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SOME ANALYTIC IRREDUCIBLE
PLANE CURVE SINGULARITIES

CHUNGHYUK KANG

1. Introduction

Let V = {(z,y) : flz,y) = 2" + Ay®zF + yPz9 + y* = 0} and
W = {(z.y) : g(z.y) = 2" + By z* + ¢’z + 4% = 0} be germs of
analytic irreducible subvarieties of a polydisc near the origin in C? with
n < k and (n,k) = 1 where A and B are complex numbers. Assume
that V and W are topologically equivalent near the origin. Then we
denote this relation by f ~ g for brevity. If V and W are analytically
equivalent at the origin, then we write f & g. Otherwise, we write
f % ¢g. Note that f ~ z" + y*¥ and that nip > —:— and ;f—; > -f; if
n>p>q>1 If flz,y)= 2"+ Ay°2P + Cy?z9 + y* where C is a
nonzero number, then we may assume without loss of generality that

C =11in f(z.y) considering f(e*z,e"y) for some number €.
Then we are going to prove the following:

THEOREM 3.7. Let V = {(z,y) : f ="+ Ay%zP + yPz9 + y* =0}
and W = {(z,y) 1 g = 2"+ By 2" +y°2' +y* = 0} where A and B are
complex numbers. Let f ~ g ~ =" + y* at the origin with (n, k) =1
and n < k. Assume that 1 < ¢ < p<n-2,1<a< g <k-2
a+p< B3+q. nip > ;i—q;1§t<s <n-21<y<é6< k-2,
Y4+ s < b+t = > == Theu f = g if and only if (a,p) = (v, s),
(8.q) = (6,t) and a™ = d¥ = a'd?, AaPd® = ¢" B for some nonzero

numbers a.d. In detail, f = g implies that qrithe—nk _ gndtkq—nk -1
and ‘Anﬂ—}—kq—nk — Bnﬁ+kq‘nk'
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THEOREM 3.9. Let f = z™ + A;y® 2P ... 4 Apqy®-1zPe-1 4
y* 2Pt + y* where n < &k, (k) =1,n—2>p > - >p > 1,
oy <k—-2 01+p < < ay+ py, ;;%pﬁ>---> n—f‘;t— >§andeach
A; = Ai(z,y) isa unit in ;O fori = 1,...,t—=1. Letg = 2"+ Byjy" : 0 4
oo By_qyPemrz8e-1 4 yBega +y" wheren —2> ¢ > - > gs > 1,
BeSk=2Bi4q < <fig, B> > 2 > £ and
each B; = Bj(z,y) is a unit in ;O for j = Lo..,s=1. Iff~yg
thent = s, (a;,pi) = (Biyqi) fori==1,...,t and A;(0,0)neethpe—nk _
Bi(0,0)mtkpe=nk for i = 1,....¢t —1. In particular, if the A; and
B; are nonzero complex numbers and na;, + kp, — nk = 1 with the
same assumption above, then f ~ ¢ if and only if (a;, p;) = (5i, q;) for
t=1,...,t =5 and A; = B,.

REMARK 3.10. In Theorem 3.7 and Theorem 3 9 we can prove the
same result with the following numerical assumption, k¥ < a; + p; <
S ap+pyinstead of a; +p; < - - < ay+ py. If niot, the same result
may not hold by the example below:

2 Ayt 4y 4 y? 2t 4y 4y

for any number A.

Now we can apply the above fact to some examples as below. Con-
sider the family of analytic irreducible plane curve singularities f. at
the origin parametrically defined by y = t* and z = 19 +#194 ¢! where
¢ is a number. Then for any ¢ f, ~ z* + y° at the origin, but for any
two numbers ¢ # d f. and f; can be proved analytically different at
the origin [2]. Here is another proof. Write f, in terms of a Weierstrass
polynomial as follows:

' —2(1 4+ 2c)y%2% - 41+ c*y)y’z — (1 + Ay)? -yl - 2¢)%)y® =0
Then by Theorem 3.9 we can prove that fe= faif and only if ¢ = d
because this example satisfies the additional assumption nay + kp; —

nk = 1 as in Theorem 3.9.

