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ENUMERATION OF NSEW-PATHS
IN RESTRICTED PLANES

SEuL HEE CHOI

1. Introduction

A path g in the plane R? is the sequence of the points (tg,t1, ..., t,).
with coordinates in Z2. The point ¢ is the starting point and the point
tn is the arriving point. An elementary step of g is a couple (t;.t,41),
0 <1 <n—1. We denote the length of the path ¢ by |g| = n.

An NSEW-path is a path which consists of four elementary steps :

East step (t; = (zi,¥i), and tiyy = (2, + 1, 4:)),
West step (t; = (zi,y:), and t;1; = (z; — 1, y:)),
North step (¢; = (zi,y.), and t;41 = (£, ¥: + 1)),
South step (t; = (z;,y:), and t;4; = (4,9 — 1)).

A path g = (tp,t1,...,t25) is called a Dyck path of the length 2n if
the t;’s are never under the z axis and ty = (m,0), t2, = (2n + m,0),
for an integer m, and the elementary step (t;,¢;4+1) is either North-
East step (t; = (z;,y:), and ¢;4y == (z; + 1,y; + 1)), or South-East step
(ti=(zi,yi),and t;1 = (z;+ 1,y,— 1)), 1 <i< 2n—1.

D. André (1887) has enumerated the minimal paths going from (0,0)
to any point in the restricted plane by a line y = = + ¢ {¢ > 1), using
the reflection principle. The reflection principle contributed to enu-
merate various classes of paths, and by using this reflection principle,
the authors can obtain many important results and the paths theory
become an important domain in combinatorics.
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The main results for NSEW-paths are as follows. Détemple and
Robertson [4], [5] have given a formula for the nurber of NSEW-paths
in a plane R? or in restricted planes.

Guy, Krattenthaler and Sagan [12] have given a formula for the
number of NSEW-paths going from a point (a,%) to a point (a’, ')
without crossing the z axis or y axis.

The enumeration of paths going from the origin to a point (a,b) in
a triangle {(z,y)[z > 0,y > 0,2 + y < m}, is discussed by Flajolet [6].
Arques [1] has given a formula for the number of NSEW-paths going
from the origin to the origin in the triangle.

Gouyou-Beauchamps [10] has enumerated NSEW-paths going from
(0,0) to a point on the z axis in the eighth plane. {(z,y)[z >y > 0}.
He has shown that the formula of NSEW-paths enumerate also the
standard Young tableaux with height 4 or 5 [11].

In this paper, we improve the results of Gouyou-Beauchamps [10]
and we find that the number of NSEW-paths going from (0,0) to any
point (a,b) in the eighth plane is cqual to

(b+1)a+2)a—b+ 1) a+b+3)n!n+2)
(nwza—b)!( n—;+b+1)!( n+g—b+2)!( n-i—;)x+b+3)!

where n > a + b and n = a + b(mod 2).

2. Preliminary notion

Let N, o5 be the set of all NSEW-paths of length n going from
(0,0) to (a,b) in the plane. Let |N, 4| be the cardinality of Npap An
NSEW-path of Ny 44 is said to be sub-diagonal if it never passes over
the line y = z, and if the coordinates of summits of the NSEW-path
are positive integers. For N, ,; of the sub-diagonal paths, we assume
0<b<a.

By a minimal sub-diagonal path, we mean a path consisting of two
elementary steps: East and North, which never passes over the line
y = z, and the coordinates of whose summits are positive integers. In
this case, the path can pass over a summit at most one time.
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The basic result for NSEW-paths is the following. Detemple and
Robertson [4] have given that the cardinality of .V, . is equal to

(acpe) (s

where n — a — b is even (if n — a — b is odd, [N, 45| = 0). Arques [1]
has given another proof for the same result by using the generating
function of NSEW-paths.

Let H, .4 (resp. @nap) be the set of all NSEW-paths of length
n, which are going from (0,0) to (a,b), and lying in the half plane
{(z,y)|z > 0} (resp. the quarter of plane {(z,y}lz > 0,y > 0}). We
can obtain the cardinalities of H, 45 and @n 4 by using the reflection
principle (3] :

a+1/n+1 n-+1
Huatl = Vot = [Nooassl = ( _.a_,,> (n_m),
n+1\Z 5 .

'Qn,a,bl :|Hn,a,bl - ’Hn,a,——b—21

:ifvn,a,bl - |1Vn,—a—2,bl - |Nn,a,——b——2| + |]Vn,—a-—2,—b—2
C(a+1)(b+1) <n+2)<n+2)
Tt D(n +2) \ 2=t )\ mptt )

In the case a = b = 0, Arques [1] has given the following formulas :

QZn,0,0 - Cncvn-{»la

where C,, is the nt* Catalan number.

