SOME ANALYTIC IRREDUCIBLE PLANE CURVE SINGULARITIES

CHUNGHYUK KANG

1. Introduction

Let $V=\{(z,y): f(z,y)=z^n+Ay^\alpha z^p+y^\beta z^q+y^k=0\}$ and $W=\{(z,y): g(z,y)=z^n+By^\gamma z^s+y^\delta z^t+y^k=0\}$ be germs of analytic irreducible subvarieties of a polydisc near the origin in \mathbb{C}^2 with n< k and (n,k)=1 where A and B are complex numbers. Assume that V and W are topologically equivalent near the origin. Then we denote this relation by $f\sim g$ for brevity. If V and W are analytically equivalent at the origin, then we write $f\approx g$. Otherwise, we write $f\not\approx g$. Note that $f\sim z^n+y^k$ and that $\frac{\alpha}{n-p}>\frac{k}{n}$ and $\frac{\beta}{n-q}>\frac{k}{n}$ if $n>p>q\geq 1$. If $f(z,y)=z^n+Ay^\alpha z^p+Cy^\beta z^q+y^k$ where C is a nonzero number, then we may assume without loss of generality that C=1 in f(z,y) considering $f(\varepsilon^k z,\varepsilon^n y)$ for some number ε .

Then we are going to prove the following:

THEOREM 3.7. Let $V=\{(z,y): f=z^n+Ay^\alpha z^p+y^\beta z^q+y^k=0\}$ and $W=\{(z,y): g=z^n+By^\gamma z^s+y^\delta z^t+y^k=0\}$ where A and B are complex numbers. Let $f\sim g\sim z^n+y^k$ at the origin with (n,k)=1 and n< k. Assume that $1\leq q< p\leq n-2, 1\leq \alpha<\beta\leq k-2,$ $\alpha+p<\beta+q, \frac{\alpha}{n-p}>\frac{\beta}{n-q}; 1\leq t< s\leq n-2, 1\leq \gamma<\delta\leq k-2,$ $\gamma+s<\delta+t, \frac{\gamma}{n-s}>\frac{\delta}{n-t}.$ Then $f\approx g$ if and only if $(\alpha,p)=(\gamma,s),$ $(\beta,q)=(\delta,t)$ and $a^n=d^k=a^qd^\beta,$ $Aa^pd^\alpha=e^nB$ for some nonzero numbers a,d. In detail, $f\approx g$ implies that $a^{n\beta+kq-nk}=d^{n\beta+kq-nk}=1$ and $A^{n\beta+kq-nk}=B^{n\beta+kq-nk}.$

Received February 25, 1995. Revised May 29, 1995.

¹⁹⁹¹ AMS Subject Classification: Primary 32S15, 14E15.

Key words: Plane curve singularities, analytic equivalence.

Supported by the S.N.U. Daewoo Research Fund, 1993-1994. Also supported in part by the GARC-KOSEF, 1993-1994.

Theorem 3.9. Let $f=z^n+A_1y^{\alpha_1}z^{p_1}+\cdots+A_{t-1}y^{\alpha_{t-1}}z^{p_{t-1}}+y^{\alpha_t}z^{p_t}+y^k$ where n< k, (n,k)=1, $n-2\geq p_1>\cdots>p_t\geq 1$, $\alpha_t\leq k-2$, $\alpha_1+p_1<\cdots<\alpha_t+p_t$, $\frac{\alpha_1}{n-p_1}>\cdots>\frac{\alpha_t}{n-p_t}>\frac{k}{n}$ and each $A_i=A_i(z,y)$ is a unit in ${}_2\mathcal{O}$ for $i=1,\ldots,t-1$. Let $g=z^n+B_1y^{\beta_1}z^{q_1}+\cdots+B_{s-1}y^{\beta_{s-1}}z^{q_{s-1}}+y^{\beta_s}z^{q_s}+y^k$ where $n-2\geq q_1>\cdots>q_s\geq 1$, $\beta_s\leq k-2$, $\beta_1+q_1<\cdots<\beta_s+q_s$, $\frac{\beta_1}{n-q_1}>\cdots>\frac{\beta_s}{n-q_s}>\frac{k}{n}$ and each $B_j=B_j(z,y)$ is a unit in ${}_2\mathcal{O}$ for $j=1,\ldots,s-1$. If $f\approx g$ then t=s, $(\alpha_i,p_i)=(\beta_i,q_i)$ for $i=1,\ldots,t$ and $A_i(0,0)^{n\alpha_t+kp_t-nk}=B_i(0,0)^{n\alpha_t+kp_t-nk}$ for $i=1,\ldots,t-1$. In particular, if the A_i and B_j are nonzero complex numbers and $n\alpha_t+kp_t-nk=1$ with the same assumption above, then $f\approx g$ if and only if $(\alpha_i,p_i)=(\beta_i,q_i)$ for $i=1,\ldots,t=s$ and $A_i=B_i$.

REMARK 3.10. In Theorem 3.7 and Theorem 3.9 we can prove the same result with the following numerical assumption, $k \leq \alpha_1 + p_1 \leq \cdots \leq \alpha_t + p_t$ instead of $\alpha_1 + p_1 < \cdots < \alpha_t + p_t$. If not, the same result may not hold by the example below:

$$z^4 + Ay^6z^2 + y^7z + y^9 \approx z^4 + y^7z + y^9$$
.

for any number A.

Now we can apply the above fact to some examples as below. Consider the family of analytic irreducible plane curve singularities f_c at the origin parametrically defined by $y = t^4$ and $z = t^9 + t^{10} + ct^{11}$ where c is a number. Then for any c $f_c \sim z^4 + y^9$ at the origin, but for any two numbers $c \neq d$ f_c and f_d can be proved analytically different at the origin [2]. Here is another proof. Write f_c in terms of a Weierstrass polynomial as follows:

$$z^4 - 2(1 + 2c)y^5z^2 - 4(1 + c^2y)y^7z - ((1 + c^2y)^2 - y(1 - 2c)^2)y^9 = 0$$

Then by Theorem 3.9 we can prove that $f_c \approx f_d$ if and only if c = d because this example satisfies the additional assumption $n\alpha_t + kp_t - nk = 1$ as in Theorem 3.9.