2. Known preliminaries
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DEFINITION 2.1. Let V={z ¢ C": f(z)=0; and W = {z € C" :
g(z) = 0} be germs of complex analytic hypersurfaces with isolated
singular points at the origin. (i) V' and W are said to be topologically
equivalent at the origin if there is a germ at the origin of homeomor-
phisms ¢ : (U;,0) — (U2,0) such that ¢(V) = W and 4(0) = 0 where
Uy and U; are open subsets containing the origin in C". In this case
denote this relation by f ~ ¢g. (ii) V and W are said to be analytically
equivalent at the origin if there is a germ at the origin of biholomor-
phisms ¢ : (U, 0) — (Us,0) such that (V) = W and (0) = 0 where
U and U; are open subsets containing the origin in C*. Then denote
this relation by f = ¢. If not, we write f % g. Ler ,O denote the ring
of germs of holomorphic functions at the origin ir. C".

THEOREM 2.2 [5]. Let f(z,y} = agz™ + a1y®' 2" 4+ - + apy®"
be irreducible in OO where each a; is a unit in Q) if exists and the «;
are positive integers. Then °; > “u for all i. Moreover, if a,, = nk for
some integer k, then <2 = 2t for all { = 1,.... n--1.

COROLLARY 2.3. Let f(z,y) = 2" da Yz b ta, gyttt
y* with (n, k) = 1 where each a; is a unit in 2O if exists and the «; are
positive integers. Then f is irreducible in 2(’) if and only 1f < 2 for
all i # n. Moreover, in this case { ~ z™ + y* in 0.

THEOREM 2.4 (MATHER-YAU). Assume thatV = {f(z1,...,2,) =
0} and W = {g(z1,...,z,) = 0} have the isolated singular point at the
origin. Then the following conditions are equivalent:

(i) f=~g.
(i) A(f) is isomorphic to A(g) as a C-algebra where A(f) =
O/(fLAf), Alg) = O/(Q‘,Ag) and (f Af) is the ideal in

2O generated by f. 2L AR "355
(iii) B(f) is isomorphic to B(g) as a C-algebra where B(f) =
O/(f,mAf), B(g) = nO/(g,mAg) and | f, mAf‘ is the ideal

in ,O generated by f and 4,8 foralli,)=1,.

THEOREM 2. 5 (ARNOLD [1]). Assume that n < k, (n,k) = 1 and
that g ~ z" + y* where ¢ is holomorphic at the origin in C®. Then

g =~ 2" 4+ y* + T¢; P; where each ¢; is a nonzero number if exists and
P=y*:5 with1< 8, <n—-21<a; <k-—2andna; + k3; > nk.
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THEOREM 2.6 [6]. Let f = z"+y*4uy®z? and g = 2" +y* +oy7z?
wheren < k, (n,k) =1 and u,v are units in .0, and 1 < 3,6 < n —2:
1<a,y<k—2withna+ kS >nk andny+ ko > nk. Then f ~ g
if and only if « = v and 3 = 6.

THEOREM 2.7 [7]. Let f = z"~y*+X¢,P; and g = :"+y* +5d,Q;
where n < k, (n, k) = 1, and each ¢; and d; are nonzero numbers if
exist and P, = y® 2% ,Q; = yY 2% with 1 < a,, v, £k—=2and1 < 3,
0; <n-—2 bdtlsf}mg that na; + ﬁ;"ﬁi > nk and ny; + ké; > nk Lft
M(_f) = Min{a, + 3, : i # 0}, M(g) = Z\ﬂn{% + 5 2 d, 7& ()}

{{a;,3)) i a, + 3; = M(f)} and ¢ " )= {(7;,6;) : 7, "?'(5 = \I(q)}
Assume that f =~ g. Then we have rh( foHowmg,
(1) Let M(f)> k. Then S(f: = S(g) as sets.
(ii) Let M(f) < k and («,3) € S(f) such that 3 < 3, for any
(a;,3;) € S(f). Then there is an element (~4,6) € S(g) such
that o = v, 8 =6 and é < é, for any (v;.5;) € S(g).