Let Np g by=2+k denote the set of all NSEW-paths which do not
touch the liney =z 4+ k, 0 < k < (n+a—1>5)/2, and let Ny, 4 p;y=z/x
be the set of all NSEW-paths which do not touch the line of the form
y=a/k, a> kb
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Detemple and Robertson (3] have obtained the following two formu-
las :

Nnabiy=z+kl = |Nnapl ~ |Nn otk b—k]

(a2) () - (sl )
“\n—a=b /| ntab | "\ aga—b_2k :
2 \ 2 2
a— kb n n
Ijvn,a,b;yzr/k, = n - (n—a—b) (n-—a—b) :
2 2

We note that |Ny, aykp—k| =01 k > (n+a—1)/2, and

(—a+b+1)< n )/n+1
(n + 1) n——;—b \ n+;—b/ .

7 —
N n,a,b;y=zr+1 I -

3. Enumeration of NSEW-paths in eighth plane

We use finite sets, called alphabets. The elements of an alphabet
are called letters. A word is a finite sequence of letters and an empty
word will be denoted by e. The set of all words over the alphabet X is
denoted by X*. The language L of the alphabet X is a subset of X *.

The length of a word f, denoted by |f|, is the number of letters of
f. For aletter z, |f|, denotes the number of z in f. A word f’ is a left
factor of a word f if there exists a word f" € X* such that f = f'f".

Let alphabets be Z = {z,7,y,7} and 4 = {a,@}. Consider the two
morphisms 6, and 6, of Z* into N defined by

b.(x) =1, 6,(T) = -1,
6,(y) = 6.(¥) =0, and
5y(y) =1, 5y(3_/_) = —1,
0y(T) = 6y(T) = 0;

and the morphism 3 from A* to N by

Bla) =1, 3(@) = —1.
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DEFINITION 1. The Dyck language, denoted by D, is the set of
words f of A* satisfying the following conditions :

(1) B(f) =0,

(i1) For any left factor f' of f, 5(f') > 0.

The words of the Dyck language is called Dyck words. The set of all
left factors (of words of D) whose length is I and whose image under
A is p, is denoted by Fj ,, where [ and p are the rame parity.

If we code the East step by a and the North step by @, then Dyck
words code the minimal sub-diagonal paths which start the origin and
arrive on the line y = z [3]. If we code the North-East steps by a and
South-East steps by @, then the Dyck words code the Dyck paths. The
words of F;, code also the left factor of Dyck path of length [ which
arrive at height p, with [ and p having the same parity.

We have [3]

. 1 2n®
DN A™ = (), = ( "
n+1l\n,

where C,, is the nt* Catalan number, and

!
|Frpl =(p+ 1)@(—%5.

DEFINITION 2. Let S, ,, be the language which consists of words
f of Z* satisfying the following conditions :

(1) 6:(f) = p, 6,(f) = ¢,

(i1) for all f', left factor of f, é,(f') > &,(f') >0,

(iii) |f] = n.

If we code East (resp. West) by « (resp. 7) and North (resp. South)
by y (resp. ¥), then the language S, , 4 code the sub-diagonal of length
n going from (0,0) to (p, q).

DEFINITION 3. The pair (g,h) of Fr g X Fpnp. 0< g <p<n,(n,p
and ¢ being the same parity), is called noncrossing words if 3(h') <
B(g"), for all left factors h’' of h and g’ of ¢ such that |h'| = |¢].

Let R, , , be the set of pairs (g, k) which do 1ot cross the words of
Frpog X Frnpiq (nand p+ g of the same parity .
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LEMMA 1. There is a bijection between S, , , and J {

Proof. We define the morphism I from Z* to Z* x Z* in the following
way : I{z) = (a,a), I(T) = (3,q), I(y) = (@ a), I(7) = (a,@).

Let f be a word of S, , .. Put I(f) = (g.h). We find that |f| =
lg| = |k, by the construction of morphism I. Fer left factors f, g,
k' of f, g and h respectively, we have 3(g') = 62(f") — é,(f') and
6(h) = 6.(1") + by (1.

We have then 3(h') > 3(g') > 0, 3(g) = p— ¢ and B(h) = p+q.
Therefore, (g, k) is a pair of noncrossing words.

Conversely, from a pair of words of R p ., we can construct a word f
of length n by the inverse operatiori. Let f’, ¢’ and k' be the left factors
of f, g and h. It is straightforward to see that §,( f'1 = (B(R")+3(g"))/2
and 6,(f') = (B(h')= Ag)) /2. Also 6,(f) = p, 6,(") = g, and 6,( 1) >
oy(f') = 0. DO

The Lemma 1 can be viewed as a generalization of [10, Theorem 2].

DEFINITION 4. The pair (g, k) of Frp x Fptz,42 (n and p of the
same parity) is a pair of nontouching words if we have 8(h') > B(g'),
for all left factors &' of A and ¢’ of ¢ such that [h'| = |¢'| + 2.