2. Known preliminaries

DEFINITION 2.1. Let $V = \{z \in \mathbb{C}^n : f(z) = 0\}$ and $W = \{z \in \mathbb{C}^n : g(z) = 0\}$ be germs of complex analytic hypersurfaces with isolated singular points at the origin. (i) V and W are said to be topologically equivalent at the origin if there is a germ at the origin of homeomorphisms $\phi: (U_1,0) \to (U_2,0)$ such that $\phi(V) = W$ and $\phi(0) = 0$ where U_1 and U_2 are open subsets containing the origin in \mathbb{C}^n . In this case denote this relation by $f \sim g$. (ii) V and W are said to be analytically equivalent at the origin if there is a germ at the origin of biholomorphisms $\psi: (U_1,0) \to (U_2,0)$ such that $\psi(V) = W$ and $\psi(0) = 0$ where U_1 and U_2 are open subsets containing the origin in \mathbb{C}^n . Then denote this relation by $f \approx g$. If not, we write $f \not\approx g$. Let ${}_n\mathcal{O}$ denote the ring of germs of holomorphic functions at the origin in \mathbb{C}^n .

THEOREM 2.2 [5]. Let $f(z,y) = a_0 z^n + a_1 y^{\alpha_1} z^{n-1} + \cdots + a_n y^{\alpha_n}$ be irreducible in ${}_2\mathcal{O}$ where each a_i is a unit in ${}_2\mathcal{O}$ if exists and the α_i are positive integers. Then $\frac{\alpha_i}{n} \geq \frac{\alpha_n}{n}$ for all i. Moreover, if $\alpha_n = nk$ for some integer k, then $\frac{\alpha_n}{n} = \frac{\alpha_i}{i}$ for all $i = 1, \ldots, n-1$.

COROLLARY 2.3. Let $f(z,y) = z^n + a_1 y^{\alpha_1} z^{n-1} + \dots + a_{n-1} y^{\alpha_{n-1}} z + y^k$ with (n,k) = 1 where each a_i is a unit in ${}_2\mathcal{O}$ if exists and the α_i are positive integers. Then f is irreducible in ${}_2\mathcal{O}$ if and only if $\frac{k}{n} < \frac{\alpha_i}{i}$ for all $i \neq n$. Moreover, in this case $f \sim z^n + y^k$ in ${}_2\mathcal{O}$.

THEOREM 2.4 (MATHER-YAU). Assume that $V = \{f(z_1, \ldots, z_n) = 0\}$ and $W = \{g(z_1, \ldots, z_n) = 0\}$ have the isolated singular point at the origin. Then the following conditions are equivalent:

- (i) $f \approx g$.
- (ii) A(f) is isomorphic to A(g) as a \mathbb{C} -algebra where $A(f) = {}_{n}\mathcal{O}/(f, \Delta f), \ A(g) = {}_{n}\mathcal{O}/(g, \Delta g)$ and $(f, \Delta f)$ is the ideal in ${}_{n}\mathcal{O}$ generated by $f, \frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}$.
- (iii) B(f) is isomorphic to B(g) as a \mathbb{C} -algebra where $B(f) = {}_{n}\mathcal{O}/(f, m\Delta f), B(g) = {}_{n}\mathcal{O}/(g, m\Delta g)$ and $(f, m\Delta f)$ is the ideal in ${}_{n}\mathcal{O}$ generated by f and $z_{i}\frac{\partial f_{j}}{\partial z_{i}}$ for all $i, j = 1, \ldots, n$.

THEOREM 2.5 (ARNOLD [1]). Assume that n < k, (n, k) = 1 and that $g \sim z^n + y^k$ where g is holomorphic at the origin in \mathbb{C}^2 . Then $g \approx z^n + y^k + \sum c_i P_i$ where each c_i is a nonzero number if exists and $P_i = y^{\alpha_i} z^{\beta_i}$ with $1 \le \beta_i \le n-2$, $1 \le \alpha_i \le k-2$ and $n\alpha_i + k\beta_i > nk$.

THEOREM 2.6 [6]. Let $f=z^n+y^k+uy^\alpha z^\beta$ and $g=z^n+y^k+vy^\gamma z^\delta$ where n< k, (n,k)=1 and u,v are units in ${}_2\mathcal{O},$ and $1\leq \beta,\,\delta\leq n-2;$ $1\leq \alpha,\,\gamma\leq k-2$ with $n\alpha+k\beta>nk$ and $n\gamma+k\delta>nk$. Then $f\approx g$ if and only if $\alpha=\gamma$ and $\beta=\delta$.

THEOREM 2.7 [7]. Let $f = z^n + y^k + \sum c_i P_i$ and $g = z^n + y^k + \sum d_j Q_j$ where n < k, (n, k) = 1, and each c_i and d_j are nonzero numbers if exist and $P_i = y^{\alpha_i} z^{\beta_i}$, $Q_j = y^{\gamma_j} z^{\delta_j}$ with $1 \le \alpha_i$, $\gamma_j \le k - 2$ and $1 \le \beta_i$, $\delta_j \le n - 2$ satisfying that $n\alpha_i + k\beta_i > nk$ and $n\gamma_j + k\delta_j > nk$. Let $M(f) = \min\{\alpha_i + \beta_i : c_i \ne 0\}$, $M(g) = \min\{\gamma_j + \delta_j : d_j \ne 0\}$. $S(f) = \{(\alpha_i, \beta_i) : \alpha_i + \beta_i = M(f)\}$ and $S(g) = \{(\gamma_j, \delta_j) : \gamma_j + \delta_j = M(g)\}$. Assume that $f \approx g$. Then we have the following:

- (i) Let $M(f) \ge k$. Then S(f) = S(g) as sets.
- (ii) Let M(f) < k and $(\alpha, \beta) \in S(f)$ such that $\beta \leq \beta_i$ for any $(\alpha_i, \beta_i) \in S(f)$. Then there is an element $(\gamma, \delta) \in S(g)$ such that $\alpha = \gamma$, $\beta = \delta$ and $\delta \leq \delta_j$ for any $(\gamma_j, \delta_j) \in S(g)$.

