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ON PROJECTIVE REPRESENTATIONS OF
A FINITE GROUP AND ITS SUBGROUPS I

SEUNG AHN PARK AND EUuN M1 CHoOl

1. Introduction

Let G be a finite group and F be a field of characteristic p > 0.
Let T = F/G be a twisted group algebra corresponding to a 2-cocycle
f € Z*G,F*), where F* =F - {0} is the multiplicative subgroup
of F. By employing the concept of Dr-regularity where Dp-regular
class is a certain F-class and goes back to Reynolds [6], it has been
shown that the number of projective representations of G over F is
related to the number of Dr-regular classes of €'; indeed proved that
the number of irreducible projective representations of G over F is
equal to the number of Dp-regular classes of p/-clementsin G. Over
the complex field C. this property was originally proved by Schur 7]
using “f-regular class”.

In representation theory, coninections between the representations
of a group and those of its normal subgroups ard factor groups have
long been the object of study. These connections are developed by
Clifford [2] for linear representations and extended by Mackey [5] to
projective representations. The subject consists of three basic oper-
ations: restriction, extension and induction, and gives a motivation of
this paper.

The purpose of this paper is to investigate how the number of projec-
tive representations of a group is related to the corresponding number
of its subgroups. Due to the relationship betwecn the number of rep-
resentations and that of Dp-regular classes, the main purpose can be
transfered to a question that how the condition that all F-classes of
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G are Dr-regular is related to corresponding condition on subgroups
of G.

In what follows we denote the p-part of t € Z by tp [resp. p'-part
by tp], and a primitive #-th root of unity in an algebraic closure E
of F by (;. Werefer § = Gal(E/F) to the Galois group of E over

F. As is convension, exp(G) denotes the exponent of  and o(g)
the order of ¢ € G.

2. Regularity Condition

Let G be a finite group and let F be a field of characteristic p > 0.
The group G acts trivially on F. Let {a, | g € ¢’} be an F-basis of
I' = F/G such that aga; = f(g,xlags, a3 = 1p for any g,r € G.

(A) For each o € G and g € G, choose the following for G:

(1) a positive integer n which is divisible by exp(G). rite
n = npnp:.
(1i) a positive integer m(o) such that C,‘;p, = ‘,711157), while m(o) =1
(mod ny,).
(ili) v(g) € E* which is any n-th root of u(g) € F'* such that a; =
u(g)la;.

Indeed v(g)™ = H::ll f(g%,g) with respect to f Upon the choices
as above, for each (0,z)in G x G. the mappings Dr(o,z) of T'F to
T'E and dg(o,2) of G to G are defined by

ayDr(0,2) = v(g)" v(y)"™ Da;tal " a,,

gda(o,z) = 2-1gmie™

z.
The mappings Dr and dg refer to permutation mappings as well as
to conjugate actions; if E = F then the maps are conjugate actions
on I'¥ and G, respectively. The choices of n and m(ec) make no
use of f, and Dr and d¢ do not depend on the particular choices of
n, m(o), v(g)and a, (refer to [6] or [1]).

Two elements g, = € G are said to be F-conjugate if there exists
z € G such that z = z_]g’”("‘])z forall o € G. Clearly F-conjugacy
1s an equivalent relation so that G is a union of F-fconjugate) classes.
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An element ¢ € G is Dr-regular provided that a,Dr(o,z) = a4 for
any (o.z) € G x G such that 271¢gme Nz = 3. I F = E then
the Dr-regularity is reduced to the well known concept of f-regularity,
back to Schur (1904); g¢ is f-regular if and only if aya, = a,a, for
all = € G such that gz = rg. Without using any base elements, the
f-regularity can be illustrated as f(g,z) = f(z,¢) for all z € G such
that gr = zg. Analogously, we can derive a formula of Dp-regularity
as follow:

THEOREM 1. For each ¢ € G, choose n and m(o) satisfying the
conditions (A). An element g € G is Dy-regular if and only if

m(o~)—:

o) v [ A (e ) e) = fla.g)

i=1
for any (o,x) € G x G such that af:‘lg’”("_l)x = g.
Proof. We shall write m for m(o~!) only for convenience. For

(0.z) € G x G such that 271¢g™z = ¢, we have

m—1

a Ay = H f(g g)a mQgy = H f( 9 9)f(g 3?)“9"'1

m—1 re—1

flg' 9)f(g™ 2)az Hf(g 9)f(g™ 2)f 7}z, 9)aza,.

