A RELATIVE NIELSEN COINCIDENCE NUMBER FOR THE COMPLEMENT, I

SEOUNG HO LEE

1. Introduction

Nielsen coincidence theory is concerned with the determination of a lower bound of the minimal number MC[f,g] of coincidence points for all maps in the homotopy class of a given map $(f,g): X \to Y$. The Nielsen number N(f,g) is always a lower bound for MC[f,g]. The relative Nielsen number $N_R(f,g)$ (similar to [9]) is introduced in [3], which is a lower bound for the number of coincidence points in the relative homotopy class of (f,g) and $N_R(f,g) \geq N(f,g)$.

It is the purpose of this paper to determine the minimal number MC[f,g;X-A] of coincidence points on the complement X-A. The Nielsen number on the complementary space, N(f,g;X-A) is defined, which is a lower bound for MC[f,g;X-A], and has the basic properties. The method used here follows that of Zhao[10].

2. Weakly common coincidence classes

Let $f, g: (X, A) \to (Y, B)$ be a pair of maps between pairs of compact polyhedra with X, Y connected. We denote the set of coincidence points of the pair (f, g) by

$$\Gamma(f,g) = \{ x \in X | f(x) = g(x) \}.$$

We shall write $(\bar{f}, \bar{g}): A \to B$ for the restriction of $(f, g): (X, A) \to (Y, B)$ to A and write $(f, g): X \to Y$ if the condition that $(f, g)(A) \subset B$ is immaterial. The homotopies of (f, g) are maps of the form (F, G):

Received December 5, 1994. Revised May 23, 1996

1991 AMS Subject Classification: 55M20.

Key words: Nielsen number, weakly common coincidence class.

 $(f_0, g_0) \simeq (f_1, g_1) : (X \times I, A \times I) \to (Y, B)$, i.e. F is a homotopy from f_0 to f_1 and G is a homotopy from g_0 to g_1 . For this map (f, g), let $\hat{A} = \bigcup_{1}^{n} A_k$ be the disjoint union of all components of A such that for each k, A_k is mapped by f and g into some component B_k of B. Then we shall write $(f_k, g_k) : A_k \to B_k$ for the restriction of (f, g) to A_k . Then we have a morphism of maps

$$A_k \xrightarrow{(f_k,g_k)} B_k$$

$$i_k \downarrow \qquad \qquad \downarrow j_k$$

$$X \xrightarrow{(f,g)} Y$$

where i_k, j_k are inclusions. X, Y and the components of \hat{A}, \hat{B} have universal coverings

$$p: \widetilde{X} \to X,$$
 $q: \widetilde{Y} \to Y$ $p_k: \widetilde{A}_k \to A_k,$ $q_k: \widetilde{B}_k \to B_k,$ $k = 1, \dots, n$

For each k, we pick a lifting $(\tilde{i}_k, \tilde{j}_k)$ of (i_k, j_k) such that the diagrams

$$\begin{array}{cccc} \widetilde{A}_k & \xrightarrow{\widetilde{i}_k} & \widetilde{X} & \widetilde{B}_k & \xrightarrow{\widetilde{j}_k} & \widetilde{Y} \\ \downarrow^{p_k} & & \downarrow^{p} & \downarrow^{q_k} & & \downarrow^{q} \\ A_k & \xrightarrow{i_k} & X, & B_k & \xrightarrow{j_k} & Y \end{array}$$

commute. This $(\tilde{i}_k, \tilde{j}_k)$ determines a correspondence $(\tilde{i}_k, \tilde{j}_k)_{\text{lift}}$ from liftings of (f_k, g_k) to liftings of (f, g). $(\tilde{i}_k, \tilde{j}_k)_{\text{lift}}(\tilde{f}_k, \tilde{g}_k) = (f, \tilde{g})$ if $\tilde{j}_k o$ $(\tilde{f}_k, \tilde{g}_k) = (\tilde{f}, \tilde{g}) \circ \tilde{i}_k$. And $(\tilde{i}_k, \tilde{j}_k)_{\text{lift}}$ induces a correspondence from lifting classes of (f_k, g_k) to lifting classes of (f, g) which is independent of the choice of the liftings $(\tilde{i}_k, \tilde{j}_k)$ of (i_k, j_k) and is determined by (i_k, j_k) . It is denoted

$$(i_k, j_k)_C : C(f_k, g_k) \longrightarrow C(f, g)$$

where C(f, g) is the set of all lifting classes of (f, g)[3].

