LINEAR TRANSFORMATIONS THAT
PRESERVE THE ASSIGNMENT II

LEROY B. BEASLEY, GWANG-YEON LEE AND SANG-GU LEE

I. Introduction

Let $R = (r_1, r_2, \ldots, r_m)$ and $S = (s_1, s_2, \ldots, s_n)$ be vectors of positive integers, and let $\mathcal{U}(R, S)$ denote the class of all $m \times n$ matrices $A = [a_{ij}]$ of 0's and 1's such that

$$\sum_{k=1}^{n} a_{ik} = r_i \quad (i = 1, 2, \ldots, m),$$

$$\sum_{k=1}^{m} a_{kj} = s_j \quad (j = 1, 2, \ldots, n).$$

Thus R is the row sum vector and S is the column sum vector of each matrix in $\mathcal{U}(R, S)$. In [4] Brualdi, Hartfiel and Hwang introduced a class of functions generalizing the permanent function, which, like the permanent, are combinatorially significant as counting functions. We refer to matrices in $\mathcal{U}(R, S)$ as $(R, S)-assignments$, or as assignments when R and S are fixed in the discussion. For matrices $B = [b_{ij}]$ and $C = [c_{ij}]$ of the same order, write $B \leq C$ if $b_{ij} \leq c_{ij}$ for all i and j. If $X = [x_{ij}]$ is an $m \times n$ matrix of 0's and 1's, then an assignment corresponds to an $m \times n$ matrix A such that $A \in \mathcal{U}(R, S)$ and $A \leq X$. Thus, if we let

$$(1.1) \quad P_{R,S}(X) = \{ A \in \mathcal{U}(R, S) : A \leq X \},$$
then $P_{R,S}(X)$ counts the number of possible assignments. If we let $J_{m,n}$ be an $m \times n$ matrix whose entries are all ones, then

\begin{equation}
P_{R,S}(J_{m,n}) = |\mathcal{U}(R,S)|.
\end{equation}

We call $P_{R,S}(\cdot)$ the $(R,S) - assignment$ function or an assignment function.

A well-known special case of an assignment function occurs when $m = n$ and $R = S = (1,1,\cdots,1)$. In this case, $P_{R,S}(X)$ counts the number of permutation matrices P with $P \leq X$ and hence $P_{R,S}(X)$ is the permanent of X, $\text{per}(X)$.

More generally, let $X = [x_{ij}]$ be an $m \times n$ matrix. We define the support of X to be the set $\text{supp}(X) = \{(i,j) : x_{ij} \neq 0\}$. The (R,S)-assignment function $P_{R,S}(\cdot)$ is defined by

\begin{equation}
P_{R,S}(X) = \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \text{supp}(A)} x_{ij}.
\end{equation}

The preservers of the permanent were first determined by Marcus and May [5] and later Botta [3] gave a proof valid over any field. In this paper, we characterize the linear operators on the real matrices which preserve the value of an assignment function of each $m \times n$ matrix.

II. Results

Let $M_{m \times n}(R)$ be the vector space of $m \times n$ matrices. We assume throughout that $R = (r_1,\cdots,r_m)$ and $S = (s_1,s_2,\cdots,s_n)$ are vectors of positive integers with $1 \leq r_1 \leq \cdots \leq r_m < n$ and $1 \leq s_1 \leq \cdots \leq s_n < m$. If $\sum_{i=1}^{m} r_i \neq \sum_{j=1}^{n} s_j$, then $\mathcal{U}(R,S) = \emptyset$. So we assume throughout that $\sum_{i=1}^{m} r_i = \sum_{j=1}^{n} s_j = k$ for $n + 1 \leq k \leq mn$ and $0 < r_i, s_j \leq m$ for each i,j where $m \leq n$, i.e., $\mathcal{U}(R,S) \neq \emptyset$. We have shown that for the case $m = n$ in [1]. Let $T : M_{m \times n}(R) \rightarrow M_{m \times n}(R)$ be a linear transformation such that

