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ROUGH ISOMETRY AND HARNACK INEQUALITY

HyeoNG IN CHo! AND YONG HaAE LEE

§1. Introduction

Certain analytic behavior of geometric objects defined on a Rie-
mannian manifold depends on some very crude properties of the man-
ifold. Some of those crude invariants are the volume growth rate,
isoperimetric constants, and the likes. However, these crude invari-
ants sometimes exercise surprising control over the analytic behavior.

Let us take, for example, the celebrated Harnack inequality for pos-
itive harmonic function. Moser showed that if a manifold diffeomor-
phic to R" is equipped with a Riemannian metric which is uniformly
equivalent to the flat metric, then the Harnack inequality for positive
harmonic function is valid [5]. Moser’s result can be proved by his fa-
mous iteration argument which requires only the volume growth rate,
the Sobolev inequality, and the Neumann type Poincaré inequality, all
of which are valid for R” equipped with the metric quasi-isometric to
the flat Euclidean metric.

This line of idea is proved quite useful in geometry. For example,
Saloff-Coste exploited it to obtain many interesting results [6]. One
major advantage of the quasi-isometry condition is that one does not
need any curvature condition. However, in terms of topology of the
underlying manifold, the quasi-isometry condition does not yield any
more information.

This quasi-isometry condition can be relaxed quite a bit by intro-
ducing the following much cruder. hence more powerful, concept in-
troduced by Kanai. A (not necessarily continuous) map ¢ : X — Y
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between two metric spaces X and Y is called a rough wometry, if the
following conditions hold:

(1) there exists a constant 7 > 0 such that
Y = Br(p(X)),

in which case ¢ is called ~-full;
(2) there exist constants a > 1 and b > 0 sueh that

1 . ,
Ed(fl'l-,x’z) —b<dlg(xi),p(r2)) <ad(-y,x2)+ b

for all #1,19 € X, where 4 denotes the d:stances of X and Y
respectively.

It is easy to check that being roughly isometiic is an equivalence
relation, but it is also important to note that two roughly isometric
metric spaces may have completely different topology, since » is not
assumed to be continuous. For example, an infinite cylinder is roughly
isometric to an infinite cylinder with infinitely many identical handles
attached at equal distance going off to the infinity. In addition, rough
1sometry neglects the compact factor of manifold. For example. an
infinite cylinder is also roughly isometric to an infinite line.

Nonetheless, it is a remarkable fact that Kanai managed to prove
that if a Riemannian manifold M s roughly isometric to R™, then the
Harnack inequality for positive harmonic function on M is valid, hence
the Liouville theorem for positive harmonic function holds [4]. The
gist of Kanai’s argument is his analysis of how the volume growth, the
Sobolev inequality, and the Poincaré¢ inequality are preserved under his
conditions.

To handle the rough isometry properly, one needs to assume that a
complete Riemannian manifold M satisfies the following conditions:

(R) the Ricei curvature of manifold is bounded below by a con-

stant;

and the injectivity radius s positive, i.e., ‘nj(M) > 0.
From now, we will also assume that all manifolds satisfy above condi-
tion (R).

We now collect relevant definitions and results concerning rough
isometry which we need in this paper. They are all in Kanai's papers
[3.4]. so we supply them without proofs.
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One of the key tools in combinatorially approximating a Riemannian
manifold M is the concept of net as defined below: Let d be the distance
function on M. A subset P of M is called an e-separated subset for
e > 0,if d(p., g) > € for any distinct points p and ¢ of P. An e-separated
subset is called maximal e-separated if it is maximal with respect to
the order relation of inclusion. Let P be a maximal e-separated subset
of M, then we can define a net structure N' = {N, |p € P} by setting
N, ={g¢ € P|0<d(p,q) <2¢}. Note that this family A satisfies that
for all p, ¢ € P,

(i) Np is a finite subset of P.

