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GENERALIZED VECTOR-VALUED VARIATIONAL
INEQUALITIES AND FUZZY EXTENSIONS

BYUNG S00 LEE, GUE MYUNG LEE AND Do SANG KIM

1. Introduction and Preliminaries

Recently, Giannessi [9] firstly introduced the vector-valued varia-
tional inequalities in a real Euclidean space. Later Chen et al. [5]
mtensively discussed vector-valued variational inequalities and vector-
valued quasi variational inequalities in Banach spaces, They [4-8]
proved some existence theorems for the solutions of vector-valued varia-
tional inequalities and vector-valued quasi-variational inequalities. Lee
et al. [14] established the existence theorem for the solutions of vector-
valued variational inequalities for multifunctions in reflexive Banach
spaces.

On the other hand. Chang nnd Zhu [3] investigated the existence
theorems of vector-valued variational inequalit:es for fuzzy mappings
in locally convex Hausdorff topological vector spaces, which were the
fuzzy extensions of some theorems in [12, 20, £2, 24]. Lee et al. [13]
obtained the fuzzy generalizations of new results of Kim and Tan [11].
and they [14] established the fuzzy extensions of their existence theo-
rems. The noncompact cases of the existence theorems of vector-valued
variational inequalities for multifunctions or fuzzy mappings in Banach
spaces obtained by Lee et al. [14] was considerc by Park et al. [19].

In this paper, we establish the existence theorems of the following
more generalized vector-valued variational inequalities (GVVI) for mul-
tifunctions than inequalities in [14] by using variable dominated cones,
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and obtain the fuzzy extensions of our existence theorems. In section
2, we establish the existence theorems for (GVVI} under the upper-
semicontinuity of the multifunction T, and obtain the existence theo-
rems for (GVVI), by using the P -monotonicity and V-hemicontinuity
of T, under the coercivity condition in Banach spaces. Also we ob-
tain the existence theorems for (GVVI) in reflexive Banach spaces. In
section 3, the fuzzy analogues of our results in section 2 are dealt with.

Let X and Y be two Banach spaces and D a nonempty convex
subset of X. Let T : X — 2L(XY) he a multifunction, where L(X.Y)
is the space of all continuous linear operators from X into Y. Let
{C(z)|z € D} be a family of convex cones in Y such that Int C(x) # 0,
Vr € D, where Int denotes the interior.

Consider the following generalized vector-valued variational inequal-
ity :

(GVVI) Find zy € D such that for each = € D, there exists an
sg € T(zg) such that

($p, 2 — zo) & —Int C(xy),
where (s¢,y) denotes the evaluation of s, at y.

When T is an operator from X into L(X.,Y), (GVVI) reduces to
the following vector-valued variational inequality (VVI) considered by

Chen [4].

(VVI) Find z¢ € D such that (T(zq),z — z¢) ¢ —Int C(x) for all
reD.

When for every z € D, C(z) = C, where C is a convex cone in Y
with Int C # 0, (GVVI) [respectively, (VVI)] reduces to the following
vector-valued variational inequalities (GVVI)' [resp., (VVI)] investi-
gated by Park et al. [19] and Lee et al. [14] [resp., Chen et al. [5, 7,
8], Yang [23]].
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(GVVI) Find zy € D such that for each .- € D there exists an
sg € T(xy) such that

{(so, 0 —wxy) & —Int C.

(VVI) Find @y € D such that (T(zg),z ~ x¢) ¢ —Int C for all
r e D.

The above inequality (VVI) 1s a generalizaticn of the following clas-
sic scalar-valued variational inequality (VI). When ¥ = R. X = R".
C(r) =Ry, Vo € D C R", then the (VVI) collapses to the {VI).

(VD) Find x¢ € D such that {f(zg), 2 —x0) > 0 forall r € D C R™,

where f: D — R" is a given operator.

Now we give the definition of a KKM multifunction.

DEFINITION 1.1. Let D be a subset of a topological vector space X .
Then a multifunction G : D — 2 is called KK M if for each nonempty
finite subset V of D, co N C G' N ), where co denotes the convex hull

and G(N) = J{Gz:zx e N}

A conver space X is a nonempty convex set ('n a vector space) with
any topology that induces the Fuclidean topolozy on the convex hulls
of its finite subsets. Thus, a couvex subset D of a topological vector
space X with the relative topology is automatically a convex space.
For details of the convex space, see Lassonde [12].