Let T, ,,
Frotaptqr2, 0> ¢ >0,

(n,p and ¢ of the same parity).

be the set of pairs of nontouching words of Frp_y x

THEOREM 1. The cardinality of S, , 4 is equal to

(g+1)(p+2)(p- g+ 1)(p+q+3)nl(n+2)
(P (2Rt 1)) (2hp=a 9yl ndpEg L 3y

lSn,p,ql =

Proof. We note that [Ty p 4| = [Rn g, because (g,h) is in R, ,, if
and only if (g,aah) is in Ty p 4. For (9,h) € Frp_g X Fniapigre, let
93,945 s gn+2 be the letters of A composing g, and hy, hy, ..., hnys the
letters of A composing h.

The paths ¢ and % can touch, or not. In the case where they touch
each other, there is an integer i (3 < ¢ < n+1) such that B(hihg...hy) <
B(9394...9:).

Let j the smallest index (3 < j < n + 1) such that B(hyhy. hj) =
B(9394-..,9j). We make two words ¢"” and A" in the following way :
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g” = hlhz...hjg]'+1g]'+2...gn+2 and h” = g34g4.- ,g]'hj+1h]'+2...hn+2.

It is straightforward to see that (¢",h") € Frizp—q X Frn pigte-

By the same process, we can give a correspondence of an element
(9", h") € Frny2p—g X Frpigs2 to (g,h) € Frp_g X Fniaprgs2 that g
and h touch each other.

In fact, for the pair of paths ¢" and A", It sufficient to invert them
at the point where they meet for the first time. This correspondence
is bijective.

So we have |Sn 5 ¢l = |Rn,p,gl = |Tnp,q| 1s equel to

|Fn,p—qHFn+2,p+q+2i - |Fn+2,p—q'|Fu,p+q+2|-

By a straightforward calculation, we can obtain the following equal-
ity :

| Frp—al|Fri2prqr2] = |Fni2,p—gl| Frptetzl

g+ D(p+2)p—g+D(p+q+3)nin+2)
(DERma)l(2=Rha g ))(BER=d g 9))(RAREY 4 gyl

THEOREM 2. The number K(n,a,p,q) of NSEW-path going from
(0,0) to any point (p, q) without touching the line z = «, for a positive
integer «, in eighth plane defined by {(z,y)|0 <y < z} is equal to :

K(n1a7p7Q) = Z (ISnyl‘zhyzii - ISn,22a+1,y2;+1 l)

i>0,(z2i+y2:)<n

where 29 = p, Yo = ¢, &1 = —p+ 20, y1 = ¢ 22 = —¢+ 20+ 1,
Yo = —z1+2a+1. We have x9; = —yqi_1+2'(a+1)4+21 "1 4. 421 420,
yoi = —Z9i1 + 2 (a+ 1)+ 207 421 +2° fori > 2, and 29,41 =
—z9; + 2o+ 1)+ 27 + 4+ 2Y Yoy = —yai, fori > 1.

Proof. We use the reflection principle in this problem as follows. If
the path touch the line ¢ = « at a point (¢,d). then the number of
paths going from (0,0) to (p,¢) through (c,d) is equal to the number
of paths going from (0,0) to (p + 2(a — p),q) through (e, d), because
(p+2(a—p), q) is symmetric with (p, ¢) about the ine z = a. As|[S, , 4|
is the number of NSEW-paths going from (0,0) to any point (p,¢) in
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the eighth plane defined by {(z,y)I0 <y < z}, we have K(n,a,p,q) =
|Snp,ql — (the number of NSEW-paths going from (0,0) to (p + 2(a —
p), ¢) no touching the line y = —z + 2a + 1).

As the point (—¢ + 2a + 1,~p + 2a + 1) is symmetric with (p +
2(a — p),q) w.r.t. the line y = —z + 2a41, the number of paths going
from (0,0) to (p + 2(a ~ p),q) and touching the line y = —z + 2a + 1
at a point (c',d') is equal to the number of paths going from (0,0) to
(~¢+2a+1,—p+2a+1) through the point (¢, d'). So we can obtain
K(n,a,p,q) = [Snp.ql =150 p+2(a—p).q| + (the number of NSEW-paths
going from (0,0) to (—¢ + 2a + 1, -p + 2a + 1) without touching the
line z = 20 + 2).

If we apply this procedure successively , we can cbtain the inclusion-
exclusion formula :

K(”: a,p, Q) = Z (|Sn,12nyze| - “9";12{4-] WY2ig1 !)
120,(z2;+y2:) <

where zo = p, yo = ¢, 21 = —p+ 20, y1 = q, 23 = —q¢ + 20 + 1,
Y2 = —x1+2a+1. Wehave z9; = —yy; 1 +2'(a+1)+21" 14 +21 420,
Yoi = ~Toim1 +2a+ 1)+ 201 4 421420 for ;> 2 and Toigy =
—22i + 2+ 1)+ 2 4 4 2Y i = —ypi fori > 1. O
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