(i) ¢ € N, if and only if p € .V,.
A maximal ¢-separated subset P of M with the ne: structure described
above is called the e-net in M.

A sequence p = (py, - ,ps) of points in P is called a path from pg
to p, length s if each py is an element of Np, . Then for points p and
g of P, we can define §(p,q) = the minimum of the lengths of paths
from p to q. It is easy to check that this é defines a metric on P. In
[4], Kanai proved that a net P, with this metric é, is roughly isometric
to M, i.e., there exist constants o > 1 and 3 > 0 such that

(e z2) ~ B < d(s1,02) S @bl 02) 4 8
for all ;.24 € P.

A net P is said to be uniform if there exists a constant A such that
N, < XA < ocoforall pe P, where S denotes the cardinality of the
set S. The condition (R) guarantees that an e-net P on M is uniform
and this uniformness plays a crucial role in the proof of the roughly
isometric invariance of some analytic properties. In fact, the condition
(R) implies that there exists a constant v = v(r, £, K, m) such that
t{pe P|z € B, (p)} <vforallr >0 and for all :: € M, where K is a
constant such that the Riccl curvature of M is bounded below by the
constant —(m — 1)K'2, and m is the dimension of M.

§2. Main Results

In this section, we prove the Harnack inequality and the Liouville
theorem for positive harmonic funiction on a wider class of manifolds.
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Our result in this section is a generalization of Kanai’s in its method
as well as its content. However, we modify his approach so that ours is
more L' oriented than Kanai’s L?. Thus we could remove some minor
dimension restriction of his. Also, we carefully choose various sets,
especially those in (*) to fit our analysis. This is perhaps one of our
main contributions in this section.

First of all, it is well known that the volume growth rate, the Sobolev
inequality, and the Neumann type Poincaré inequality for balls imply
the Harnack inequality, and hence the Liouville theorem for positive
harmonic functions. This point was well exploited by Saloff-Coste [6],
although the results in [6] are more on the paraboli: case and the elliptic
case 1s a corollary. Kanai's result also relies on the volume growth rate.
the Sobolev inequality, and the Neumann type Poincaré inequality.

Kanai’s result has one big advantage that hic result is applicable
even when the topology in the underlying manifold changes, but un-
fortunately, he had to assume that the manifold has to be roughly
isometric to the Euclidean space R™. This limits the applicability of
his result.

In this section, we prove that if a manifold is roughly isometric
to a manifold in which appropriate volume growth rate, the Sobolev
inequality, and the Neumann type Poincaré inequality are valid, then
the Harnack inequality, and hence the Liouville theorem for positive
harmonic functions hold. However our volume growth condition and
the Sobolev inequality is slightly more general than usual. We now
state our conditions on our manifold M:

(V) There exists a constant A such that for any 0 € M and for all

R >0,
vol Bogr(0)
vol Br(0)

<A,

where vol Bg(0) denotes the volume of the geodesic ball Bg(0)
of radius R with center at 0:
(I) there exist an integer £ > din M and a constant C'y > 0 such
that
. (vol 8Q)7T
inf

Q vol Q) =0

for any bounded domain 2 of M;
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(P) there exists a constant C'; > 0 such that for any R > 0 and for
any point 0 € M.,

v

vol H C,
min{vol Dy.vol D3} = R

where H is any hypersurface of Bg,.(0) dividing Br,.(0) into
D} and D}, and D; = D{ N Bg(0) and Dy = D, N Bg(0), and
€ is the one chosen for the net of M. Note this slightly general
form of Poincaré inequality follows from the standard Poincaré
mequality.

In [4], Kanai proved that two Riemannian :nanifolds which are
roughly isometric to each other have the same volume growth rate.
From this, it immediately follows that the condition (V) is a rough
isometry invariant. Kanai proved that the condition (I} is also rough
1sometry invariant.