3. Some analytic classification of irreducible plane curve singularities defined by $z^n + Ay^{\alpha}z^p + y^{\beta}z^q + y^k = 0$ with (n, k) = 1

LEMMA 3.1. Let $V = \{f = z^n + y^{\alpha}z^p + y^{\beta}z^q + y^k = 0\}$ have an irreducible singularity at the origin in \mathbb{C}^2 where (n,k) = 1, n < k, $1 \le q , <math>1 \le \alpha < \beta \le k-2$, $\alpha + p \le \beta + q$. Then we have the following:

- (i) If $m \ge \alpha + p n + 1$, then $m > \frac{\alpha}{n-p} > \frac{k-\alpha}{l}$.
- (ii) If $m \ge \beta + q n + 1$, then $m > \frac{\beta}{n-q} > \frac{k \beta}{q}$.
- (iii) If $\frac{\alpha}{n-p} > \frac{\beta}{n-q}$, then $\frac{\beta}{n-q} > \frac{\beta-\alpha}{p-q}$.
- (iv) If $\beta + q \ge k$, then $\frac{\beta \alpha}{p q} > \frac{k \alpha}{p} > \frac{k \beta}{q}$.
- (v) If $\alpha + p \ge k$, then $\alpha + p k + 1 \ge \frac{p}{k \alpha}$.
- (vi) If $\beta + q \ge k$, then $\beta + q k + 1 \ge \frac{q}{k \beta}$.

Proof. By Corollary 2.3, note that f is irreducible in ${}_2\mathcal{O}$ if and only if $\frac{\alpha}{n-p}>\frac{k}{n}$ and $\frac{\beta}{n-q}>\frac{k}{n}$. Let us prove subcases as follows: It is trivial that $\alpha+p>n$ and $\beta+q>n$.

(i) Observe that $\alpha + p - n + 1 > \frac{\alpha}{n-p}$ if and only if $(n-p-1)(\alpha + p - n) > 0$ and that $\frac{\alpha}{n-p} > \frac{k}{n}$ if and only if $\frac{\alpha}{n-p} > \frac{k-\alpha}{p}$.

- (ii) Use the similar method as in the case (i).
- (iii) Just compute $\frac{\alpha}{\beta} 1 > \frac{n-p}{n-q} 1$. Then $\frac{\alpha \beta}{\beta} > \frac{q-p}{n-q}$ implies $\frac{\beta}{n-a} > \frac{\beta-\alpha}{n-a}$.
- (iv) To prove $\frac{k-\alpha}{p} > \frac{k-\beta}{q}$, note that $\frac{1}{k-\beta} > \frac{1}{k-\alpha}$ since $\beta > \alpha$. Then $\frac{\beta+q-k}{k-\beta} > \frac{\alpha+p-k}{k-\alpha}$ and so $\frac{q}{k-\beta} > \frac{p}{k-\alpha}$. Next, to prove $\frac{\beta-\alpha}{p-q}>\frac{k-\alpha}{p}$, note that $\frac{q}{k-\beta}>\frac{p}{k-\alpha}$ if and only if $\frac{q}{p}-1>\frac{k-\beta}{k-\alpha}-1$ if and only if $\frac{\beta-\alpha}{p-q}>\frac{k-\alpha}{p}$. (v) See that $\alpha+p-k+1\geq \frac{p}{k-\alpha}$ if and only if $(k-p-1)(\alpha+p-k)\geq 1$
- 0.
- (vi) Use the similar method as in the case (v).

DEFINITION 3.2. Let N be the set of positive intergers and define \leq on $\mathbb{N} \times \mathbb{N} = \{(\alpha, p) : \alpha \in \mathbb{N}, p \in \mathbb{N}\}$ with the following property:

- (i) $(\alpha, p) = (\beta, q)$ if and only if $\alpha = \beta$ and p = q.
- (ii) $(\alpha, p) \leq (\beta, q)$ if $\alpha \leq \beta$ and $p \leq q$. Also, if $(\alpha, p) \leq (\beta, q)$ and $\alpha + p < \beta + q$, then we write $(\alpha, p) < (\beta, q)$.

Now, before we get the desired result let us introduce some notations as follows. Assume that $f \sim g \sim z^n + y^k$ with n < k and (n, k) = 1. Let $f = z^n + Ay^{\alpha}z^p + y^{\beta}z^q + y^k$ and $g = z^n + By^{\gamma}z^s + y^{\delta}z^t + y^k$ where A and B are complex numbers, $1 \le q , <math>1 \le \alpha < \beta \le k-2$, $1 \le t < s \le n-2$ and $1 \le \gamma < \delta \le k-2$. If $f \approx g$, then by definition, there is a biholomorphic mapping $\phi:(U_1,0)\to (U_2,0)$ such that $f \circ \phi = ug$ where U_1 and U_2 are open subsets containing the origin and u is a unit in ${}_{2}\mathcal{O}$. Write $\phi(z,y)=(H,L)$ as below:

$$H = H(z, y) = az + by + H_2 + H_3 + \cdots$$
 and
 $L = L(z, y) = cz + dy + L_2 + L_3 + \cdots$

where H_n and L_n are homogeneous polynomials of degree n with $H_n =$ $a_{n,0}z^n + a_{n-1,1}z^{n-1}y + \cdots + a_{0,n}y^n$ and $L_n = b_{n,0}z^n + b_{n-1,1}z^{n-1}y + \cdots + a_{0,n}y^n$ $\cdots + b_{0.n}y^n$.

Note that $ad-bc \neq 0$. Then $f \circ \phi(z,y) = H^n + AL^\alpha H^p + L^\beta H^q + L^k =$ $u(z^n + By^{\gamma}z^s + y^{\delta}z^t + y^k)$ where u is a unit in ${}_2\mathcal{O}$. We know that b = 0because $f \sim g \sim z^n + y^k$ with n < k and (n, k) = 1 implies that $\alpha + p$, $\beta + q$, $\gamma + s$ and $\delta + t$ are all greater than n.