We need the following particular form of the generalized KKM the-
orems due to Park [16-18], which will be used in the proof of our main

results.

THEOREM 1. Let X be a convex space, K a nonempty compact
subset of X, and G : X — 2% a KKM multifunction. Suppose that

(1) for each y € X. G(y) 1s ciosed ; and

(2) for each nonempty finite subset N of X, ~here exists a compact
convex subset Ly of X such that N C Ly and Ly N[ {G(y) : y €
Ly} C K.

Then we have

KN ﬂ{G(y) cye X} #0.
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In particular, if X = K, that is, X is a compact convex space, then
the condition (2) is obviously held, and hence in this case, without the

condition (2), it is true that ({G(y):y € X} # 0.

2. Existence Theorems

First, we give the following definitions for the existence theorems for

(GVVI).

DEFINITION 2.1. Let F be a multifunction from a topological space
X into a topological space Y.

1. Fis said to be closed at x € X if for each sequences {an}
converging to x and {y,},_, converging to y such that y, € F(ry) for
all n, we have y € F(x). F is said to be closed if it is closed at every
z e X.

2. F1s said to be upper semi-continuous at « € X if for every open
set V in Y containing F(z), there exists a neighborhood N{x) of x such
that F(2) C V for all z € N(z). F is said to be upper semi-continuons
if it is upper semi-continuous at every r € X.

DEFINITION 2.2. Let X and Y be two normed spaces, T : X —
L(X,Y) an operator, and P a nonempty closed convex cone in ¥~ with
Int P # {).

1. T1s said to be P -monotone if for any z,y € X (T(z)—T(y).z ~
y) € P.

2. T 1s said to be P -pseudomonorone if for any x.y € X, (T(x),y—
z) ¢ —Int P implies that (T(y),y — ) ¢ —Int P.

3. T is said to be V-hemicontinuous if for any z,y,z € X. the
mapping o +— (T(x + ay), z) is continuous at 0.

DEFINITION 2.3. Let X and Y be two normed spaces, T : X —
2LE5Y) 5 multifunction, and P a nonempty convex cone in ¥ with Int
P £

1. T is said to be P -monotone if for any z,y € X, s € T(z) and
teT(y), (s—t,z—y)e P

2. Tis said to be P -pseudomonotone if forany z, y € X, (s,y —z) ¢
—Int P for some s € T(x) implies that (t,y — z) ¢ ~Int P for some
teT(y).
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3. T 1s said to be V-hemicontinuous if for any r,y ¢ X,o0 > 0
and t, € T(r + ay), there exists a to € T(x) such that for any - ¢
X, (ta,2) = (tg,2) as a — 0.

REMARK. 1. Definition 2.3 is a generalization of Definition 2.2,
2. We can easily prove that the P -mono onicity implies the P
-pseudomonotonicity.

Now we prove the following “xistence theorems for (GVVI) in Ba
nach spaces.

THEOREM 2. Let X and Y be Banach spaces, D a nonempty closed
convex subset of X. and C : I' — 2Y 4 multifunction such that for
each v € D, C(r) is a conver cone in Y wi-h Int Clr) 4 0 and
Clz) # Y. Let W : D — 2Y be a closed multifunction defined by
Wir) = Y\(~Int C{x)) for any « € D.

Let T: X 20X 4 upper semi-continuous and compact-valued.
Supposc that T(D) is contained in « compact subset of L(X.Y).

Then (GVVI) is solvable.

Furthermore, the solution set of (GVVI) is a compact subset of D.

Proof. Detine a multifunction F, : D — 2P 1,
Ely)={eeD:{s.y~2z) ¢ -Int C(r) for some s € Tir)}

for y € D. Then F) is a KKM nultifunction on D.

In fact, suppose that N = {r.-- STR) C DY oy = 1o, >
0.7 =1 nand x = 3" aur ¢ F/(N). Then for any s € T(r), we
have (s,r; ~r) € ~Int C(e),i = 1, 7. Thus we have

T T

; \ / N \ \ \
{s.a) = {s, 2 (egry) == 2 HENN
1= ] ]
¥l
. = Lo 1
: >,_4 «;i(s, ) — Int C(x)
pz ]

s {eyr) — Int C(2).