1=1

If g 1s Dp-regular then v(g)"_lv(g)"ma_lag‘az = ag, thus

z

a0, = v(g)”_lv(g)_ma;”az

m—1

=v(9)” (g™ [] flo'0)f(g™ 2)f (2, 9)aza,,

=1
hence v( g>_m1—[mll flg'. g)f(¢g™ ) = f(x,g). The converse
dlrectlon 1s also clear.

The Dr-regularity form in Theorem 1 does no: depend on the basis
of T', rather it depends on f explicitly. To stress its dependence on
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only f, we shall refer to Dr-regular as (F, f)-reqular. Suppose that
fand ain Z%*G,F*) are cohomologous over an algebraically closed
field F. Then g € Gis f-regular if and only if y is a-regular (refer
to [4, (3.6.1)]). This can be extended to the Dp-regularity.

LEMMA 2. Suppose that f, o £ Z*(G,F*) arc cohormologous over
F. Thenforany g € G, gis Dy-regular if and only if g is Dgq-regular
where T = F/G and Q = F°G.,

Proof. Since f is cohomologous to «, there is ¢ : G — F* such that
a(z,y) = c(z)e(y) ¢ Yay)f(z,y) for z,y € G. Let {a4lg € G} be
an F-basis of . Let b, = c(g)a, for all ¢ € G. Then {b,lg € G}
forms an F-basis of Q. But since 4, € T', T and ) are equal. Henee
Dr{(o,z) = Dqg(o,z) for all (o,r) =G x G.

3. Restriction, Inflation and Corestriction Maps

Let H be a subgroup of G with |G : H| = u > 0, and M be
a left G-module. Given a 2-cocycle f € Z*(G. i), the restriction
fu:HxH — Mof fto Hisa2-cocyclein Z%H,M). A map

that sends f to fy is the restriction map on cocycle groups
R,GS(;J{ : ZZ(G,J‘M ) — ZZ(H,JL[,

and its induced map Resf, ,;, : H%(G,M) — H?*H,M) is the re-
striction map on cohomolog}y groups.  These car be generalized to
any order k, and R,esE;’H(ka((?uM)) = (R.es(,ng)Bk(H., M) for
f€ZXG,M). If Ty isthe twisted group algebre of H over F with
basis {as|h € H}, then I'yy C T and T'jy equals the twisted group
algebra F/v H.

In the case that H is a normal subgroup of G, we may consider
M ={meM|hmn=m, he H} asa G/H-module. Then the

inflation map on cocycle groups
Infgpy: Z*(G/H, M) — Z%(G, 1)

is defined by (Infg,p f)(g.2) = f(gH.xH) for f € Z2(G/H. MM). Tts
induced homomorphism is H2(G/H,M") - H*((;, M) the nflation
map Infg,y on cohomology groups.
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Let H be any subgroup of  and let S = {s1,...,5,}, sy =1
be a right transversal of H in (. Then G = J%_ Hs, and for any
g € G there exists a unique s; such that g € Hs;. We shall write ¢
for s;, hence gg~' € H. For fec Z*H M), ariap Tf:GxG — M
is defined by

u
= H‘Si_l f (*‘:‘,9(-%9)7]~('Sz'g‘)lf(b‘1tg-'f)ﬂl) .

1=1

for g.2 € G. Then Tfisin Z*(G,M) and he corestriction map
Corgy . on cocycle groups relativee to S is the homomorphism

Corp : ZHH, M) — Z*G, M)

that maps f to Tf. Further, Cor}; o : H* H M) — H*(G. M)
is the corestriction map on cohomology groups. For any positive k,
Cor}; (fB¥(H, M)) = (Cory i f) - B¥G. M) for f € Z¥H, M).
M = F* with trivial G-action then (Corg gf){gi. - .gx) is defined
by

7
’ 1 ~1
1I f( sigi(sig) .o (sig o gr-1)gk(sigr - gx) ) -

(=3

If k& = 1, the corestriction map on cohomology groups is the group
theoretical transfer map. A known theorem due to Gaschutz is:

LEMMA 3. ([4, (2.3.23)]) For f € Z¥G,F"), k > 0, the com-
position map Cory Resg; y on H*(G,F*) sends fB*(G,F*) to
fEB*(G.F*). Hence (Cory gResq n)f is cohomologous to f#.

LEMMA 4. If f € Z?(G,F*) is a noncoboundary then for some
Sylow g-subgroup Y, of G, (H(’S(;'yq f) is a noncoboundary.