DEFINITION 3.3. If the coefficient of monomial y^lz^m must be zero in the expansion of H^iL^j where H^iL^j is one of H^n , $L^{\alpha}H^p$, $L^{\beta}H^q$ and L^k in $f \circ \phi$ as we have seen just before Definition 3.3, then we write $y^lz^m \notin H^iL^j$ and otherwise, we write $y^lz^m \in H^iL^j$. Also if the homogeneous polynomial of degree n, H_n in H cannot be divisible analytically by z then denote this relation by $z \nmid H_n$. Similarly, if L_n in L cannot be divisible analytically by y, we write $y \nmid L_n$.

THEOREM 3.4. Let $V=\{(z,y): f=z^n+y^{\alpha}z^p+y^{\beta}z^q+y^k=0\}$ and $W=\{(z,y): g=z^n+y^{\gamma}z^s+y^{\delta}z^t+y^k=0\}$. Let $f\sim g\sim z^n+y^k$ at the origin with (n,k)=1 and n< k. Assume that $n-2\geq p>q\geq 1$, $1\leq \alpha<\beta\leq k-2, \ \beta+q\geq \alpha+p\geq k, \ \frac{\alpha}{n-p}>\frac{\beta}{n-q}: n-2\geq s>t\geq 1, \ 1\leq \gamma<\delta\leq k-2, \ \delta+t\geq \gamma+s\geq k, \ \frac{\gamma}{n-s}>\frac{\delta}{n-t}.$ If $f\approx g$, then $(\alpha,p)=(\gamma,s)$ and $(\beta,q)=(\delta,t).$

Proof. Suppose that $f \approx g$. Recall the definition of $f \approx g$ as we have seen just before Definition 3.3. First we are going to prove the following cases:

- (I) (i) $y^{\alpha}z^{p} \notin H^{n}$, (ii) $y^{\alpha}z^{p} \notin L^{k}$ and (iii) $y^{\alpha}z^{p} \notin L^{\beta}H^{q}$.
- (II) (i) $y^{\beta}z^{q} \notin H^{n}$, (ii) $y^{\beta}z^{q} \notin L^{k}$ and (iii) $y^{\beta}z^{q} \notin L^{\alpha}H^{p}$.
- (III) (i) $y^k \notin H^n$, (ii) $y^k \notin L^{\alpha}H^p$ and (iii) $y^k \notin L^{\beta}H^q$.

Let m be the smallest positive integer such that $z \nmid H_m$ in H if exists and r, the smallest positive integer such that $y \nmid L_r$ in L if exists. We prove each case as below. Inequality that $m \geq \alpha + p - n + 1$ will be proved inside the proof of the case (i) of (I).

- (I)(i) $y^{\alpha}z^{p} \notin H^{n}$: If there is no such m, there is nothing to prove. If exists, it is enough to show that $p+(n-p)m>\alpha+p$, that is, $m>\frac{\alpha}{n-p}$. Note that $m\geq k-n+1$. We are going to prove this case by following two steps.
 - (i_a) Let $n-1+m \ge \alpha+p$: By Lemma 3.1, it is trivial.
- (i_b) Let $n-1+m < \alpha+p$: Consider the monomial y^mz^{n-1} . Note that $y^mz^{n-1} \in H^n$ and $m < \alpha < \beta$. Then y^mz^{n-1} does not belong to $L^\alpha H^p$ and $L^\beta H^q$. Also $y^mz^{n-1} \notin ug$, because $m+n-1 < \alpha+p = \gamma+s \le \delta+t$ by Theorem 2.7. Since $f \approx g$, it remains to show that $y^mz^{n-1} \notin L^k$, which would imply a contradiction. Assume that $y^mz^{n-1} \in L^k$ and there exists such r. Then $m+r(k-m) \le m+n-1$, i.e., $r(k-m) \le n-1$. First we claim that

$$r(k-m) = n-1 \cdot \cdot \cdot (A)$$

If r(k-m) < n-1, consider $y^m z^{r(k-m)} \in L^k$. But $y^m z^{r(k-m)}$ does not belong to H^n , $H^p L^{\alpha}$, $H^q L^{\beta}$ and ug because $m+r(k-m) < n-1+m < \alpha + p \leq \beta + q$ and $m < \gamma < \delta < k$. Thus we proved the first claim. Next, considering $y^{k-1} z^r \in L^k$, we claim that

$$m(n-r) = k-1 \cdot \cdot \cdot (B)$$

Since $\alpha+p>n-1+m=r(k-m)+m\geq k-1+r$ by (A), $y^{k-1}z^r\notin L^\alpha H^p$ and $L^\beta H^q$. In order to prove that $y^{k-1}z^r\notin ug$, note that $k-1+r<\alpha+p=\gamma+s<\delta+t$. So r< t< s and then $y^{k-1}z^r\notin ug$. So $y^{k-1}z^r$ would belong to H^n . Thus we get $k-1+r\geq r+(n-r)m$, that is, $k-1\geq (n-r)m$. If k-1>(n-r)m, then consider $z^ry^{(n-r)m}\in H^n$. But we see that $y^{(n-r)m}z^r$ does not belong to L^k , $L^\alpha H^p$, $L^\beta H^q$ and ug. Therefore we proved the claim (B). But, by (A) and (B), $\frac{k}{n}=\frac{1+m}{1+r}$. Since $(n,k)=1,\ r< p$ and $m<\alpha$, it would be a contradiction. Thus we get the result $y^mz^{n-1}\notin L^k$, which is the desired contradiction. So $y^\alpha z^p\notin H^n$ and $n-1+m\geq \alpha+p$.

(ii) $y^{\alpha}z^{p} \notin L^{k}$: It is enough to show that $\alpha + p < \alpha + (k - \alpha)r$, i.e., $r > \frac{p}{k-\alpha}$ if there is the smallest positive integer r such that $y \nmid L_{r}$, otherwise it is trivial. We prove this inequality by the following two steps.

(ii_a) Let $k-1+r>\alpha+p$: By Lemma 3.1, $r>\frac{p}{k-\alpha}$.