Hence 0 € Int C(x), which ccntradicts the assumption C(r) # Y.
Therefore. F; is a KKM multifunction on D. We claim that Fy is
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closed-valued. In fact, let {z,}22, be a sequence in Fj(y) converging
to z, € D for any fixed y € D. Since z, € Fy(y) for all n, there exists
an s, € T(x,) such that

(2.1) ($n,y —ap) € W(xy,) for all 7.

On the other hand, by assumption T(D) is compact.

Hence without loss of generality, we can assume that there exists
a s, € L(X.,Y) such that s, converges to s,. Since T is upper semi-
continuous and compact-valued, T is closed[1]. so s, € T(z,). More-
over we have

“<Snvy‘“1n> - (”*ay Tyl
< {$nsTu = T)[ + {80 — 84y y — 2.}
<ol - llas —@all + lsn = sull - lly = 2.

Since {s,} is bounded in L(X.,Y), ($n,y — 25,) converges to (s,.y —
z.). By (2.1) and the closedness of W, we have (s.,y — z.) € W(z,).
Consequently, there exists an s, © T(r,) such that (t,*.y —r,) ¢
—Int C(x).

Hence Fi(y) 1s closed. Therefore. by Theorem 1 there exists an rg €
({Fi(y) : y € D}. Thus there exists an z¢ € D such that for cach r €
D, there exists an sy € T(zg) such that (sq,2 — :1:(,) ¢ —Int C(xy). It
is clear that the solution set of (GVVI), ({{Fi(y) : y € D} is compact.

The following theorem shows that (GVVI) is solvable under a coer-
civity condition in Banach spaces.

THEOREM 3. Let X and Y be Banach spaces, D a nonempty convex
subset of X and K a nonempty compact subset of X. Let C : D — 2Y
be a multifunction such that for each x € D, C(x) is a convex cone in
Y with Int C(x) # 0 and C(z) #Y, and P := [, C(7) a nonempty
convex cone in Y with Int P # 0. Let W : D — 2Y be a closed
multifunction defined by W(z) = Y \(—Int C(z)) jor any * € D. and
T:X — 2LXY) 5 multifunction.

Suppose that

(1) T is P -monotone, compact-valued and V-hemicontinuous.

(2) for each nonempty finite subset N of D, there exists a nonempty
compact convex subset Ly of D such that N C Ly and for each
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€ LN\K there exists ay € Ly such that (t,y — z) € —Int C(x) for
allt € T(y).
Then (GVVI) is solvable.

Proof. Define a multifunction F} : D — 27 by
Fily)={r e D:(s.y—x) ¢ —int C(a) for some s € T(z)} for y € D.

Then by the same argument as the proof in Theorem 2. Fy is a KKM
multifunction on D. Define a multifunction F, : D — 27 by

Fyly)={zeD:(t,y-z ¢ —Int C(x) fcr some t € T{y)}

for y € D. Then F; is also a KKM multifunctior. on D. In fact, for any
r € Fi(y), there exists an s € 7(x) such that {s,y — ) € —Int C(r).
By the P -monotonicity of T,

(s —ty—wye—-PcC-—Clr)

for any t € T(y). Hence for anv t € T(y) (t,y — 2) ¢ —Int C(r) and
thus x € Fy(y). Hence Fy(y) C Fy(y) for any y € D. Therefore F, is
also a KKM multifunction on ). We claim that F} is closed-valued.
Indeed. for any fixed y € D, let {x,}22, be a scquence in Fy(y) which
converges to r. € D. Since z, € Fy(y) for cach n, there exists a
t, € T(y) such that

(2.2) (tnoy —,) € W(z,) foraln.