In what follows, M and N are complete Riemannian manifolds of
dimensions m and n respectively, and let ¢ : A — N be a rough
1sometry between them. For sufficiently small ¢ and §, P denotes an
e-net on M and @ a é-net on N. We use the following notations:

Sk =P N Bg(0)={pe¢ P|d(p,0) < R,

Tr = QN B,y(v(Sr)) = {q € Q|d(g.»(Sr)) < p}.

Qp = U Bsg),
R= 4 s(q)

where p > 0 is a constant to be chosen suitably later.

THEOREM 2.1. Let M be a coinplete Riemannian manifold, and let
N be an another complete Riemannian manifold roughly isometric to
M. Assume M and N satisfy condition (R). Suppose the conditions
(V), (I) and (P) are valid for M, where ¢ > max{dim M,dim N}. Then
with the above notations,
(1) Qr C Q(k+1)R,~ and N = kLEJNQkR,

(ii) there exists a constant C' > 0 such that for any R > 0 and for
any positive harmonic function v on N, the Harnack inequality
holds:

supu << C'inf u.
Qr Qr
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COROLLARY 2.2. Let M be a complete Riemannian manifold, and
let N be an another complete Riemannian manifold roughly isometric
to M. Assume M and N satisfy condition (R). Suppose the conditions
(V), (I) and (P) are valid for M, where £ > max{dim M,dim N}. Then

any positive harmonic function on N is constant.

REMARK. Our results above can be regarded as another vindication
of the folklore which says that the polynomial volume growth rate, the
Sobolev and Poincaré inequalities give the Harnack inequality. How-
ever, our conditions are slightly more general than :hose in most known
results. Thus our result is new even without rough isometry assump-
tion.

COROLLARY 2.3. Let M be an m-dimensional complete Riemann-
ian manifold with non-negative Ricci curvature. Let N be an n-
dimensional complete Riemannian manifold which is roughly isometric
to M. Assume m > n, and M and N satisfy condition (R). Then the
Harnack inequality holds on N. Hence any positive harmonic function
on N is constant.

It 1s perhaps appropriate to comment on the method of proof. Kanai
proved that conditions (V) and (I) are rough isoraetry invariants [4],
but condition (P) is more subtle. Since the Neumann eigenvalue is
sensitive to the perturbation of the domain and the rough isometry
inevitably makes wild distortion of the balls, it is not clear if condition
(P) is actually rough isometry invariant. If it were the case, our the-
orem easily follows from the standard Moser iteration procedure. To
cope with this problem, Kanai devised a clever argument to circumvent
the problem. Namely, he used an abstract versior. of John-Nirenberg
inequality due to Bombieri and Guisti [1], which does not require the es-
timate of the eigenvalue of the balls. So we also adopt Kanai’s method
of proof. In what follows, Lemm:a 2.1 through Lemma 2.4 can be
proved by adopting Kanai’s argument. So we omit the proofs except
for Lemma 2.2 which merits some explanation. The proof of Lemma
2.5 is substantially different, while this step is the easiest in Kanai’s
case due to special geometry of R* The whole point of our proof is to
choose various sets in (*) below to make various quantities fit together.

The following lemma is a consequence of Bombieri and Giusti’s ab-
stract John-Nirenberg inequality. To prove it, we need to check that
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for a positive harmonic function u and for some integer ¢ € N,

C
sup u? < (,/ udz, and
B, () (r =1 /B, (ap)

C
sup u ¥ < -7/ udr,
B,(2r) (r =5 Jp, 08

where § > r > s > (. But these follow easily by the Moser iteration
argument.