\begin{equation}
P_{R,S}(X) = P_{R,S}(T(X))
\end{equation}

for any $X \in M_{m \times n}(R)$.
Let E_{ij} denote the $(0,1)$-matrix whose only nonzero entry is in the (i, j) position. A \textit{weighted cell} is a scalar multiple of E_{ij} for some (i, j), so that the set of cells is the set $\{\alpha_{ij}E_{ij} | \alpha_{ij} \in \mathbb{R}, 1 \leq j \leq m \text{ and } 1 \leq i \leq n\}$. We say that the two vectors R and S are \textit{compatible} if given any two positive integers, $1 \leq i, j \leq n$ there are two integers k, l and some $A \in \mathcal{U}(R, S)$ such that $a_{ij} = a_{kl} = 1$ and $a_{il} = a_{kj} = 0$ with $i \neq k, j \neq l$, and $1 \leq k \leq m, 1 \leq l \leq n$. We may have to consider the following condition; for any pair (i, j), there is some element of $\mathcal{U}(R, S)$ whose (i, j) entry is nonzero. That is,

\begin{equation}
\{(i, j) : a_{ij} = 1 \text{ for some } x \in \mathcal{U}(R, S)\}
= \{1, 2, \ldots, m\} \times \{1, 2, \ldots, n\}.
\end{equation}

Notice that if R and S are compatible then $r_i, s_j < n$ and condition (2.2) is satisfied. But we can easily show that (2.2) implies \textit{compatibility} if we allow row and column permutations. This will be possible because of our final theorem allows it. That means even if we make a weaker assumption, this does not effect our theorem.

Therefore, throughout, we assume that the two vectors R and S are compatible.

\textbf{Lemma 1.} T is nonsingular.

\textbf{Proof.} Let $B \in \mathcal{U}(R, S)$ with $b_{pq} \neq 0$, and let $A(z) = z(B - E_{pq})$. Then, $P_{R, S}(A(z)) = 0$ for all z. However, the coefficient of z^{k-1} in $P_{R, S}(A(z) + X)$ is x_{pq} which is nonzero. Thus, $P_{R, S}(X + A(z))$ is a nonzero polynomial in z, and hence, is nonzero for some choice of z, say z_0. But then, since T preserves $P_{R, S}$,

\begin{align*}
0 &= P_{R, S}(A(z_0)) \\
&= P_{R, S}(T(A(z_0))) \\
&= P_{R, S}(T(A(z_0)) + T(X)) \\
&= P_{R, S}(T(A(z_0) + X)) \\
&= P_{R, S}(A(z_0) + X) \neq 0.
\end{align*}

This contradiction establishes the lemma. \hfill \blacksquare

Let $R_i = \{X \in M_{mn}(\mathbb{R}) : x_{kl} = 0 \text{ for all } k \neq i, \text{ for all } l\}$ and $C_j = \{X \in M_{mn}(\mathbb{R}) : x_{kl} = 0 \text{ for all } l \neq j, \text{ for all } k\}$. Suppose $r_i = 1$ and $s_j = 1$ for all $i \leq q$ and $j \leq p$.

LEMMA 2. If \(i \leq q\), then there exist \(k\) such that \(T(R_i) \subseteq R_k\) and \(k \leq q\), or \(T(R_i) \subseteq C_k\) and \(k \leq p\). If \(i \leq p\), then there exist \(l\) such that \(T(C_j) \subseteq C_l\) and \(l \leq p\), or \(T(C_j) \subseteq R_l\) and \(l \leq q\).

Proof. Since the column case is parallel to the row case, we consider \(T(R_i)\). If \(T(R_i) \not\subseteq R_k\) for all \(k \leq q\) and \(T(R_i) \not\subseteq C_k\) for all \(k \leq p\), then there are three possible cases:

Case 1. If the term rank of \(T(R_i)\) is greater than or equal 2, then there is \(X \in R_i\) such that the term rank of \(T(X)\) is at least 2. Say \(T(X) = L\) with \(l_{rs} \neq 0, l_{uv} \neq 0\) and \(r \neq u, s \neq v\). Choose \(A \in U(R, S)\) with \(a_{rs} = a_{uv} = 1\) and if possible with \(a_{rv} = 1\) or \(a_{us} = 1\). Let \(B = A - E_{rs} - E_{uv}\). Then \(P_{R,S}(tT(X) + B)\) is a polynomial of degree at least 2 since the coefficient of \(t^2\) is \(l_{rs}l_{uv} \neq 0\). But the polynomial \(P_{R,S}(tX + T^{-1}(B))\) is of degree at most 1. This contradicts that \(T\) preserves \(P_{R,S}(\cdot)\).