Since T(y) is compact. we may assume that {¢,}° converges to
some t, € T(y). Note that

H<tnvy“'7'n>“(t Yy - >H~” iyl — T >+ t, — 1., >'l
< ” ny L ™ In>” + H<'n —tey — -T*,)”
Sl llew = aall Hlite =2l fly — o]
Since {t,}72, is bounded in L(X,Y), (t,,y — z,) converges to

(te.y — x.). By (2.2) and the ciosedness of W we have (t,,y — I €
W(z,). Hence (t,.y — z,) ¢ —Int C(z,). whence we have z, € Fy(y).
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Further, note that assumption (2) implies that, for each r € Ly\A
there exists a y € Ly such that = ¢ Fy(y). Hence Ly N({Fy(y): y €
L} C K. Therefore, the condition (2) of Theorem 1 holds. Thus, by
Theorem 1, there exists an # € K N({F(y) : y € D}. Then for any
y € D, there exists a t, € T(y) such that {(t,,y - z) ¢ —Int C(x).
By the convexity of D, for any o € (0,1), there exists a t, € T(ay +
(1 —a)z) such that (t,,a(y —z)) ¢ ~Int C(z). Dividing by a, we have
(tayy — ) ¢ —Int C(z). By the V-hemicontinuity of T, there exists
a ty € T(x) such that (tg,y — ) ¢ —Int C(z). Hence z € N{Fi(y)
y € D}. Thus ({Fi(y) : y € D} 5 0. Consequently, there exists an
zy € D such that for each « € D, there exists an sq € T(x() such that
(o, — xz¢) & —Int C(xy).

COROLLARY 2.1. In Theorem 3, if D is closed, then the coercivity
(2) can be replaced by the following without affecting its conclusion :

(2)" there exist a nonempty compact subset K of D and a y € K
such that (t,y — «) € —Int C(x) for x € D\K and t € T(y).

Proof. 1t sufficies to show that (2)" implies (2). In fact, for any
nonempty finite subset N of D, we let Ly = co (N U(K N D)) C D.
By (2)', for any z € Ly\K C D\K. there exists a v € (KN D) C Ly
such that (t,y — z) € —Int C(z) for all t € T(y). Hence (2) holds.

For D = K. Theorem 3 reduces to the following corollary ;

COROLLARY 2.2. Let X and Y he Banach spaces, D a nonempty
compact convex subset of X, C : ' — 2Y a multitunction such that
for each * € D, C(z) is a convex cone in Y with Int C(x) # § and
Clz)#£Y, and P = (Nzep C(2) a nonempty convex cone in Y with
Int P £ 0. Let W : D — 2Y be a closed multifinction defined by
Wi(r) = Y\(—Int C(x)) for any « € X, and T X — 2030 4
multlfunctmn. IfT : X — 2MXY) is P _monotone, compact-valued
and V-hemicontinuous, then (GVVI) is solvable.

Now we prove the following existence theorem for (GVVI) in reflex-
ive Banach spaces.

THEOREM 4. Let X be a reflexive Banach space, Y a Banach space,
and D a nonempty closed, bounded and convex subset of X. Let C :
D — 2Y be a multifunction such that for each « € D, C(z) is a convex
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cone in Y with Int C(x) # 0 and C(z) # Y, and P := Neep Clir)
a nonempty convex cone in'Y with Int P#£D Let W: D —2Y be
a weakly closed multifunction defined by W(r = Y\( ~Int C(x)) for
any r € D, and T : X — 2005Y0 g naltifunction.

If T 1s P -monotone, compa-t-valued and V -hemicontinmious, then

(GVVI) is solvable.

Proof. Define a multifunction F, : D — 29 1y
Fily)={r e D:{(s,y—x) ¢ —int C(z) for some s € T(x)} for y € D.

Then by the same argument as the proof in Theorem 2. Fy is a KKM
multifunction on D. Define a multifunction F, D — 2]) by

Fylyy={z e D:{t.y—x; ¢ —Int C(z) fcr some t € T(y)}

for y € D. Then by the same argument as th* proof in Theorem 3.
Fily) C Fy(y)forany y € D, and hence F, is also a KKM multifunction
on D. Now we claim that F, is weakly closed-valued. Indeed. for any
fixedy € D, let {r,}32, be asequence in Fy(y) which converges weakly
to x, € D. Since x, € Fy(y) for each n, there exists a ¢, € T(y) such
that

(2.3) (tw.y —a,) € W(x,) foralln.

Since T(y) is compact, we may assume that {ta}72, converges to
some t, € T(y). Note that for any ¢ € Y*, wher> Y* is the topological
dual of Y,

lg((ty — a0) = (tey ~ 2))]
g {tn = tey —an) Flg((Farmy — o))
<llglllitn = tulilly — . + (g ot ) ze — 24)]

<lglllitn = t Iyl + lzall) + H(gots (24— xa)l.