LEMMA 2.1. There exists a coustant C' > 0 such that for any R > 0,

and for any positive harmonic furiction u on N,

supu < 9 infy,
QR QH
where
g(u) = sup inf —1-———~/ |legu — afdzx.
0<r<s aclk UOIB (QR) (2r)

Thus to prove Theorem 2.1, it is sufficient to show that g(u) is
bounded independent of u or R. First, we need to prove the following
1soperimetric inequality (2.1) on N, i.e., there exists a positive constant
C = C(e,é,p, K,dim M,dim N) such that, for any hypersurface H in
Bs(§2g) which divides Bs(Q2g) into two domains D} and D},

vol H 5 ¢ C
min{vol D{,vol D;} ~ R’
where D) = D{ N Qg and Dy = D}, N §g. Then, by slightly modifying
the standard argument using the coarea formula. (2.1) implies that

there is a constant C > 0 such that for any R >> 0 and for any v €
C>{(N),

'S
(2.17) / |Vv|dz > = inf /
k Bs(Q2r) | R ack $2p
It is obvious that each of vol Br(0), 1Sg, t¢(Sr), § Tr. and vol Qp

has the same order of growth in term of R, which means that the ra-
tios of any two of the above are bounded above and below by constants
independent of R.

The following lemma follows from (2.1').

(2.1)

v — «|dz.
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LEMMA 2.2. There exists a constant C = C(e, é, p, K,dim M,dim N)
such that for any sufficiently large R > 0, and for any positive harmonic
function v on N,

g(u) < C,

where

1
u) = sup inf ———— logu — aldz.
a(v) ong;s «ek vol B, (§lRg) /B,(QR) [log |

Proof. Put v = logu. Choose r € [0, 6] such that

1
u) = inf ————— v—alde
g(u) o€k vol B,(Qg) /B,(QR)| |

1
<inf —— ez
S B T By /Qm o= e

< CR |Vo] dz

= " %ol B/(QR) La(ﬂzﬂ)

(vol Q;,R)% / 5 3
< A TR
<CR vol B9 \Jo.. |Vv|“da

: :
<CR (vol f3r)% / NZARCE
vol Br(QRr) \ JBr(sr)

g_]jvol BR(Q3_2
R wvol B.(Qr)
<C.

In the above inequalities, (2.1'), the Holder inequality, and the volume
comparison are used. And 7 is a Lipschitz function which is defined as

below:

]-a TE Q.’)‘R
n(z) =4 1- §d(z, Q3r), =€ Br(Qr)\Qsr

0, otherwise.
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The third inequality from the last is proved as follows: Since Av =
—IVU]Z,

/ n*|Vol?dz = ——/ n* Avdz
Br(3r) Br(flsr)
= / 2nVn - Vodzr
Br(Q3r)

/ n?|Vo|?dz + 2 / |Vnltde .
= JBr(Qsr) Br(Qsr)

|Vo|?dz < 4/ IVn|*de . O
Br(Qsr)

INA
o] =

Thus

Qanr

The only step not justified so far in the proof of Theorem 2.1 is the
inequality (2.1') which was used in the proof of Lemma 2.2. As (2.1")
follows immediately from (2.1), the rest of this section is devoted to
the proof of (2.1), which is the objective of Lemrnas 2.3, 2.4, and 2.5.

For technical reasons, we shall redefine ¢. First, since P and @ are
roughly isometric, choose a rough isometry ¢ : P — (. Now since
M 1is roughly isometric to P, there is a rough isometry 7 : M — P.
Then ¢ 0 ¥ o w is a rough isometry of M into N, where ¢ : @ <
N is the inclusion map. For the sake of simplicity, we again reset

= 1 01 o w. This redefinition has an advantage that the restriction
of ¢ : M — N to P is automatically a rough isometry between P
and (). Suppose that H is a hypersurface in Bs(Q2g) which divides
Bs(Qg) into two disjoint domains D{ and Dj. And put Dy = D] NQg
and D, = D) N Qg, then D; UDy, = Qr \ H. For such D, and
D,, define Ty = {q € Tgr|vol(D; N Bs(q)) > %wl Bg(q)} . and Ty =
{q € Trlvol (D20 Bs(q)) > %vo/ Bg(q)} on . Then check Ty U T, =
Tr. And put $; = ¢ Y (T}) N Sk and Sy = ¢~ (T;) N Sg on P. Then
Sp = 57U S8;3. Let us define