Proof. Let |G| = q?‘ - 'qtbt where all ¢; are distinet prime divisors
of |Gland b; > 1, 1 <i<t. ForSylow g;-subgroup Y, . u,=1G:

- b b b,
Yol=q" g2 . q,ff ---qf‘. By Lemma 3,

(Cort,, GResgy, ) (FBG,F*") = ' BYG. F")
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so that o (f* B%(G, F*)) divides o (fyq'_Bz(Yq;, #*)). Suppose that

every fy,. is a coboundary. Then since
= o(fyquQ(qu.,F*)) =o(fMBYG,F*)) = o(fBYG,F*)#),

every u; is divisible by o (fBZ(C;",F*)). But every u; are relative
primes, hence o (fB?‘(G,F*)) =1 and f is a coboundary.

Among the three morphisms over cohomology groups, corestriction
map is rather complicated than the other mappings, and still remains
ackward. The fundamental source on corestriction map 1s the paper
by Eckmann [3]. In [3, Theorem 7], he proved that the corestriction
map on cohomology groups do not depend on the choices of transver-
sal. However, the corestriction map on cocycle groups will be used
here, and as far as we know, the map may depend on the choice made.
It is therefore essential to choose suitable transversal in studying core-
striction maps on cocycle groups. The next theorem will be useful for
computation of Cor = Cory ¢.

THEOREM 5. Let G = H x N be a direct product with |G :
H|=yp,and o € Z*(H, F* ) Assume that K is tae right transversal
{s1,... .5}, s1 =1 of H in G with respect to which Cora is defined.
Then for any ¢,z € G,

(CorH,G a) (g,:r) == a,(gg——l’xx~1)lt’

where ¢ means the unique s; such that ¢ € Hs,.

Proof. For each ¢ € G, g is the image of ¢ under the natural
projection of G = H x K onto K, and ¢ = hg is the factorization of
g where h € H and g € K. Thus we have

—1

— — .
99 =99, (g") =7, and ¢'(¢") = (g )" = A’

forall 7 € Z. Infact, gg9~' = hggg—'h™! = hgh ! = g. Also ¢ =
hghg = h*g* yields g2 = g%, hence ¢'= g'. Further, s,-g(s,-g)_] =

h = gg~'. Indeed, s.9 = s;(hg) = hs;§ (the last equality is true,
-1

since s; € K and h € H), sothat 5§ = s,g, thus sig(s ,g) =

$:9 717 = g7 = h. Similarly. let z € G and let z = z# where

1
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2 € H, 2 € K. Then (s,g)z(sigz) —1 = z. Thus Cor relative to the

transversal K is

-1

)

—1 :
(Corpy,ga) Halbzg sig) . (siglz(sigzx)

a(h,z) = a(h,z)* =a(gg ', za 1"

i
..::

1=

4. Regularity Conditions on Groups: Global condition

This section contains several relations between Dr-regular F-
classes of G and those of its subgroup. We ask how the condition
that all F-classes of G are Dr-regular is related to corresponding
condition on subgroups. As a global condition, we will prove in The-
orem 6 that if all F-classes of G are Dr-regular then all F-classes
of any subgroup H of G are Dr,-regular. On the other hand, the
local condition which is a converse question of Theorem 6 is somewhat
troublesome. We will study the local condition in separate paper.

THEOREM 6. Suppose that every F-class of G is (F, f)-regular.
Then every F-class of H is (F. fy)-regular, where f ¢ Z*(G,F*)
and fH - ResG’Hf.

The proof is clear since fy(kh, k) = f(h,k) for any h,k € H.
Theorem 6 says that if the number of irreducible representations of
G over F equals that of irreducible f-representations of G over F
then the corresponding numbers with respect to H over F are same.
Further this implies a simple fact that if every class of G is f-regular
then every class of H is fy-regular. In the case that f cobounds, every
elements of G is of course (F, f)-regular. To avo:d this uninteresting
case, Lemma 4 and Theorem 1 together give the following corollary.

COROLLARY 7. Suppose that G has all F-classes (F, f)-regular
for f € Z*(G,F*) while f does not cobound. Then for some prime
divisor ¢ of |G|, a Sylow g¢-subgroup Y, of 3 has all F-classes
(F. fv,)-regular, while fy, does not cobound.

For two finite groups G| and G, with 2-cocycles o € Z*(Gy, F*)
and 3 € Z*(Gq,F*), define a3 on the direct product G, x G
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by aBd(hk,zu) = a(h,z)8(k,u) for any h,z € G, and k.u € Gj.
Certainly, af € Z*(G, x G,, F*1.