3. Some analytic classification of irreducible plane curve
singularities defined by 2"+ Ay“z? +yP294y* = 0 with (n, k) =1

LEMMA 3.1. Let V = {f = " + y%zP + yP29 4 y* = U} have an
irreducible singularity at the origin in C? where (n, k) = 1, n < k.
1<g<p<n—-2,1<a<3<k~-2, a+p<F+aq. Then we have
the following:

(1 fm>a+p-—n+1, then m > n—p > =

(i1) Ifm>i+q—-n+1 ther m>—-1j—->
(i) If =2~ > =2, then—%>%.

(iv) If3+ q > k. then :Zy > bz -’E:ﬁ

(v) fa+p>k, thtno+p~k+1>-1’———.
(vi) If 3 +¢q >k, ther1ﬂ+q——1\+1>k 5

Proof. By Corollary 2.3, note that f is irreducible in O if and only
—f; and -;i—q > % Let us prove subcases as follows: It 1s trivial
that o +p >n and 34 ¢ > n.

(i) Observe that a +p—n+1 > -T—l—‘f; if and ouly if (n—p—1){a+

p—n) > 0and that =2 ~ £ if and only f -2 > k=o
n—p n hd n--p P
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(11) Use the similar method as in the case (i,

;.

(ili) Just compute § —1 > 7=F —1. Then 33-9- > Z4=£ implies
B - f-o
ng ~ pa-

(iv) To prove 1‘—;—9 > i—g—é, note that ﬁ > kin since 3 > a.

Then B:Sk > a:f;k and so -ﬁ > £ Next, to prove
8-o o k-a p4te that 5 > 55 ifand only 1f1 1> ——-ﬂ 1
P k-

P—q
if and only if £ ;—_71- > 5“—(

P
(v) Seethat a+p—k+12> A~ ifandonlyif k—p-1){a+p—£k) >
0.

(vi) Use the similar method s in the case (v).

DEFINITION 3.2. Let N be the set of positive intergers and define
<on NxN={(a,p):a¢N, p= N} with the following property:
(1} (a,p) = (8,q)if and only if a = F and p = ¢.
(i1) (a p) <(8,q)if o < 3 and p < gq. Also, if (a,p) < (5, ¢) and
+p < 3+ q, then we write (a,p) < (8 g).

Now, before we get the desired result let us introduce some notations
as follows. Assume that f ~ g ~ z" 4+ y* with » < k and (n, k) = 1.
Let f=z"+ Ay®z? +yPz0+ y* and g = 2"+ By z* +y*=' + y* where
A and B are complex numbers, ] < g<p<n-21<a<3<k-2,
1<t<s<n-2andl < - <é < k-2 I f =~ g, then by
definition, there is a biholomorphic mapping ¢ : (U1,0) — (U3,0) such
that fo¢ = ug where U; and U, are open subsets containing the origin
and u is a unit in ,O. Write ¢(z.y) = (H, L) as selow:

H=H{z,y)=az+w+ Hy+ Hy+--- and
L=Lzy)=cz+dy+ Lo+ Ls+-

where H, and L, are homogeneous polynomials «f degree n with H, =
anoz™ + an-mz"_ly +-~+ap,y"and Ly = b, g2 + bn_mz”""y +

-+ b()vnyn.

Note that ad—bc # 0. Then fco(z,y) = Hr+ ALCHP+LPHILLF =
u(z™+ Byvz* 4 ybzt +J k) where i« is a unit in ,@. We know that b =0
because f ~ ¢ ~ z™ + y* with n - k and (n.k) = 1 implies that o + p,
B+ ¢, v+ sand é +1t are all greater than n.
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DEFINITION 3.3. If the coefficient of monomial y'z™ must be zero
in the expansion of H'L’ where H'L’ is one of H®, L®H?, LPH1
and L* in f o ¢ as we have seen just before Definition 3.3, then we
write y'z™ ¢ H'L7 and otherwise, we write y'z™ € H'L’. Also if
the homogeneous polynomial of degree n, H, in H cannot be divisible
analytically by z then denote this relation by z { H,. Similary, if L,
in L cannot be divisible analytically by y, we write y{ L.

