace W C
(p(S)6(8))~ for which (S — M)W = W for every A € A. This means
that W C Eg(C\ A) by the definition of algebraic spectral subspaces.
Since W C &(0) C Es(A), we obtain that

W C Es(A)n Eg(C\A) = Eg(0).

Hence W = {0}, by the assumption on S. Consequently, p(S)&(f) =
{0}. Hence 8 is continuous. So the proof is complete. []

Given a € R\ {0} and a function f:R — C, the shift operator T,
is defined as usual by (T, f)(t) = f(t — a).

COROLLARY 3.9. Let p,q € [i,00) and consider a linear operator
6 : LP(R) — LY(R) such that T,8 = 6T, for some a € R\ {0}. Then

# is automatically continuous.

Proof. It is well known that the shift operator T, has no eigenval-
ues. Define a map & : C*(C) — L(LP(R)) by

o

®(f):= 3 f(n)T," forall feT=(C),

where ]?(n) denotes the n-th Fourier coefficient of the restriction of f
to the unit circle T := {z € C : |z} = 1}. Since ||7,*|| = 1 forall k € Z
and f(n)=o(n"*) as |n| — oo for any k € N, @ is well defined and
® is a continuous algebra homomorphism for which ®(1) = I and
&(z) = T,. Hence T, is a generalized scalar operator. In particular,
T, is weakly well-decomposable. Moreover, by Remark 2.6, T, has no
non-trivial divisible subspaces. Hence the continuity of 6 follows from
Theorem 3.8. [
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