S1 = Ni(S1)\ (N1(S2) \ 51,
S5 = Sk \ ST,
(*) Uy = B:(S51) N Bry(0),
Uy = Bpee(W)\ Uy,
H = 0B.(5]) N Bry<(0),
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where k is an integer such that a(p + 2¢ + 3) < k, and N;(S) = {p €
Plé(p, S)<j}for any j € N. It is easy to check shat

B.(S]US}) D Brye(0), and Bgry(0)\ H = U, UU,.

LEMMA 2.3. With the above notations, there exists a constant C =
Cle. b, p. K,dim N) satisfying

min?d 1. max ﬁaTl N TR ﬁ@Tg . TR <C vol H
7 Y ST tT, ~ " min{vol Dy,vol D,} °

LEMMA 2.4. Let Ty and Ty be non-empty disjoint subsets of Tj.
Then there exists a constant C = C(e, &, p, k, K, dim M, dim N) such

that
1in{l aX{t@SIOSR ﬂaSZHSR}}
1T ., Im 9
’ §S1 15

10T'NTRr $0T,N TR
< .
_Cmax{ iT i T }

where S; = ¢ N T;,)N Sk for1 =1.2.

LEMMA 2.5. Let the following sets be given as in (*). Then there
exists a constant C = C(e, K, dim M) such that

o4 ) vol H
Ty mex min{vol Uy, vol Uy}

§0S, NS §905,N Sk
< ( .
Cmax{ 'S , .3, }

Proof. The proof is divided into two cases.
Case 1. S3\0S; =0 and S1\ 35, = . In this case, S; = 85; N Sk
and Sy = 051 N Sg, and these imply that

§0S:NSp £S5, and £0S;NSp £S5
= 1 = .
£S5 £S5, § 52 f 52
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Thus we obtain easily

max{naslmSR ﬁﬁSZHSR} > 1
f S 7 §S2 -

Case 2. Consider the case Sz \ 05, # . By the standard volume
comparison theorem and the uniformness of the net P, we have

(2.2) vol Uy > z vol Be(p)
PES)
> 'S5
and
(2.3) vol U > ) wvol By(p)
PES\8S,

> Ct(S;\ 8Sy)
> CtN(S;\ 851)
>CtS,.

Note that Bs(Sl) C L’Tl and 17\"1(‘,5'2) \ S] C Uz. Eut for pE 52 n 851,
we cannot guarantee that Be(p) C Uz. Thus in (2.3), we had to sum
over p € S3 \ 85, in the first inequality.

Let ¢ € 0B.(S]) N Br+e(0). Then there exisis py € S} such that
¢ € 0B.(po). Choose n € R* such that B,(r) C Bgry.(0). Since
Bpry(0) C B.(S]US}), either every point in B,(x) belongs to B.(p)
for some p € S or there exists x, € B,(z) such that z, ¢ B.(S]). The
former case means that z is an interior point of B.(S]). Therefore the
latter must be true: namely, d(z,,S5}) < ¢. Letting n — 0,z, — .
By the compactness of S} and the continuity of the distance function
from S), there exists g € S} such that d(z,qo) == d(z, S}) < e. From
these, d(po, qo) < 2¢, 1.e., pg € 055. Therefore we have

(2.4)  0B.(S)) N Br4e(0) C(Upeas,nBayze (0)0Be(p)) N Bre(0) .

On the other hand, for p € 85} M Br42.(0), we can choose points s €
S1,7 € 53,and g € S} such that é(p,s) < k,8(q,r) < k,and é(p,q) = 1.
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We can also choose a point u € 05, N Sg such that é(s.u) < é(s,r)—1.
Thus &(p,u) < 3k. Therefore p € N3x(u), i.e.,

(2.5) 65; N BR+25(0) - IV;;k(‘BSQ NSk .
By (2.4) and (2.5),

(2.6) vol H < Z vol OB, (p)
PEAS,NBR 42 (0)
< CH N3 {05, N Sr)
< CH(95: N Sg).