THEOREM 3.4. LetV = {(z,y) Cf = 2y 2P yP 294 yk = 0) and

={(zy)ig=2"+y 2"+’ +y* =0}. Let f~ g~ z"+y* at
the origin with (n, k) =1 and n < k. Assume thatn —2>p>gq > 1,
1<a<3<k—~2,ﬂ+q>a+p>k——>—‘d—n—9 s>t2>1,
1<y <é6d<k—-2,6+t27+= Zk,n—'7—3>-;6—z. If f = g, then
(e,p) =(v,s) and (B.q) = (6,1).

Proof. Suppose that f =~ g. Recall the definition of f &~ g as we
have seen just before Definition 3.3. First we are going to prove the
following cases:

(I) (i) y azP ¢ H™ (ii) y®2? ¢ L* and (iii) y®zP ¢ LéHY.

(II) ( 929¢ H™, (ii) y®29 ¢ L* and (iii) ﬂzqgéL"HP

(ITI) ( y k¢ H™, (i) y* ¢ LoH? and (iii) y* ¢ LPHY.

Let m be the smallest positive integer such that z + H,, in H if exists
and r, the smallest positive integer such that y 4 L, in L if exists. We
prove each case as below. Inequality that m > a + p—n + 1 will be
proved inside the proof of the case (i) of (I).

(I)(i) y*zP ¢ H™: If there is no such m, there is nothing to prove. If
exists, it is enough to show that p+(n—p) -
Note that m > k —n + 1. We are going to prove this case by following
two steps.

(is) Let n =1+ m > a + p: By Lemma 3.1, it is trivial.

(1p) Let n—14m < a+p: Consider the monomial y™z"~!. Note that
y™z" "1 € H" and m < o < 3. Then y™2""! does not belong to L*¥H?
and LA H?. Also y™z"~! ¢ ug, because m+n—1 < a+p = ~v+s < 6+t
by Theorem 2.7. Since f ~ g, it remains to show that y™z""}! ¢ L*,
which would imply a contradiction. Assume that y™z"~' € L* and
there exists such r. Then m+r(k—m) <m+n—1,ie., r(k-m) <n-1.
First we claim that

Mk—m)=n—-1---(4)
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If r(k—m) < n—1, consider y™z"*~™) ¢ L* But y™z"=m) does not
belong to H™, HPL*, HYL* and ug because m+r(k—m) <n—1+m <
a+p< fB+qgand m < v < é < k. Thus we proved the first claim.
Next, considering y*~!z" € L* we claim that

m(n—r)=k—=1---(B)

Since a+p >n—-14+m=1rk—m)+m > k~—1+r by (A),
y*~'z" ¢ L°H? and LPH?. In order to prove that y* 127 ¢ ug, note
that k—14r < a+p = y+s < 6+t. Sor < t < s and then y* 127 ¢ ug.
So y*~127 would belong to H™. Thus we get k—1--r > r+{n—r)m, that
is, k=1 > (n—r)m. If k—1 > (n -r)m, then consider z"y(*~"Im ¢ H™".
But we see that y(" ")™2" does not belong to L.*, L*HP?, L*H? and
ug. Therefore we proved the claim (B). But, by (A) and (B), £ = 1—1&1’}
Since (n,k) =1, r < p and m < a, it would be a contradiction. Thus
we get the result y™2"~! ¢ L*, which is the desired contradiction. So
y*2z? ¢ H" and n—14m > a +p.

(ii) y®z? ¢ L*: It is enough to show that a + p < a + (k — a)r,
i.e., r > 2= if there is the smallest positive integer r such that y tL,,
otherwise it is trivial. We prove this inequality by the following two
steps.