(ii_b) Let $k-1+r \leq \alpha+p$: Note that r < q < p. Consider $y^{k-1}z^r \in L^k$. Then $y^{k-1}z^r \notin L^\alpha H^p$, $L^\beta H^q$ and ug because $k-1+r \leq \alpha+p = \gamma+s < \delta+t$ by Theorem 2.7. Since $f \approx g$, $y^{k-1}z^r$ would belong to H^n and then we get an inequality $k-1+r \geq r+(n-r)m$ if there is the smallest integer m such that $z \nmid H_m$, otherwise it is trivial. Claim that

$$k-1=(r_{\ell}-r)m \cdots (C)$$

If k-1>(n-r)m, then $y^{(n-r)m}z^r\notin L^k$, $L^\alpha H^p$, $L^\beta H^q$ and ug, but $y^{(n-r)m}z^r\in H^n$. It would be a contradiction. Thus we proved the equality (C). Next consider $y^mz^{n-1}\in H^n$. Note that $m+n-1<\alpha+p<\beta+q$ because of the following fact: $\alpha+p\geq k-1+r=(n-r)m+r>m+n-1$ by (C). So $y^mz^{n-1}\notin L^\alpha H^p$, $L^\beta H^q$ and ug, noting that $m+n-1<\alpha+p=\gamma+s<\delta+t$ implies $m<\gamma<\delta$. Therefore $y^mz^{n-1}\in L^k$. Then we would get an inequality $m+n-1\geq m+(k-m)r$, that is, $n-1\geq (k-m)r$. If n-1>(k-m)r, then

consider $y^m z^{(k-m)r} \in L^k$. But $y^m z^{(k-m)r} \notin H^n$. $L^{\alpha}H^p$, $L^{\beta}H^q$ and ug. Therefore we can get

$$n-1=(k-m)r \cdots (D).$$

- By (C) and (D), $\frac{k}{n} = \frac{1+m}{1+r}$. Since (n,k) = 1, r < p and $m < \alpha$ it would be a contradiction. Thus we proved $y^{k-1}z^r \notin H^n$. Therefore $y^{\alpha}z^p \notin L^k$.
- (iii) $y^{\alpha}z^{p} \notin L^{\beta}H^{q}$: If $\alpha + p < \beta + q$, it is trivial. If $\alpha + p = \beta + q$, recall the coefficient b in $H = az + by + H_{2} + \cdots$ and the coefficient c in $L = cz + dy + L_{2} + \cdots$. Note that b = 0. So it is enough to show that c = 0. If $c \neq 0$, then $y^{k-1}z \in L^{k}$ would not belong to $L^{\alpha}H^{p}$, $L^{\beta}H^{q}$ because $\alpha + p \geq k$ and $p > q \geq 2$, and $y^{k-1}z \notin ug$. So it remains to show that $y^{k-1}z \notin H^{n}$ because $f \approx g$. If $y^{k-1}z \in H^{n}$, then $k \geq 1 + m(n-1) \geq 1 + (k-n+1)(n-1)$ and so $0 \geq (k-n)(n-2)$. Since n > 2, it is impossible.
- (II)(i) $y^{\beta}z^{q} \notin H^{n}$: If there is the smallest integer m such that $z \nmid H_{m}$, then it is enough to show that $q + (n-q)m > \beta + q$, i.e., $m > \frac{\beta}{n-q}$. Since $m \geq \alpha + p n + 1$ by the case (i) of (I), it is clear by Lemma 3.1 and assumption.
- (ii) $y^{\beta}z^{q} \notin L^{\alpha}H^{p}$: Suppose there is the smallest integer m such that $z \nmid H_{m}$, otherwise it is trivial. Then it is enough to prove that $q + (p-q)m + \alpha > \beta + q$, i.e., $m > \frac{\beta-\alpha}{p-q}$. Since $m \geq \alpha + p n + 1 > \frac{\alpha}{n-p} > \frac{\beta}{n-q} > \frac{\beta-\alpha}{p-q}$ by the case (i) of (I), Lemma 3.1 and assumption, it is trivial.
- (iii) $y^{\beta}z^{q} \notin L^{k}$: Assume that there is the smallest integer r such that $y \nmid L_{r}$, otherwise it is trivial. Then it is enough to prove that $\beta + (k \beta)r > \beta + q$, that is, $r > \frac{q}{k \beta}$. Consider the following two cases (iii_a) and (iii_b).
 - (iii_a) $k-1+r>\beta+q$: It is trivial by Lemma 3.1.
- (iii_b) Let $k-1+r \leq \beta+q$: Note that r < q < p. Consider $y^{k-1}z^r \in L^k$. It is enough to show that $y^{k-1}z^r \in f \circ \phi$ but $y^{k-1}z^r \notin ug$. Since $f \approx g$ and $y^{k-1}z^r \notin L^\beta H^q$, it remains to show that $y^{k-1}z^r \notin H^n$, $L^\alpha H^p$ and ug as follows.
- (iii_{b₁}) $y^{k-1}z^r \notin H^n$: It is enough to show that r+(n-r)m > k-1+r. It is proved by the fact that $k-1+r < \beta+q < r+(q-r)m+\beta < r+(n-r)m$ because $m > \frac{\beta}{n-q}$ by the case (i) of (1).

 $(\text{iii}_{b_2}) \ y^{k-1}z^r \not\in L^\alpha H^p \text{: It is enough to show that } r+(p-r)m+\alpha > k-1+r. \text{ It is proved by the fact that } k-1+r<\beta+q< r+(q-r)m+\beta < r+(p-r)m+\alpha \text{ because } m>\frac{\beta-\alpha}{p-q} \text{ by the case (i) of (I).}$ $(\text{iii}_{b_3}) \ y^{k-1}z^r \not\in ug \text{: Note that } y^{k-1}z^r \in f \circ \phi \text{ by (iii}_{b_1}) \text{ and (iii}_{b_2}).$