Combining (2.2), (2.3), and (2.6),

(2.7)
vol H <c vol H
min{vol Uy,vol U} = ~ min{§ S, § 52}
205, N Sk

mln{t Sls ﬁSZ}
§0S, N Sk nasms,{}
TR ) '

< Cma:({

Since 853 N Sp C Ni(0S1 N Sg), we have
(2.8) 19S5, NSrR<C:05, N Sk.
By (2.7) and (2.8),

vol H

min{vol Uy, vol Us}

Scmax{nasmsR ﬁ@SzmSR} |

gS1 7 1S

In case S; \ 053 # 0, we reverse the role of S and S;. Then the proof
is the same. O

Appendix to Section 2
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We quoted an abstract version of John-Nirenberg lemma due to
Bombieri and Giusti in §2. They have an inequality in p.38 of (1] as

follows: for 0 <s < r < 1,
(2.9)

, 15 1 1 w(B) 1 1
< —w — 4+ — | log ———= 4A )
o) et + (5 5 ) s g + (g7 +4) gy
They chose a sequence
(1——)7J 1. ] =2,3,--
1

and applied this to (2.9) withr =7;_, and s = r;. Then by induction,

w(rN+1) < (12) (7'1) + ()pio +4A> é\ﬁ (15) ]40

1 1 15 u(Br,)
+ 1 — 4+ lo .
(90 m)z (16> (B, )
But the second term blows up:

N—j 15 N-—-1 15 N-2 15 0
40 4c 4o 4o
§ = [ — 1% + [ — 27 L+ (= N
J._l( ) ’ (16) (]6) F (16)

| l

I |

>N w0 as N — cc.
To correct the proof, we need to modify the setting slightly as fol-
lows: Choose a new sequence
1 .
rj:]-__-.ﬁ ]:1-2,
J

Applying this sequence to (2.9) and iterating j from 1 to N + 1, we
then get

5 1 a5\,
= () s o s s0) 35 () v

1) 7 W(Bryy)
— 4 — log AZEY
( 0 ) 1 ( ) o8 N(Brj)

]:
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Since

> 715\’ 7"
Z(E) (j+1)* < oo,

)=

we can take the limit of the second term. And since

fi (E)j_l log -——————-#(Br’“) < ﬁ: <E>j—l log ——M(B])
e 16 w(By) ~ 16 u(Bo)

the last term is bounded by 16 (@% + ?L) log '”‘B(‘)% From this, we have

the conclusion:

-1

1 1 1 1 u(By)
wh <e¢|l—+44A) — 16—+ —|lo
© <2Po >Q2 (90 91) & W(By)
References

. E. Bombieri and E. Guisti, Harnack’s Inequality for Elliptic Differential Equa-
tions on Minimal Surfaces, Invent. math. 15 (1972), 24-46.

. P. Buser, A note on the isoperimetri:: constant, Ann. Sci. Fc. Norm. Sup. Paris
15 (1982), 213-230.

. M. Kanai, Analytic inequalities, and rough isometries between non-compact
Riemannian manifolds, Springer Lecture Notes in Mathematics 1201 (1981),
122-137.

. M. Kanai, Rough isometries, and combinatorial approzimations of geometries
of non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985), 391-413.

. J. Moser, On Harnack’s theorem for clliptic differential squations, Comm. Pure.
Appl. Math. 14 (1961), 577-591.

. L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff.
Geom. 36 (1992), 417-450.

8. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm.
Pure Appl. Math. 28 {1975}, 201-223.

Department of Mathematics

Seoul National University

Seoul 151-742, Korea

e-mail: hichoi@math.snu.ac.kr (H.I.Choi)
yhlee@math.snu.ac kr (Y.H.Lee)