Case 2. If \(T(R_i) \subseteq R_k\) and \(r_k > 1\) \((k > q)\). Choose \(X \in R_i\) such that \(T(X) = L\) has \(l_{kl} \neq 0\) and \(l_{ks} \neq 0\). Choose \(A \in U(R, S)\) with \(a_{kl} = a_{ks} = 1\), and let \(B = A - E_{kl} - E_{ks}\). Then \(P_{R,S}(tX + T^{-1}(B))\) is of degree at most 1 while \(P_{R,S}(tT(X) + B)\) has degree at least 2 since the coefficient of \(t^2\) is \(l_{kl}l_{ks}\). This occurs a contradiction.

Case 3. If \(T(R_i) \subseteq C_k\) with \(k > p\). This is parallel to the Case 2. In any case we have arrived at a contradiction. Thus \(T(R_i) \subseteq R_k\) with \(k \leq q\), or \(T(R_i) \subseteq C_k\) with \(k \leq p\). Similarly, we have \(T(C_j) \subseteq C_l\) with \(l \leq p\), or \(T(C_j) \subseteq R_l\) with \(l \leq q\). ■

COROLLARY 1. If \(m \neq n\), then for each \(i \leq \alpha\), there is \(k \leq q\) such that \(T(R_i) \subseteq R_k\) and for each \(j \leq p\), there is \(l \leq p\) such that \(T(C_j) \subseteq C_l\).

Proof. This follows easily from the nonsingularity of \(T\). ■

From the fact that \(T\) is nonsingular and that \(T\), and hence \(T^{-1}\), preserves \(P_{R,S}(\cdot)\), we observe:

COROLLARY 2. For \(i, j < q\). If \(T(R_i) \subseteq R_k\) for some \(k\), then there exist \(l(\neq k)\) such that \(T(R_j) \subseteq R_l\). If \(T(R_i) \subseteq C_k\) for some \(k\), then \(m = n, q = p\) and there exist \(l\) such that \(T(R_i) \subseteq C_l\)
Lemma 3. If \(i > q \) and \(j > p \) then \(T(E_{ij}) \) has no entry in the first \(q \) rows or the first \(p \) columns.

Proof. Without loss of generality, we may assume \(r_1 = 1 \) and \(T(R_1) \subseteq R_k \) for some \(k \leq q \). Suppose \(i > q \) and \(j > p \) and \(T(E_{ij}) \) has a nonzero entry in row \(k \) for some \(k \leq q \) or in column \(l \) for some \(l \leq p \). Without loss of generality, suppose \(T(E_{ij}) = L \) and \(l_{kl} \neq 0 \) for some \(k \leq q \). Choose \(A \in \mathcal{U}(R, S) \) with \(a_{kr} = 1 \), and let \(B = A - E_{kr} \) then the coefficient of \(t \) in \(P_{R,S}(tT(E_{ij}) + B) \) is \(l_{kr} \neq 0 \). But \(tE_{ij} + T^{-1}(B) \) has no entry in rows where \(T(R_s) \subseteq R_k \) with \(s \leq q \). Thus \(P_{R,S}(tE_{ij} + T^{-1}(B)) = 0 \), a contradiction. \(\blacksquare \)

Henceforth we assume, without loss of generality, that \(T(R_i) = R_i, i \leq q \) and \(T(C_j) = C_j, j \leq p \). By Lemma 3, \(T^{-1}(R_i) = R_i, T^{-1}(C_j) = C_j \).

Lemma 4. If \(i > q \) and \(j > p \), then \(T(E_{ij}) \) is a weighted cell.

Proof. Since \(i > q \) and \(j > p \), if \(T(E_{ij}) = L \) and if \(l_{uv} \neq 0 \) then \(u > q \) and \(v > p \) by Lemma 3. Suppose \(l_{rs} \neq 0 \) and \(l_{uv} \neq 0 \). Choose \(A \in \mathcal{U}(R, S) \) with \(a_{rs} = a_{uv} = 1 \) and if possible with \(a_{rs} = a_{uv} = 1 \). Let \(B = A - E_{rs} - E_{uv} \). Then the coefficient of \(t^2 \) in \(P_{R,S}(tT(E_{ij}) + B) \) is \(l_{rs}l_{uv} \neq 0 \). But \(P_{R,S}(tE_{ij} + T^{-1}(B)) \) is a polynomial of degree at most 1, a contradiction. \(\blacksquare \)