(ii,) Let k —14r > a +p: By Lemma 3.1, r > .

(iiy) Let k—1+4r < a+p: Note that r < ¢ < p. Consider yk-lzr e
L%, Then y*~'2" ¢ L°H? LPH% and ug because k —1+r <a+p=
v+ s < 6+t by Theorem 2.7. Since f ~ g, y*~!2" would belong to
H™ and then we get an inequality k — 1+ r > r + (n — r)m if there is
the smallest integer m such that z { H,,, otherwise it is trivial. Claim
that

k—1=(r—-rym ---(C)

If k—1> (n—r)m, then y("~"mz" ¢ L*¥ L*HP? LPH? and ug, but
y(n=mmym ¢ H™ It would be a contradiction. Thus we proved the
equality (C). Next consider y™:""! € H™. Note that m+n -1 <
o + p < 3 + q because of the following fact: w+p > k —1+7r =
(n—r)ym+4+r>m+n—1by (C). Soy™z""1 ¢ L°HP, L°HY and ug,
noting that m+n -1 < a+p=7+s <6+ *implies m < v < 4.
Therefore y™ 2"~ € L*. Then we would get an inequality m+n—1 >
m + (k —m)r, that is, n =1 > (k—m)r. If n -1 > (k — m)r, then
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consider y™zk~™r ¢ [k But ymz(k-mr ¢ H® L°HP LPHY and
ug. Therefore we can get

n—1=(k-m)r (D).

By (C) and (D), £ = = -1{—7 Since (n,k) =1, 7 < pand m < « it
would be a contradiction. Thus we proved y*~1:7 ¢ H" Therefore
yazp ¢ Lk

(i) y°2P ¢ L°HY: fa+p < §5 +q,1t15trn1a fa+p=05+gq,
recall the coefficient bin H = az + by + Hy + - -+ «nd the coefficient ¢
inL =cz+dy+ Ly + --. Note that b = 0. So it 1s enough to show
that ¢ = 0. If ¢ # 0, then y*~'z € L* would nct belong to L*HP,
LPHY because « +p>kandp > ¢ > 2, and y¥'z ¢ ug. So it
remains to show that y* =12 ¢ H™ because f ~ ¢. If y*~'z ¢ H", then
k>214+mn—1)>14+(k—=n+1){n—-1)andso 0 > (k—n)(n — 2).
Since n > 2, it is impossible.

(I1)(i) yPz9 ¢ H™ If there is the smallest icteger m such that
z 1 Hp,. then it is enough to show that ¢ + (n — ¢)m > 3 + ¢, i.e.,
m > ;;f—q. Since m > a + p—n+ 1 by the case (1) of (I), it is clear by
Lemma 3.1 and assumption.

(i) y#29 ¢ LYHP: Suppose there is the smallest integer m such
that z + Hp,, otherwise it is trivial. Then it is enough to prove that
gt+(p—gm+a>7+gq, le,m:> %E% Sincem>a+p-n+1>

y the case (i) of (I), Lemma 3.1 and assumption,
it is trivial.

(1) y#29 ¢ L*: Assume that there is the smalest integer r such
that y { L,, otherwise it is trivial. Then it is enough to prove that
B4 (k—3)r >3 +q, that is, » > 125. Consider the following two
cases (ili,) and (iiiy).

(ilig) k=14 r > 8+ ¢ It is trivial by Lemma 3.1.

(iip) Let ¥ =1 +7r < 3+ ¢ Note that r < ¢ < p. Cousider
y*=12" ¢ L* Tt is enough to show that y*=1z7 € fog but y* 127 ¢ ug.
Smce f~gandy* 12" ¢ LPHY it remains to show that y*~1z" ¢ H™,
L*H? and ug as follows.