Since x,, € D for all n and D i= bounded. {r,}3%, is bounded. Since
ltn — t.] — 0.

lglllltn = tall- lyll + flzall) — 0
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On the other hand, since ¢ o t, is continuous and linear from X to R,
we have

I(q ° t*)(l‘* o -Tn)‘ — 0.

Consequently,

{(tn,y — 2,)}3%, converges weakly to (ty,y —z, . By (2.3) and the
weak closedness of W we have (t,,y--z,) € W(z,). Hence (t,,y—x,) ¢
—Int C(z,), whence we have z, € Fy(y).

Since D is a closed, bounded and convex subset of a reflexive Banach
space X, D is weakly compact. Thus, by Theorem 1, there exists an
r € ({Fzly) : y € D}. 1t follows from the V-hemicontinuity of T
that there exists a to € T(x) such that (tg,y — ) ¢ —Int C(z). Hence
2 € ({Fi(y) : y € D}. Thus ({Fi(y) : y € D} 5t 0. Consequently.
there exists an xq € D such that for each & € 12, there exists an
sp € T(zg) such that (sg.x — xy) & ~Int C(xy).

REMARK. When C(z) is a constant cone in Theorem 4, we can show
that (GVVI)' is solvable under the P-pseudomonotonicity of T [14].

When T is a single-valued mapping, we can obtain the following
corollary from Theorem 4.

COROLLARY 2.3 [4]. Let X be a reflexive Banach space, Y a Banach
space, D a nonempty bounded, closed and convex subset of X. (' :
D — 2Y a multifunction such that for each z € D. C(z) 1s a convex
cone in Y with Int C(z) # 0 and ('(z) #Y, and P := NiepCla) a
nonempty convex cone in Y with Ini P # (). Let W be a weakly closed
multifunction defined by W(z) = Y\(—Int C(z)) for any r € X, and
T:X — L(X.Y) an operator. If T : X — L(X,Y) is P-monotone,

and V-hemicontinuous, then (VVI) is solvable.

REMARK. Note that for ¥ = R and C = Ry, corollaries extend or
reduce to the well-known scalar valned variational inequalities due to
Hartman and Stampacchia [10], Browder [2]. Stampacchia [21], Mosco
[15] and many others.
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3. Fuzzy Extensions

Let X and Y be two normed spaces and F({L(X,Y)) the collection
of all fuzzy sets on L(X,Y). A mapping F from: X into F(L({X.Y)) is
called a fuzzy mapping.

If F: X — FLIX,Y)) 1s a fuzzy mapping, th(n Firi,o ¢ X
(denoted by Fy), is a fuzzy set :n F(L(X,Y)) and F,(s),s € L{X.Y),
is the degrec of membership of s in F,. Let A ¢ }_1 (X.Y)) and
3 € [0,1]. Then the set (A)y = {s € L{(X,Y): A(s) > 4} is said to be
a J-cut of A.

DEFINITION 3.1 [25]. A furzy set A on L(X,Y) is compact if for
each 3 € (0,1], (A)s is compact in L(X,Y).

DEFINITION 3.2. Let X and Y be two normed spaces, F @ X -
F(L{X.Y)) a fuzzy mapping, and P a nonen pty convex cone in Y
with Int P # 0.

1. Fis said to be P-monotone if forany =,y = X and s.t ¢ L(X.Y)
with F(s) > 0and Fy(t) > 0,(s —t.x —y) € F.

2. F is said to be P pseudononotone if for any z,y € X and 3 €
(0,1], {s,y —x) ¢ —Int Pfor some s € L(X,Y) with F,(s) > J implies
that (t,y —2) ¢ —Int P for some t € L{X,Y) hlth Fy(t) = 3.

3. F is sald to be hemicontinuous if for any z,y € X and t, €
L(X,Y) with Fpyo,(ta) > 7 where a, 7 € (1),1], there exists tq €
L(X,Y) with F,(ty) > 3 such that for any = € X, {t,,z) — (ty.2) as
a— 0F.

4. F i1s said to be closed et xg.€ X if for each open subset V
of L(X,Y) such that if F, (s) > 3 where 8 € (0,1]. then s € 1"
there exists a neighborhood Nixg) of zy such that if # € N(ry) and
Fo(s) 2 A, then s € V. F is called closed if it is closed at each point
of X.