By the above lemmas, we may now assume that \(T(E_{ij}) = E_{ij} \) if \(i \leq p \) and \(j \leq q \), \(T(E_{ij}) \) is a cell if \(i > p \) and \(j > q \) and \(T(E_{ij}) = \sum_{k=q+1}^{n} \alpha_k^{(i,j)} E_{ik} \) for some \(\alpha_k^{(i,j)} \)'s, for \(1 \leq i \leq p \) and \(j > q \), and \(T(E_{ij}) = \sum_{k=p+1}^{m} \beta_k^{(i,j)} E_{kj} \) for \(i > p \) and \(1 \leq j \leq q \).

Lemma 5. If \(1 \leq i \leq p \) and \(j > q \), then \(T(E_{ij}) \) is a weighted cell.

Proof. Suppose \(T^{-1}(E_{ij}) \) is not a weighted cell for some \(1 \leq i \leq p \) and \(j > p \). By permuting we may assume \(T^{-1}(E_{1,q+1}) = aE_{1r} + \)
\[bE_{1s} + \ldots, \text{for some } r, s > q, \text{ with } a, b \neq 0, \text{ and } S_r \leq S_s. \text{ Let} \]

\[
X = \begin{bmatrix}
0 & \cdots & a & \cdots & b & \cdots \\
1 & & & & & \\
\vdots & & & & & \\
1 & & & & & \\
\vdots & & & & & \\
D & & & & &
\end{bmatrix}
\]

where \(a \) is in the \((1, r)\) position and \(b \) is in the \((1, s + 1)\) position and

\[
T = \begin{bmatrix}
0 & \cdots & 0 & \cdots & a & \cdots & b & \cdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\end{bmatrix}
\]

\[= E_{1q+1}. \]

We further require that \(\begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \) is a \((0,1)\) matrix and has column sums \(s_1 - 1 = 0 = \ldots = 0 = s_q - 1, s_{q+1}, s_{q+2}, \ldots, s_{r-1}, s_r - 1, s_{r+1}, \ldots, s_n \) and row sums \(r_1 - 1 = 0 = \ldots = 0 = r_p - 1, r_{p+1} - 1, \ldots, r_q - 1, r_{q+1} - 1, r_{q+2}, \ldots, r_m \). So that \(P_{R,S}(X) = a \). Let \(Z = X - \sum_{i=1}^{n} x_i E_{1i} + E_{1r} \), then \(Z \in \mathcal{U}(R, S) \). Now,

\[
T(X) = \begin{bmatrix}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
1 & \cdots & 0 & 0 & \cdots & 0 & \cdots \\
\vdots & & & x & y & \cdots & z \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\end{bmatrix}
\]

and since \(P_{R,S}(T(X)) = P_{R,S}(X) \neq 0 \), the column sums of \(\begin{bmatrix} 0 & 0 \\ 0 & E \end{bmatrix} \) must be \(0, \ldots, 0, s_{q+1} - 1, s_{q+2}, \ldots, s_n \).
Since \(s_r \leq s_s \), and \(Z \in \mathcal{U}(R, S) \), there must be some \(k > p \) such that \(x_{kr} = 0 \) and \(x_{ks} = 1 \). Let \(Y = X - E_{ks} + E_{kr} \). Then \(P_{R,S}(Y) = b \neq 0 \), so \(P_{R,S}(T(Y)) \) must nonzero. Further

\[
T(Y) = \begin{bmatrix}
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & x & y & \cdots & z & H
\end{bmatrix}
\]

where \(\begin{bmatrix} 0 & 0 \\ 0 & H \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & E \end{bmatrix} - F + G \) when \(F = T(E_{ks}) \) and \(G = T(E_{kr}) \) are weighted cells. Now the number of nonzero entries in each columns of \(\begin{bmatrix} 0 & 0 \\ 0 & H \end{bmatrix} \) must be the same as those of \(\begin{bmatrix} 0 & 0 \\ 0 & E \end{bmatrix} \) in order that \(P_{R,S}(T(Y)) \) be nonzero. Now, since \(Z \in \mathcal{U}(R, S) \), \(P_{R,S}(T(Z)) = P_{R,S}(Z) = 1 \) and

\[
T(Z) = \begin{bmatrix}
0 & \cdots & 0 & \alpha & \beta & \cdots & \gamma \\
1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & x & y & \cdots & z & E
\end{bmatrix}
\]

where \(T(E_{1,q+1}) = \begin{bmatrix} 0 & \cdots & 0 & \alpha & \beta & \cdots & \gamma \\ 0 & \cdots & 0 & \alpha & \beta & \cdots & \gamma \end{bmatrix} \).