(iiib1 yy*~1z7 ¢ H™: It is enough to show that -+ n—r)m > k-1+r.
It is proved by the fact that k — 1 + r < B+ ¢ <1 +(¢—rIm =3 <
r + (n — r)m because m > -—L by the case (1) of ().
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(iip,) y* 12" ¢ L¥HP: It is enough to show that r+(p—r)m+a >
k—1+4r. Itis proved by the fact that k—14r < 3+¢ < r+(g—r)m+3 <
r+ {p — r)m + « because m > *H—— by the case (i) of (I).

(iiip, ) ¥* 7127 ¢ ug: Note thdt y k=1:7 ¢ fo¢ by (iilp, ) and (iiiy, ).
Since f ~ g, then y*~ 127 € ug. So (k --—1.7“) > (6,t) because r < p = s.
Since y®z! € ug and f & g, it is enough to show that y®z' ¢ fo¢. Since
§+t<k—1+4r<f+qgtheny’z' ¢ L¥ and L H7. It remains to show
that y°z' ¢ H™ and L*HP. First, to prove that y‘z' ¢ H". it is enough
to show that #+(n —t)m > 6 +t. that 1s, m > Tii' Since 3+q > 6+t
and ¢ > r > t, then ;d—q > na—t‘
that y®z! ¢ L¥HP, it is enough to show that t 4+ p —t)m +a > & + 1.
[’T_?. Since ﬁ—lj > "it aud p > t, then n——“— > = é’ =& Thus we
proved that y" 2t ¢ fopand y¥ a7 ¢ ug.

(HI) y* ¢ H™: It is enough to show that mn > k., which is trivial.

k¢ LoHP: 1t suffices to prove that a 4+ mp > k. that is.
™ > -—p— By Lemma 3.1. it is clear.

(iii) y* ¢ LPH% As in the above case (ii) of (III), we can prove it.
similarly.

Thus we proved the cases (1), (II) and (III). Therefore, f o ¢ = ug
implies that (a,p) = (v,s) and (.¢) > (4,t) by Theorem 2.7.

Next. applying the same method to g o ¢~' = u™'f then we get
(6,t) > (3.q). Thus it is proved.

Thus it is proved. Next, to prove

le.,

TmomwBo Let V = {( ,J) f=z"4yzylzi4yk —()}cmd
W={(zy)ig=s"+y " +y* -+ y* =0} Lot f~g~ 2" +y" at
theormm mth(nl\)“landn/k 455ume tha,tn—2>p>q>1
1<a<3<k=2,a+p<k <34 "3
1<y < <k-2 7+s’<k<h’+tand;_ﬁ>n“l.Ifng,rhen
(c.p) = (7.s) and (3,q) = (&,1).

Proof. It is enough to prove the following casas by Theorem 2.7 as
we have seen in the pr()of of Theorem 3.4:

(D(1) y*=? ¢ H™, yozP ¢ LPH and (iii) y%2? ¢ L*.

(I1)(1) yd 24 ¢ H” y'd:q ¢ L*HP and (iii) y#29 ¢ L*.

(IID(1) y* ¢ H™, (ii) yk ¢ L*HP and (iii) y* ¢ L°HY.

Let m be the smallest integer such that z { H,, in H if exists and r
the smallest integer such that y + L, in L if exisis. Now we are going
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to prove the above case, respectively. Note that 1n > a+p—n + 1 if
exists.
(I)(1) y®2? ¢ H™: It is enough to show that p -+ (n — p)m > a + p,

(i) y*zP ¢ LPH?® If a 4+ p < B + g, then it is clear

(iii) y*zP ¢ L*: If o 4 p < k, then it is trivial.

(I1)(i) y#z9 ¢ H™ It suffices to prove that g+ {n—gym> 3 +gq,
that is, m > —-ﬂ— By Lemma 3.1, it is clear.

(i) y?29 ¢ L"Hp It remains to show that ¢+ (p—qg)m+a > B +4¢,

that is, m > ﬁ—q By Lemma 3.1, it is clear.

(iii) y#29 ¢ L*: By the similar method as we have seen in the proof
of (ii1) in II) Theorem 3.4, we can prove that y#.:9 ¢ L.

(II1)(i) y* ¢ H™ We need to show that mn > i, which is trivial.