(iii_{b₃}) $y^{k-1}z^r \notin ug$: Note that $y^{k-1}z^r \in f \circ \phi$ by (iii_{b₁}) and (iii_{b₂}). Since $f \approx g$, then $y^{k-1}z^r \in ug$. So $(k-1,r) > (\delta,t)$ because $r . Since <math>y^{\delta}z^t \in ug$ and $f \approx g$, it is enough to show that $y^{\delta}z^t \notin f \circ \phi$. Since $\delta + t < k - 1 + r \le \beta + q$ then $y^{\delta}z^t \notin L^k$ and $L^{\beta}H^{\dagger}$. It remains to show that $y^{\delta}z^t \notin H^n$ and $L^{\alpha}H^p$. First, to prove that $y^{\delta}z^t \notin H^n$, it is enough to show that $t + (n-t)m > \delta + t$, that is, $m > \frac{\delta}{n-t}$. Since $\beta + q > \delta + t$ and $q > r \ge t$, then $\frac{\beta}{n-q} > \frac{\delta}{n-t}$. Thus it is proved. Next, to prove that $y^{\delta}z^t \notin L^{\alpha}H^p$, it is enough to show that $t + p - t)m + \alpha > \delta + t$, i.e., $m > \frac{\delta - \alpha}{p-t}$. Since $\frac{\alpha}{n-p} > \frac{\delta}{n-t}$ and p > t, then $\frac{\alpha}{n-p} > \frac{\delta - \alpha}{p-t}$. Thus we proved that $y^{\delta}z^t \notin f \circ \phi$ and $y^{k-1}z^r \notin ug$.

(III)(i) $y^k \notin H^n$: It is enough to show that mn > k, which is trivial.

(ii) $y^k \notin L^{\alpha}H^p$: It suffices to prove that $\alpha + mp > k$, that is, $m > \frac{k-\alpha}{p}$. By Lemma 3.1, it is clear.

(iii) $y^k \notin L^{\beta}H^q$: As in the above case (ii) of (III), we can prove it, similarly.

Thus we proved the cases (I), (II) and (III). Therefore, $f \circ \phi = ug$ implies that $(\alpha, p) = (\gamma, s)$ and $(\beta, q) \geq (\delta, t)$ by Theorem 2.7.

Next, applying the same method to $g \circ \phi^{-1} = u^{-1}f$ then we get $(\delta, t) \geq (\beta, q)$. Thus it is proved.

THEOREM 3.5. Let $V = \{(z,y): f = z^n + y^\alpha z^p + y^\beta z^q + y^k = 0\}$ and $W = \{(z,y): g = z^n + y^\gamma z^s + y^\delta z^t + y^k = 0\}$. Let $f \sim g \sim z^n + y^k$ at the origin with (n,k)=1 and n < k. Assume that $n-2 \ge p > q \ge 1$, $1 \le \alpha < \beta \le k-2$, $\alpha+p < k \le \beta+q$ and $\frac{\alpha}{n-p} > \frac{\beta}{n-q}; n-2 \ge s > t \ge 1$, $1 \le \gamma < \delta \le k-2$, $\gamma+s < k \le \delta+t$ and $\frac{\gamma}{n-s} > \frac{\delta}{n-t}$. If $f \approx g$, then $(\alpha,p)=(\gamma,s)$ and $(\beta,q)=(\delta,t)$.

Proof. It is enough to prove the following cases by Theorem 2.7 as we have seen in the proof of Theorem 3.4:

- (I)(i) $y^{\alpha}z^{p} \notin H^{n}$, (ii) $y^{\alpha}z^{p} \notin L^{\beta}H^{q}$ and (iii) $y^{\alpha}z^{p} \notin L^{k}$.
- (II)(i) $y^{\beta}z^{q} \notin H^{n}$, (ii) $y^{\beta}z^{q} \notin L^{\alpha}H^{p}$ and (iii) $y^{\beta}z^{q} \notin L^{k}$.
- (III)(i) $y^k \notin H^n$, (ii) $y^k \notin L^{\alpha}H^p$ and (iii) $y^k \notin L^{\beta}H^q$.

Let m be the smallest integer such that $z \nmid H_m$ in H if exists and r the smallest integer such that $y \nmid L_r$ in L if exists. Now we are going

to prove the above case, respectively. Note that $m \ge \alpha + p - n + 1$ if exists.

- (I)(i) $y^{\alpha}z^{p} \notin H^{n}$: It is enough to show that $p + (n-p)m > \alpha + p$, i.e., $m > \frac{\alpha}{n-p}$. By Lemma 3.1, it is clear.
 - (ii) $y^{\alpha}z^{p} \notin L^{\beta}H^{q}$: If $\alpha + p < \beta + q$, then it is clear.
 - (iii) $y^{\alpha}z^{p} \notin L^{k}$: If $\alpha + p < k$, then it is trivial.
- (II)(i) $y^{\beta}z^{q} \notin H^{n}$: It suffices to prove that $q + (n-q)m > \beta + q$, that is, $m > \frac{\beta}{n-q}$. By Lemma 3.1, it is clear.
- (ii) $y^{\beta}z^{q} \notin L^{\alpha}H^{p}$: It remains to show that $q + (p-q)m + \alpha > \beta + q$, that is, $m > \frac{\beta \alpha}{p q}$. By Lemma 3.1, it is clear.
- (iii) $y^{\beta}z^{q} \notin L^{k}$: By the similar method as we have seen in the proof of (iii) in (II), Theorem 3.4, we can prove that $y^{\beta}z^{q} \notin L^{k}$.
 - (III)(i) $y^k \notin H^n$: We need to show that mn > k, which is trivial.
- (ii) $y^k \notin L^{\alpha}H^p$: It is enough to show that $\alpha + mp > k$, that is, $m > \frac{k+\alpha}{p}$. By Lemma 3.1, it is clear.
- (iii) $y^k \notin L^{\beta}H^q$: It is enough to show that $\beta + mq > k$, that is, $m > \frac{k-\beta}{q}$. By Lemma 3.1, it is trivial.

THEOREM 3.6. Let $V=\{(z,y): f=z^n+y^{\alpha}z^p-y^{\beta}z^q+y^k=0\}$ and $W=\{(z,y): g=z^n+y^{\gamma}z^s+y^{\delta}z^t+y^k=0\}$. Let $f\sim g\sim z^n+y^k$ at the origin with (n,k)=1 and n< k. Assume that $n-2\geq p>q\geq 1$, $1\leq \alpha<\beta\leq k-2, \ \alpha+p<\beta+q< k, \ \frac{\alpha}{n-p}>\frac{\beta}{n-q}; \ n-2\geq s>t\geq 1, 1\leq \gamma<\delta\leq k-2, \ \gamma+s<\delta+t \ \text{and} \ \frac{\gamma}{n-p}>\frac{\delta}{n-t}.$ If $f\approx g$, then $(\alpha,p)=(\gamma,s)$ and $(\beta,q)=(\delta,t)$.