Thus \(\alpha \neq 0 \) since \(1 = P_{R,S}(T(Z)) = \alpha P_{R,S}(T(X)) = \alpha a \). Now, let...
\[W = Z - E_{ks} + E_{kr} \text{ then} \]

\[T(W) = T(Z) - F + G \]

\[= \begin{bmatrix}
0 & \cdots & 0 & \alpha & \beta & \cdots \\
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & \cdots & & \\
0 & & & \cdots & x & y \cdots z \\
\end{bmatrix} H. \]

so that \(P_{R,S}(T(W)) = \alpha P_{R,S}(T(Y)) = \alpha P_{R,S}(Y) =: \alpha b \neq 0. \) But, the \(s - th \) column of \(W \) has \(s_s - 1 \) 1's and hence \(P_{R,S}(W) = 0 \), a contradiction to the fact that \(T \) preserves \(P_{R,S}(\cdot) \). It follows from this contradiction that \(T^{-1}(E_{1,q+1}) \) is a weighted cell, and hence that \(T(E_{ij}) \) is a weighted cell for all \(1 \leq i \leq p \) and \(j > q \). ■

Lemma 6. If \(i > p \) and \(1 \leq j \leq q \) then \(T(E_{ij}) \) is a weighted cell.

Proof. The proof is identical to that of lemma 5 with the roles of the rows and columns exchanged ■

We will now show that \(T \) preserves the term rank of any matrix.

Theorem 1. The operator \(T \) is bijective on the set of weighted cells.

Lemma 7. Suppose that \(1 \leq r_i, s_j < n \) for all \(r_i \) and \(s_j \). If \(A \in \mathcal{U}(R, S) \) and \(a_{pq} = a_{uv} = 1 \) then \(A' = A - E_{pq} - E_{uv} + E_{ij} + E_{rs} \in \mathcal{U}(R, S) \) if and only if

i) \((i, j) = (p, q) \) and \((r, s) = (u, v)\);

ii) \((i, j) = (u, v) \) and \((r, s) = (p, q)\);

iii) \((i, j) = (p, v), (r, s) = (u, q)\), and \(a_{ij} = a_{rs} = 0 \) or

iv) \((i, j) = (u, q), (r, s) = (p, v)\), and \(a_{ij} = a_{rs} = 0 \).

Proof. Note that in cases i) and ii), \(A' = A \).

The sufficiency is easily checked. For the necessity, the only way to make \(A - E_{pq} - E_{uv} \) into a member of \(\mathcal{U}(R, S) \) by adding two cells is if those two cells have ones in rows \(p \) and \(u \) and in columns \(q \) and \(v \) (or two ones in row \(p \) if \(p = u \), etc). It then follows that \(i = p \), or
i = u, r = p or r = u, j = p or j = v, and s = q or s = v. Further, if i = p then we must have that r = u, and visa versa. Likewise, if j = q then we must have that s = v, and visa versa. Finally, if \(a_{ij} \) or \(a_{rs} \) were nonzero then \(A' \) would not be a (0 1) matrix. These facts establish the necessity.

Lemma 8. Suppose that \(1 \leq r_i, s_j < n \) for all \(r_i \) and \(s_j \), and that \(R \) and \(S \) are compatible. If \(T \) preserves the assignment function \(P_{R,S} \) then \(T \) preserves the set of matrices of term rank 1.

Proof. Suppose that some matrix of term rank 1 is not mapped into a matrix of term rank 1. Then, since \(T \) is bijective on the cells, there is some pair of cells of term rank 1 whose images are not term rank 1. Without loss of generality, assume that \(T(E_{pq}) = xE_{ij} \) and \(T(E_{pv}) = yE_{rs} \). Now, choose \(A \in \mathcal{U}(R, S) \) with \(a_{pq} = a_{bv} = 1 \), and \(a_{pv} = a_{bp} = 0 \). This is always possible since \(R \) and \(S \) are compatible.