11) q ¢ L*HP: It is enough to show that a + mp > k, that is,
m > T By Lemma 3.1, it is clear.

(111) k¢ LPH9 It is enough to show that B + mq > k, that is,
m > =28 . By Lemma 3.1, it is trivial.

THEOREM 3.6. LetV = {(z,y): f = 2"+y®2P —yP294¢y* = 0} and
W={(z,y):g=2"4+y"2°+y’2' + y¥* =0}. Let f ~ g~ 2" +y* at
the origin with (n,k) =1 and n < k. Assume that n —2>p>¢q> 1,
l1<a<fB<k-2 a+p<B+q<k, ——"‘—>—‘B—'n~2§zs>t21,
1<y <é<k=29+s<b+tand ;5 > —"—t If f = g, then
(a.p) = (v,s) and (3,q) = (6,t).

Proof. 1t is enough to prove the following cases. by Theorem 2.7 as
we have seen in the proof of Theorem 3.4:

(D) y* 2P¢H" (i) y ~”¢LBH"and(1u) ayP ¢ Lk

(ID)(1) 7"¢H" (11)y 29 ¢ L*H? and (111) yFz9 ¢ Lk

(IID)(1) y ¢ H, (ii) y* ¢ L°H? and (iii) y* ¢ LPHY.

Let m be the smallest integer such that z { H,, in H if exists and r,
the smallest integer such that y { L, in L, if exists. Now let us prove
each case, respectively. Note that m > a + p — n 4+ 1 if exists and
(o, p) = (v, ) by Theorem 2.7.

(I)(1) y*2? ¢ H™ If there is such m, it is enough to show that
p+(n—p)m > a+p, that is, m > ;(f-};. By Lemma 3.1, it is trivial.

(ii) y*2? ¢ L°H% If o + p < B -+ g, then it is clear.
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(iii) y*2? ¢ L*: If a + p < k, then it is trivial.

(ID)(i) y#2% ¢ H™ By the similar method as in the subcase (i) of
(I) and Lemma 3.1, we can prove it.

(i) yPz7 ¢ L*HP: Since p > ¢ it is enough to prove that ¢ + (p —
g)m+ a > [+ q, that is, m > ’f;_:%- By Lemma 3.1, it is proved.

(iii) y’gzq ¢ L*: If 3+ q < k, then it is trivial.

(III)('} y® ¢ H™: If there is suck m, it is trivial to show that mn > k.

(i) y* ¢ L*HP: We need to show that a + myp > k, i.e., m > £=2 k =
By Lemma 3.1, 1t is trivial.

(i) y* ¢ LPHY: Tt is enough to show that 7+ mq > k. By Lemma
3.1, it 1s clear.

THEOREM 3.7. Let V = {(z,y): f = 2"+ Ay“z? + y#29 + y* = 0}
and W ={(z,y): g = 2"+ By "2° +y®2'+ y* = 0} where A and B are
complex numbers. Let f ~ g ~ 2™ 4+ y* at the origin with (n, k) = 1
and n < k. Assume thatn—2 >p>¢>1,1<a< 3 < k-2,
3+q>a+p,—_—>—ﬁ—qn—"25>t21,1S7<6§k—2,
6+t >v+s, == > =% Then f = g if and only if (a,p) = (7.3),
(B,q) = (6,1) and a" = d* = a?d”’, Aa?d* = a" B for some nonzero

numbers a,d. In detail, f~gimp1ies that qnPtka-nk — gnitkg—nk — 1
and Anﬂ+kq nk __ Bnﬂ+kq nk

Proof. Let ¢ : (U,0) — (U,,0) be a biholomerphic mapping such
that fo¢ = H™ + AL*H? 4+ L°HY + L* = uy where u = ugy +
U102 + ug1y + -+ 1s a unit in ;O as we have seen in Definition 3.3,
H=a:+by+H + - andL=cz+dy+L;+ --. Note that b= 0
and (a,p) = (v,$) by Theorem 2.7. First, to prove (3 q) = (6,t) it is
enough to consider the following three cases: (I) o +p < 8+ ¢ < k,
(IMMa+p<k<f4+gand(I)k<a+p<f+7.