THEOREM 8. Let a € Z%(Gy F*) and B € 7%(G,, F*). If every
F-class of Gy is (F.,a)-regular and every F-class of G, is (F,3)-
regular, then every F-class of (/| x Gy is (F,«a 3)-regular, and every
F-class of Gy NGy 1s (F,aBq, A, )-regular. Conversely, if every F-
class of G) x Gy is (F, f)-regular for f € Z* G| x G,, F*) then every
F-class of G;1s (F, f;)-regular, where f; is a restriction of f to Gy,
(1=1,2).

Proof. We shall prove the first statement and the others follow from
Theorem 6. Choose integers n and m{eg) for G; x G, as in (A).
The integers work for both Gy and G;. For any ¢ € Cl x G,
consider (o,r) € G x (G x Gy which satisfies z-lg™7 o= qg.
For convenience, write m = m(o '), and let ¢ := hk and r = zu for
h,z€ G, and k,u € G,. Then :"'h™z =h and u'k™u = k. thus

we have

m—1

v, (B) vg, (B)™™ [T e(ht R)a(h™, 2) = a(z. h),

and

ve, (k)7 ve, (k) Hu B)B(k™ v) = Blu. k).

l—l

where wvg, (h) and vg,(k) are as in (A) with respect to « and 3.
respectively. Since

n—1 n—1
(v, (R)va, (k)" = T et msk' by = [T adla'.0).
i=1 i=1

we choose an n-th root v(g) of []/2} aj( (¢'.g) as vg, (h)vg,(k); this
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satisfies the conditions (A) with respect to a/, therefore

m-—1
-1

w(9)” v(g)™™ [] eB8(s',9)aB(g™, )

1=1

= (ve, (W, (k)" (ve, (h)vg, (k)"
m—1
IT ok, h)e(h™, 2)B(k? k) 3(k™ )
1==1

= afz,h)f{u, k) = opB(x,g).

The next theorem is for the induction from a subgroup.

THEOREM 9. Let H be a normal subgroup of G. If every F-class
of G/H is (F,a)-regular for « € Z*(G/H,F*), then every F-class
of G is (F,Inf o)-regular, where Inf= Infg JH-

Proof. Choose integers n and m(o) for G. Then these integers
work for G/H. For g € G, choose (o,r) € G x G such that

-1 . _ . .
z71gm@ )z = ¢, and write m for m(o~1) for convenience. Since

¢ '¢g™zH = gH in G/H, we have

m—1
vi(gH)" vi(gH) ™™ [] ale'H,gH)a(¢™H,2H) = a(cH, ¢H)

i=1
where vi(gH) is as in (A) with respect to a. Then

(Inf or)(z, g)

m-—1

= vi(gH)" vi(gH)™™ [] (Infa)(g", g)(Inf a)(g™, 2).

1=1

It now suffices to show that we may choose v(g) in (A) with re-
spect to Inf a as v1(gH). For, since v(g)" = H:-:ll(lnf a)(g,g) =
H::ll a(g'H,gH) = vi(gH)", there is v'(g) such that v'(g) =
vi(gH). Further since the choices of v(g) in (A) do not make any
change of Dr where T = F Inf o , we may choose without lose of

generality v(g) = v'(g) = vi(gH). as is required.
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It follows immediately that for « € Z2(G/H,F*), if every F-class
of G/H is (F,a)-regular then every F-class of any subgroup K
of Gis (F, ResGyK(Inf(;/Ha))—regular. When A = H, it is much
clear that if every F-class of G/H is (F,a)-regular then every F-
class of H is (F,(Inf a)y)-regular, since (Inf&/Ha)H =0 (refer to
inflation-restriction sequence [8]).

THEOREM 10. Let G = HxK and o € Z*(G/H,F*). Then there
exists v € Z*(K,F*) such that every F-class of I is (F,~)-regular if
and only if every F-class of G/H is (F,«)-regular.

Proof. For k,u € K there are unique corresponding elements ¢H,
rH € G/H such that ¢ = hk, v = zu for some h,z € H. Define
¥: K xK — F*by v(k,u) = a(¢gH.zH). Then 5 € Z?(K,F*),
and indeed v = Resg kInfg,za. Choose integers n and m(o) for G.
Then these work for both G/H and K. Write r(o™!) = m. Then
¢7'g™zH = gH in G/H ifandonly if «='k™u = k in K, and we may
choose v,(gH) = vi (k) where v,(gH) [resp. v (k)] is an analogue
of v(g) in (A) with respect to a [resp. 7]. This completes the proof.

Let G = H x K and let o € Z*(G/H,F*). Then theorems 6 and
10 guarantee that if every F-class of G is (F, Inf (;;ya)-regular then
every F-class of G/H is (F, a)-regular.
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