Now, let \(A' = A - E_{pq} - E_{bv} + E_{pv} + E_{bp} \). By lemma 3, \(P_{R,S}(A') = 1 \). Thus \(P_{R,S}(T(A')) = 1 \). Since \(T \) is bijective on the cells, we must have that the pattern \(T(A') \) of \(T(A') \) is in \(\mathcal{U}(R, S) \). But the pattern \(\overline{T(A)} \) of \(T(A) \) differs from that of \(T(A') \) only by changing two ones to zeros and two zeros to ones. That is,

\[
\overline{T(A')} = \frac{T(A - E_{pq} - E_{bv} + E_{pv} + E_{bp})}{T(A)} - \overline{T(E_{pq})} - \overline{T(E_{bv})} + \overline{T(E_{pv})} + \overline{T(E_{bp})} = \overline{T(A)} - E_{ij} - E_{gh} + E_{rs} + E_{kl}
\]

for some \((g, h)\) and \((k, l)\).

By lemma 7, and the fact that \(T \) is bijective on the set of cells we have that \(r = i \) or \(s = j \), a contradiction. Thus \(T \) preserves term rank 1.

We now obtain some of the structure of assignment preserves from the following lemma.

Lemma 9. [2, Beasley and Pullman, Corollary 3.1.2] Suppose that \(T \) is a nonsingular linear operator on \(M_{m \times n}(R) \). The linear operator
T preserves the set of matrices of term rank 1 if and only if T is one of or a composition of some of the following operators:

(i) $X \rightarrow X^t$
(ii) $X \rightarrow PXQ$ for fixed but arbitrary $n \times n$ permutation matrices P and Q.
(iii) $X \rightarrow X \circ A$ for some fixed but arbitrary matrix A with no zero entries.

In order to complete our characterization of operators which preserve assignment functions when $1 \leq r_i, s_j < n$ for all r_i and s_j we show that the three types of operators in Lemma 9 which also preserve the assignment function are the types specified in the theorem.

Lemma 10. Let P and Q are permutation matrices. Then

\begin{equation}
P_{R,S}(X) = P_{R,S}(PXQ)
\end{equation}

if and only if $PR^t = R^t$ and $SQ = S$.

Proof. For each $A \in \mathcal{U}(R, S), PAQ \in \mathcal{U}(R, S)$ only if $PR^t = R^t$ and $SQ = S$. This establishes the necessity. Now, suppose that $PR^t = R^t$ and $SQ = S$. Then,

$$
\begin{align*}
P_{R,S}(X) &= \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \text{supp}(A)} x_{ij} \\
&= \sum_{PAQ \in \mathcal{U}(R,S)} \prod_{(i,j) \in \text{supp}(PAQ)} x_{ij} \\
&= \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \text{supp}(A)} (PXQ)_{ij} \\
&= P_{R,S}(PXQ).
\end{align*}
$$

Remark. We note that the assignment is not invariant under permutations of rows and columns and under transposition. For example, if $R = (2, 2, 2)$ and $S = (3, 2, 1)$, then $\mathcal{U}(R, S) = \{A_1, A_2, A_3\}$ where

$$
A_1 = \begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}, \quad A_3 = \begin{bmatrix}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{bmatrix}.
$$
Then $P_{R,S}(A_1) = 1$. But $P_{R,S}(A_1^t) = 0$. And let

$$Q = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$

then

$$A_1Q = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

So, $P_{R,S}(A_1) = 1$ and $P_{R,S}(A_1Q) = 0$.

Note that if $R = S$ then $U(R, S) = U(S, R) = U(R, R)$ and hence, in this case, $P_{R,S}(A) = P_{R,S}(A^t)$ for all A. We have thus established the following lemma.

Lemma 11. The transpose operator preserves the assignment function $P_{R,S}$ if and only if $R = S$.

Lemma 12. Suppose $1 \leq r_i, s_j < n$ for all r_i and s_j, and that R and S are compatible. If T preserves the assignment function $P_{R,S}$ and if $T(X) = X \circ M$, then there exist diagonal matrices D_1 and D_2 such that $M = D_1JD_2$, where J is the matrix of all ones; thus, $T(X) = D_1XD_2$.