Proof. It is enough to prove the following cases. by Theorem 2.7 as we have seen in the proof of Theorem 3.4:

- (I)(i) $y^{\alpha}z^{p} \notin H^{n}$, (ii) $y^{\alpha}z^{p} \notin L^{\beta}H^{q}$ and (iii) $y^{\alpha}z^{p} \notin L^{k}$.
- (II)(i) $y^{\beta}z^{q} \notin H^{n}$, (ii) $y^{\beta}z^{q} \notin L^{\alpha}H^{p}$ and (iii) $y^{\beta}z^{q} \notin L^{k}$.
- (III)(i) $y^k \notin H^n$, (ii) $y^k \notin L^{\alpha}H^p$ and (iii) $y^k \notin L^{\beta}H^q$.

Let m be the smallest integer such that $z \nmid H_m$ in H if exists and r, the smallest integer such that $y \nmid L_r$ in L, if exists. Now let us prove each case, respectively. Note that $m \geq \alpha + p - n + 1$ if exists and $(\alpha, p) = (\gamma, s)$ by Theorem 2.7.

- (I)(i) $y^{\alpha}z^{p} \notin H^{n}$: If there is such m, it is enough to show that $p + (n-p)m > \alpha + p$, that is, $m > \frac{\alpha}{n-p}$. By Lemma 3.1, it is trivial.
 - (ii) $y^{\alpha}z^{p} \notin L^{\beta}H^{q}$: If $\alpha + p < \beta + q$, then it is clear.

- (iii) $y^{\alpha}z^{p} \notin L^{k}$: If $\alpha + p < k$, then it is trivial.
- (II)(i) $y^{\beta}z^{q} \notin H^{n}$: By the similar method as in the subcase (i) of (I) and Lemma 3.1, we can prove it.
- (ii) $y^{\beta}z^{q} \notin L^{\alpha}H^{p}$: Since p > q it is enough to prove that $q + (p q)m + \alpha > \beta + q$, that is, $m > \frac{\beta \alpha}{p q}$. By Lemma 3.1, it is proved.
 - (iii) $y^{\beta}z^{q} \notin L^{k}$: If $\beta + q < k$, then it is trivial.
 - (III)(i) $y^k \notin H^n$: If there is such m, it is trivial to show that mn > k.
- (ii) $y^k \notin L^{\alpha}H^p$: We need to show that $\alpha + mp > k$, i.e., $m > \frac{k-\alpha}{p}$. By Lemma 3.1, it is trivial.
- (iii) $y^k \notin L^{\beta}H^q$: It is enough to show that $\beta + mq > k$. By Lemma 3.1, it is clear.

Theorem 3.7. Let $V=\{(z,y): f=z^n+Ay^\alpha z^p+y^\beta z^q+y^k=0\}$ and $W=\{(z,y): g=z^n+By^\gamma z^s+y^\delta z^t+y^k=0\}$ where A and B are complex numbers. Let $f\sim g\sim z^n+y^k$ at the origin with (n,k)=1 and n< k. Assume that $n-2\geq p>q\geq 1, 1\leq \alpha<\beta\leq k-2,$ $\beta+q>\alpha+p, \frac{\alpha}{n-p}>\frac{\beta}{n-q}; n-2\geq s>t\geq 1, 1\leq \gamma<\delta\leq k-2,$ $\delta+t>\gamma+s, \frac{\gamma}{n-s}>\frac{\delta}{n-t}.$ Then $f\approx g$ if and only if $(\alpha,p)=(\gamma,s),$ $(\beta,q)=(\delta,t)$ and $a^n=d^k=a^qd^\beta,$ $Aa^pd^\alpha=a^nB$ for some nonzero numbers a,d. In detail, $f\approx g$ implies that $a^{n\beta+kq-nk}=d^{n\beta+kq-nk}=1$ and $A^{n\beta+kq-nk}=B^{n\beta+kq-nk}.$

Proof. Let $\phi: (U_1,0) \to (U_2,0)$ be a biholomorphic mapping such that $f \circ \phi = H^n + AL^{\alpha}H^p + L^{\beta}H^q + L^k = ug$ where $u = u_{00} + u_{10}z + u_{01}y + \cdots$ is a unit in ${}_2\mathcal{O}$ as we have seen in Definition 3.3, $H = az + by + H_1 + \cdots$ and $L = cz + dy + L_1 + \cdots$. Note that b = 0 and $(\alpha, p) = (\gamma, s)$ by Theorem 2.7. First, to prove $(\beta, q) = (\delta, t)$ it is enough to consider the following three cases: (I) $\alpha + p < \beta + q < k$, (II) $\alpha + p < k \leq \beta + q$ and (III) $k \leq \alpha + p < \beta + q$.

Let us prove each case, respectively. Suppose that $AB \neq 0$.

- (I) $\alpha + p < \beta + q < k$: Since the monomial $y^{\beta}z^{q}$ belongs to $f \circ \phi$ by Theorem 3.6, $y^{\beta}z^{q} \in ug$. So $(\beta, q) \geq (\delta, t)$ and then $\delta + t < k$. By Theorem 3.6 again, $(\delta, t) = (\beta, q)$.
- (II) $\alpha+p < k \le \beta+q$: If $\delta+t \ge k$ then by Theorem 3.5 $(\delta,t)=(\beta,q)$. If $\delta+t < k$ then by applying the same method to $u^{-1}f=g\circ\phi^{-1}$, we would have a contradiction by Theorem 3.6.
- (III) $k \le \alpha + p \le \beta + q$: Since $\delta + t \ge \gamma + s = \alpha + p$, by Theorem 3.4 $(\delta, t) = (\beta, q)$.