Now we can easily obtain furzy analogues of Theorem 2 and Theo-
rem 3 respectively.

THEOREM 5. Let X and Y ke Banach spaces, D a nonempty closed
convex subset of X. Let C : 1) — 2Y be a multifunction such that
for each ¢ € D, C(z) is a convex cone in Y with Int C(z) # 0 and
C(z) # Y. Let W : D — 2Y be a closed multifunction defined by
Wix) = Y\(~Int C(z)) foran -z € D, and F : X — F(L(X.Y)) a



620 Byung Soo Lee, Gue Myung Lee and Do Sang Kim

fuzzy mapping such that there exists a real number 3 € (0, 1] such that
for each = € X, (F7)s is a nonempty subset of L(X,Y). Suppose that
F' is closed, and for each ¢ € X, F, is a compact fuzzy set on L(X,Y).

If UxeD(F,)ﬁ is contained in a compact subset of L(X,Y), then
there exists an roy € D such that for each r € ). there exists an

so € L(X,Y) with F, (so) > 3 such that (sq,a — x) ¢ —Int Clry).

Proof. Define a multifunction F : X — 2L(X.Y) by for any r €
X.F (2) = (F;)g. Let 21 € X and V be any open set such that F (xy) C
V.then s € V for any s € L(X,Y) with F. (s) > 3. By the closedness
of F, there exists a neighborhood N(zy) of z; such that if + € N{xr))
and Fy(s) > 3. then s € V, that is, there exists a ne.ghborhood N{r)
of r such that + € N(z|) implies F(2) € V. Hence F is upper
semi-confinuous. Since for each r € X, F, is a compact fuzzy set on
L(X,Y), then I‘:’( r) is compact. By Theorem 2, we know that there
exists an ro € D such that for each r € D, there exsts an sy € F rgy)
such that (sg, o —urg) ¢ —Int C(xp). Hence there exists an 2¢ € D such
that for each « € D, there exists an s, € L(X,Y) with F, (sp) > 3
such that (s, r — xg) ¢ —Int C(xy).

THEOREM 6. Let X and Y be Banach spaces, D a nonempty convex
subset of X, and R a nonempty compact subset of X. Let C : D — 2V
be a multifunction such that for each r € D, C(x) iv a convex cone in
Y withInt C(r)# 0 and C(2) # Y, and P := N,ep Clr) a nonempty
convex cone in Y with Int P # §. Let W : D -» 2¥ be a closed
multifunction defined by W(x) = Y \(~Int C(z)) for any » € X, and
F: X — F(LX.Y)) a fuzzy mapping such that there exists a real
munber 3 € (0.1] such that for each - € X, (F.)g is & nonempty subset
of L{X.,Y). Suppose that

(1) F is P -monotone, hemicontinuous, and for eech v € X, F, is a
compact fuzzy set on L{X.Y).

(2) for each nonempty finite subser N of D, there cxists a nonempty
compact convex subset Ly of D such that N C Ly and for each
z € Ly\ K there exists ay € Ly such that {t,y — r- € —Int C(r) for
allt € L(X.Y) with Fy(t) > 3.

Then there exists an xy € D such that for each r € D, there exists

an sg € L(X.Y) with F; (s¢) > g such that (sg, x —xo) & —Int C'{xy).

Proof. Define a multifunction £ : X — 2H(XY) sy F(z) = (Fp)s
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for any = € X. It follows from the P -monotor ic ity of F that for any
.y € X, forany s € F(z)and 1 ¢ F(y), (s—t,a —y) € P. This implies
that F is P -monotone. The 1 -hemic ontinuit: of F' is easily proved
and the compactness of F(r) for each = € X it proved similarly as in
the proof of Theorem 5. Condition (2) implies rhat assumption (2) in
Theorem 3 is satisfied for the multifunction F By Theorem 3 therc
exists an ro € D such that for cach x € D, there exists an sg € F( Zq)
such that (sy,.r—a¢) € ~Int C{ry). Hence there exists an rg € D such
that for each 2 € D. there exists an s, € L( (X.Y) with Fo (sq) > 3
such that (sg, 0 — Ty & —Ini C ry).