Proof. Let

$$D_1 = \text{diag}\{m_{11}, m_{21}, \cdots, m_{nn}\}$$

and

$$D_2 = \text{diag}\{1, m_{12}m_{11}^{-1}, \cdots, m_{nn}m_{11}^{-1}\},$$

and let $N = D_1^{-1}MD_2^{-1}$. Let $2 \leq i, j \leq n$ be fixed, and choose $A \in U(R, S)$ with $a_{11} = a_{ij} = 1$ and $a_{ij} = a_{1j} = 0$. Such an element always exist since $1 \leq r_i, s_j < n$ for all r_i and s_j. Let $B = A - E_{11} - E_{ij} + E_{1j} + E_{i1}$ so $B \in U(R, S)$. Now, $P_{R,S}(D_1^{-1}AD_2^{-1}) = \prod_{i=1}^{n} m_{i1}^{-r_i} \cdot \prod_{j=2}^{n} (m_{1j}m_{11}^{-1})^{-s_j} = P_{R,S}(D_1^{-1}BD_2^{-1})$. Thus $P_{R,S}(D_1^{-1}AD_2^{-1}) = P_{R,S}(D_1^{-1}BD_2^{-1})$, and hence $P_{R,S}((D_1^{-1}AD_2^{-1}) \circ M) = P_{R,S}((D_1^{-1}BD_2^{-1}) \circ M)$ since T preserves $P_{R,S}$. Since for diagonal matrices D and E, $DXE \circ M = D(X \circ M)E = X \circ DME$, and since T preserves $P_{R,S}$ we have that $P_{R,S}(A \circ N) = P_{R,S}(B \circ N)$. Now, $P_{R,S}(A \circ N) = n_{11} \cdot n_{1j} \cdot \beta$ and $P_{R,S}(B \circ N) = n_{ij} \cdot n_{11} \cdot \beta$ where β is $\prod_{(k,l) : \text{supp}(A) \setminus \{(1,1),(i,j)\}} n_{kl}$.
It now follows that \(n_{ij} = 1 \) since \(n_{11} = n_{i1} = n_{1j} = 1 \). Since \(i \) and \(j \) were chosen arbitrarily, we have that \(N = J \), and hence \(T(X) = X \circ M = D_1 XD_2 \). ■

We now only have to describe the allowable diagonal equivalence operators.

Lemma 13. If \(T(X) = DXL \) for some diagonal matrices

\[
D = \text{diag}\{d_1, d_2, \ldots, d_m\}
\]

and

\[
L = \text{diag}\{l_1, l_2, \ldots, l_n\}
\]

in \(M_{m \times n}(R) \), then \(\prod_{i=1}^m d_i^{r_i} \cdot \prod_{j=1}^n l_j^{s_j} = 1 \).

Proof. Let \(A \in \mathcal{U}(R, S) \), then \(P_{R,S}(A) = 1 \), and hence \(P_{R,S}(T(A)) = 1 \). That is, \(P_{R,S}(DAL) = 1 \). But \(P_{R,S}(DAL) = \prod_{i=1}^m d_i^{r_i} \cdot \prod_{j=1}^n l_j^{s_j} \).

■

An immediate consequence of the above lemmas is the following theorem.

Theorem 2. If \(T \) is a linear operator on \(M_{m \times n}(F) \) and \(1 \leq r_i, s_j < n \) for all \(r_i \) and \(s_j \), and \(R \) and \(S \) are compatible, then \(T \) preserves the assignment function \(P_{R,S} \) if and only if

\[
T(X) = PDXLQ \text{ for all } X \in M_{m \times n}(R),
\]
or

\[
T(X) = PDX^tLQ \text{ and } R = S \text{ for all } X \in M_n(R),
\]

where \(P \) and \(Q \) are permutation matrices such that \(PR^t = R^t \) and \(SQ = S \) and \(D = \text{diag}\{d_1, d_2, \ldots, d_m\} \) and \(L = \text{diag}\{l_1, l_2, \ldots, l_n\} \) are diagonal matrices such that \(\prod_{i=1}^m d_i^{r_i} \cdot \prod_{j=1}^n l_j^{s_j} = 1 \).

References

LeRoy B. Beasley
Department of Mathematics
Utah State University
Logan, Utah 84322-3900 U.S.A

Gwang-Yeon Lee
Department of mathematics
Hanseo University
Seosan 356-820, Korea

Sang-Gu Lee
Department of Mathematics
SungKyunKwan University
Suwon 440-746, Korea