Let us prove each case, respectively. Suppose that AB # 0.

DHDa+p< 3+ q < k: Since the monomial 3”27 belongs to f o ¢
by Theorem 3.6, y#29 € ug. So ({4, q) > (6,t) and then & +t < k. By
Theorem 3.6 again, (6, t) = (5.q).

(II) a+p < k < F+q¢: If 64+t > k then by Theorem 3.5 (6,) = (3, q).
If 6 +t < k then by applying the same method to u~™!f = go ¢!, we
would have a contradiction by Theorem 3.6.

(IIIY k< a+p< B+gq Since 6+t > v+ s = a+p, by Theorem
3.4 (6,t)=(3,q).
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Thus we proved that if f ~ ¢ then (a,p) = (v.+) and (3,¢) = (6,1).
To prove that a® = d* = a%d” and AaPd® = a™B for some nonzero
numbers a and d, it is enough just to compare coeflicients of 27, y® 2P,
y?27 and y* in f o ¢ and g¢. respectively. Then ¢ = d¥ = d®a? and
Ad®a? = a"B. Also, since q"Ptki—nk — gnBgkla—n) . gkBg—ks — 1
and drétke-—nk — grni3-kgke — 5-n9gmne — 1 4J%aP = "B implies
that 4nﬁ+kq nk __ Bn;ﬂ»kq nk

To prove the converse, define a nonsingular mapping ¥ by ¥(z,y) =
(az.dy) for given numbers a,d. {fo)(z,y) =a™ (" +d%a® T Ay P +
d%a? "y 29 4 y*) = a"g(z,y). Thus we finished the proof of Theorem
3.7.

COROLLARY 3.8. Under the sume assumption as in Theorem 3.7,

if A and B are complex numbers and n3 + kg — nk = 1 then f = g if
and only if (a,p) = (v,s), (F,¢) = (6,t) and A = B.

Let flz,y) = =™ + Ajy® 2P 4 - + Ay P + y* where n < k.
nk)=1n-2>p > - >p > 1. n—rilp—'_ > —fl- for? = 1,....t and
each A, is a unit in ;0 for 1 = 1,....¢. Then we 1nay assume without
loss of generality that A, = 1 considering f(¢*z. -"y) with a suitable

unit ¢ for the analytic classification.

THEOREM 3.9. Let f = 2" + Ayy™zP 4+ -+ A_yy™2Pe b 4
gyt 2P +yk where n < k, (n,k) = 1, n—2 > n > > pe = 1,

oy < k=2 ay+p; < < gy, n—f’;>---> T > —l and each
A = Az, )ibdunitinz(’)foré: 1,...,t—1. ng~ "Byt

-+ By, lyﬂ’ L e L Where n—2>q > - >q, 2 1,
Be <k -2 31 4+q <+ < P +4gs. ni‘1>~->;%q—ﬂ :>—§and
each B; = Bj(z,y) is a unit in .O for j = 1.. ..s = 1. If f = g,
thent = s, (e, p;) = (Bi,q:) fori =1,...t and A, (O 0)nactkpe-nk
B,(0,0)na+hpe—nk forz =1,...,t — 1. In partizular, if the 4; and

the B; are complex numbers and na, + kpe — nk = 1 with the same
dSbunlpth.n above, then f ~ ¢ if and only if («v,,p;) = (3i,q;) for
t=1...., t—sandA—B

Proof. Use the induction method on t or s and Theorem 3.7.

REMARK 3.10. In Theorem 3.7 and Theorem 3.9 we can prove the
same result with the following numerical assumprion. k < o) + p; <
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< ag+ pyinstead of ay +p1 < -+ < ay + py. If not, the same result

may not hold by the example below:

2 Ayt T+ Yt by 4 y®  at the origin

for any number A by Theorem 2.4 (iii).

3.
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