Thus we proved that if $f \approx g$ then $(\alpha, p) = (\gamma, s)$ and $(\beta, q) = (\delta, t)$. To prove that $a^n = d^k = a^q d^\beta$ and $Aa^p d^\alpha = a^n B$ for some nonzero numbers a and d, it is enough just to compare coefficients of z^n , $y^\alpha z^p$, $y^\beta z^q$ and y^k in $f \circ \phi$ and g, respectively. Then $a^n = d^k = d^\beta a^q$ and $Ad^\alpha a^p = a^n B$. Also, since $a^{n\beta+kq-nk} = a^{n\beta}a^{k(q-n)} = d^{k\beta}d^{-k\beta} = 1$ and $d^{n\beta+kq-nk} = d^{n(\beta-k)}d^{kq} = a^{-nq}a^{nq} = 1$, $Ad^\alpha a^p = a^n B$ implies that $A^{n\beta+kq-nk} = B^{n\beta+kq-nk}$.

To prove the converse, define a nonsingular mapping ψ by $\psi(z,y) = (az, dy)$ for given numbers a, d. $(f \circ \psi)(z,y) = a^n(z^n + d^\alpha a^{p-n}Ay^\alpha z^p + d^\beta a^{q-n}y^\beta z^q + y^k) = a^ng(z,y)$. Thus we finished the proof of Theorem 3.7.

COROLLARY 3.8. Under the same assumption as in Theorem 3.7, if A and B are complex numbers and $n\beta + kq - nk = 1$ then $f \approx g$ if and only if $(\alpha, p) = (\gamma, s)$, $(\beta, q) = (\delta, t)$ and A = B.

Let $f(z,y) = z^n + A_1 y^{\alpha_1} z^{p_1} + \cdots + A_t y^{\alpha_t} z^{p_t} + y^k$ where n < k, $(n,k) = 1, n-2 \ge p_1 > \cdots > p_t \ge 1, \frac{\alpha_i}{n-p_i} > \frac{k}{n}$ for $i = 1, \ldots, t$ and each A_i is a unit in ${}_2\mathcal{O}$ for $i = 1, \ldots, t$. Then we may assume without loss of generality that $A_t = 1$ considering $f(\varepsilon^k z, \varepsilon^n y)$ with a suitable unit ε for the analytic classification.

Theorem 3.9. Let $f=z^n+A_1y^{\alpha_1}z^{p_1}+\cdots+A_{t-1}y^{\alpha_{t-1}}z^{p_{t-1}}+y^{\alpha_t}z^{p_t}+y^k$ where n< k, (n,k)=1, $n-2\geq p_1>\cdots>p_t\geq 1$, $\alpha_t\leq k-2$. $\alpha_1+p_1<\cdots<\alpha_t+p_t$, $\frac{\alpha_1}{n-p_1}>\cdots>\frac{\alpha_t}{n-p_t}>\frac{k}{n}$ and each $A_i=A_i(z,y)$ is a unit in ${}_2\mathcal{O}$ for $i=1,\ldots,t-1$. Let $g=z^n+B_1y^{\beta_1}z^{q_1}+\cdots+B_{s-1}y^{\beta_{s-1}}z^{q_{s-1}}+y^{\beta_s}z^{q_s}+y^k$ where $n-2\geq q_1>\cdots>q_s\geq 1$, $\beta_s\leq k-2$, $\beta_1+q_1<\cdots<\beta_s+q_s$. $\frac{\beta_1}{n-q_1}>\cdots>\frac{\beta_s}{n-q_s}>\frac{k}{n}$ and each $B_j=B_j(z,y)$ is a unit in ${}_2\mathcal{O}$ for $j=1,\ldots,s-1$. If $f\approx g$, then t=s, $(\alpha_i,p_i)=(\beta_i,q_i)$ for $i=1,\ldots,t$ and $A_i(0,0)^{n\alpha_t+kp_t-nk}=B_i(0,0)^{n\alpha_t+kp_t-nk}$ for $i=1,\ldots,t-1$. In particular, if the A_i and the B_j are complex numbers and $n\alpha_t+kp_t-nk=1$ with the same assumption above, then $f\approx g$ if and only if $(\alpha_i,p_i)=(\beta_i,q_i)$ for $i=1,\ldots,t-s$ and $A_i=B_i$.

Proof. Use the induction method on t or s and Theorem 3.7.

REMARK 3.10. In Theorem 3.7 and Theorem 3.9 we can prove the same result with the following numerical assumption, $k \leq \alpha_1 + p_1 \leq$

 $\cdots \leq \alpha_t + p_t$ instead of $\alpha_1 + p_1 < \cdots < \alpha_t + p_t$. If not, the same result may not hold by the example below:

$$z^4 + Ay^6z^2 + y^7z + y^9 \approx z^4 + y^7z + y^9$$
 at the origin

for any number A by Theorem 2.4,(iii).

References

- V. I. Arnold, Normal forms of functions in neighborhoods of degenerate critical points, Russian Math. Surveys 29 (1974), 10-50.
- E. Brieskorn and H. Knörrer, Plane algebraic curves, English edition, Birkhäuser, 1986.
- 3. J. N. Mather and S. S.-T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), 243-251.
- 4. C. Kang, On the type of plane curve singularities analytically equivalent to the equation $z^n + y^k = 0$, with gcd(n, k) = 1, J. KMS. 29 (1992), 281-295.
- Topological classification of irreducible plane curve singularities in therms of Weierstrass polynomials, Proc. Amer. Math. Soc. 123 (1995), 1363-1371.
- 6. C. Kang and C. Keem, Some analytic classification of plane curve singularities topologically equivalent to the equation $z^n + y^k = 0$ with gcd(n, k) = 1, J. KMS. 31 (1994), 309-317.
- 7. C. Kang, Some examples on the analytic classification of irreducible plane curve singularities, (preprint).
- 8. S.S.-T. Yau, Milnor algebras and equivalence relations among holomorphic functions, Bull. Amer. Math. Soc. 9 (1983), 235-239.
- 9. _____, Complex hypersurface singularities with application in complex geometry, algebraic geometry and Lie algebra, Lecture note series (1993), 1-46; GARC, Seoul Nat. Univ., Korea.

Department of Mathematics Seoul National University Seoul 151-742, KOREA