COROLLARY 3.1. In Theoresu 6, if D is closed, then the coercivity
(2) can be replaced by the following without affecting its conclusion -
(2)"" there exist a nonempty compact subset B of X and a ye NnD
Sucb that (t.y —r) € —Int C{a) for all t € L(X.Y) with Fy,(t) > 3
and r € D\IY,

Proof. 1t is proved similarly as in the proof of Corollary 2.1.

For D = K. Theorem 6 reduces to the follow ng corollary :

CorOLLARY 3.2, Let X anc Y be Banach :paces. D a nonempty
compact convex subset of X, (' : D — 2Y bhe a mu}ﬂfunrtion such
that for f*a(‘h r €D, C( ) Is a convex cone in Y with Int C{xr) # 0
and C'(r) # Y, and P := ﬂj,eHC(.z') a nonernpty convex cone in Y
with ]m‘ P ?L B. Let W D — 2Y be a closed multifunction defined
by Wir) = Y\(~Int C(2)) for any r € Doand F @ X — FIL(X. Y )
a fuzzy mapping such that ther: exists a real number 4 € (0. 1] such
that for each € X, (F,)3 is a nonempty subset of L(X.Y ). If F i

P -monotone, hemicontinuons, and for each v = X, F, is a compact
fuzzy set on L(X.Y), then there exists an zg € D such that for cach
r € D fhf’lt’ exists an sq € L{X.Y) with F ts(,) > 7 such that
/

g = rg) ¢ —Int C'lrg).
Now we obtain the following fuzzy extension >f Theorem 4.

THEOREM 7. Let X be a reflexive Banach space, Y a Banach space,
and D a nonempty closed, bounded and convex subset of X. Let C -
D — 2 be a multifunction such that for each v & D, C(r) is a convex

cone m Y with Int C{e) # ) and Cl2) # Y., wd P = (Nep Cla)
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a nonempty convex cone in Y with Int P # (. Let W : D — 2V be
a weakly closed multifunction defined by W(z) = Y\(—Int C(x)) for
any ¢ € X, and F : X — F(L(X.,Y)) a fuzzy mapping such that
there exists a real munber 3 € (0, 1] such that for each z € X, (F, )a is
a nonempty subset of L(X,Y). If F is P -monotone, hemicontinuous,
and for each x € X, F, is a compact fuzzy set on L(X,Y"), then there
exists an xo € D such that for each # € D, there exists an s, € L{X,Y")
with F; (sg) > 3 such that (sg,z — x¢) & —Int C(ay).

Proof. Define a multifunction F : X — 2L(XY by F(z) = (Fr)s
for any z € X. It follows from the P -monotonicity of F that for any
z,y € X, for any s € F(m) and t € F(y), (s —t,x —y) € P. This
implies that F is P -monotone. The V-hemicontir uity of F is casily
proved and the compactness of F(‘JZ,J for each = € X is proved similarly
as in the proof of Theorem 5. Consequently by Theorem 4 there exists
an x9 € D such that for each z € D, there exists an s; € I}(}r(.) such
that (sg, 2 —xg) ¢ —Int C(xo). Hence there exists an ¢ € D such that
for each z € D, there exists an sg € L(X,Y) with F, (s¢) > 3 such
that (sg,x —xy) ¢ —Int C(zy).

COROLLARY 3.3. Let X be a reflexive Banach space and Y a Ba-
nach space. Let D be a nonempty bounded, closed and convex sub-
set of X, and C : D — 2Y be a multifunction such that for each
r € D, C(r) is a convex cone in Y with Int C(x) 5 § and C(z) £ Y,

and P := (\,.pC(z) a nonempty convex cone ir Y with Int P
0. Let W : D — 2Y be a weakly closed multifunction defined by
W(z) = Y\(=Int C(z)) for any ¢ € D, and F : X — F(L(X,Y))

a fuzzy mapping such that there exists a real number 3 € (0,1] such
that for each ¢ € X, (F;)g is a nonempty subser of L(X.Y). If F
is P -monotone, hemicontinuous, and for each r = X.F, is a comn-
pact fuzzy set on L{X,Y"), then there exists an zo € D such that for
each * € D there exists an sy € L(X,Y) with F, (sy) > 3 such that
(so,2 —x¢) & —Int Clzy).

REMARK. When C(x) is a constant cone in Corollary 3.3, we can

show that the result of Corollary 3.3 holds under P-pseudomonotonicity
of F [14
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