PROPOSITION 2.1. Every coincidence class $p_k\Gamma(\tilde{f}_k,\tilde{g}_k)$ of (f_k,g_k) : $A_k \to B_k$ belongs to some coincidence class $p\Gamma(\tilde{f},\tilde{g})$ of $(f,g): X \to Y$. When $p_k\Gamma(\tilde{f}_k,\tilde{g}_k)$ is non-empty, $p_k\Gamma(\tilde{f}_k,\tilde{g}_k)$ belongs to $p\Gamma(\tilde{f},\tilde{g})$ if and only if $(i_k,j_k)_C[\tilde{f}_k,\tilde{g}_k]=[f,g]$.

DEFINITION 2.2. A coincidence class $p\Gamma(\tilde{f}, \tilde{g})$ of $(f,g): X \to Y$ is a weakly common coincidence class of (f,g) and (\bar{f},\bar{g}) if it contains a coincidence class of $(f_k,g_k): A_k \to B_k$ for some k. It is an essential weakly common coincidence class of (f,g) and (\bar{f},\bar{g}) if it is an essential coincidence class of (f,g) as well as a weakly common coincidence class of (f,g) and (\bar{f},\bar{g}) . We write $E(f,g;\bar{f},\bar{g})$ for the number of essential weakly common coincidence class of (f,g) and (\bar{f},\bar{g}) .

THEOREM 2.3. A coincidence x_0 of (f,g) belongs to a weakly common coincidence class of (f,g) and (\tilde{f},\tilde{g}) if and only if there is a path α from x_0 to A such that $f \circ \alpha \simeq g \circ \alpha : I, 0, 1 \longrightarrow Y, f(x_0), B$.

Proof. "Only if". Let x_0 belong to a weakly common coincidence class $p\Gamma(\tilde{f},\tilde{g})$ of (f,g) and (\tilde{f},g) . Suppose $\tilde{x}_0 \in p^{-1}(x_0)$ and $\tilde{f}(\tilde{x}_0) = \tilde{g}(\tilde{x}_0)$. By assumption there exists a lifting $(\tilde{f}_k,\tilde{g}_k)$ of $(f_k,g_k):A_k \to B_k$ so that $(\tilde{i}_k,\tilde{j}_k)_{\text{lift}}(\tilde{f}_k,\tilde{g}_k)=(\tilde{f},\tilde{g})$. Pick a point $\tilde{a}\in \tilde{i}_k(\tilde{A}_k)$, then $\tilde{f}(\tilde{a}),\tilde{g}(\tilde{a})\in \tilde{j}_k(\tilde{B}_k)$. Take a path $\tilde{\alpha}$ in \tilde{X} from \tilde{x}_0 to \tilde{a} . Since \tilde{Y} is 1-connected, there is a homotopy of the form

$$\tilde{f}\circ\tilde{\alpha}\simeq\tilde{g}\circ\tilde{\alpha}:I,0,1\longrightarrow \widetilde{Y},\tilde{f}(\tilde{x}_0),\tilde{j}_{\pmb{k}}(\widetilde{\pmb{B}}_{\pmb{k}}).$$

Projecting down to Y, we have

$$f \circ \alpha \simeq g \circ \alpha : I, 0, 1 \longrightarrow Y, f(x_0), B$$

where $\alpha = p \circ \tilde{\alpha}$.

"If". Suppose $x_0 \in p\Gamma(\tilde{f}, \tilde{g}), \tilde{x}_0 \in p^{-1}(x_0)$ and $\tilde{f}(\tilde{x}_0) = \tilde{g}(\tilde{x}_0)$. Lift a path α from \tilde{x}_0 to get a path $\tilde{\alpha}$ in \tilde{X} . Let $a = \alpha(1) \in A_k, b = f_k(a) \in B_k$, and pick $\tilde{a} \in p_k^{-1}(a), \tilde{b} \in q_k^{-1}(b)$, then there are liftings \tilde{i}_k, \tilde{j}_k of i_k, j_k respectively such that

$$(\widetilde{A}_{k}, \widetilde{a}) \xrightarrow{\widetilde{i}_{k}} (\widetilde{X}, \widetilde{\alpha}(1)) \quad (\widetilde{B}_{k}, \widetilde{b}) \xrightarrow{\widetilde{j}_{k}} (\widetilde{Y}, \widetilde{f \circ \alpha}(1))$$

$$\downarrow^{p} \qquad \qquad \downarrow^{q} \qquad \qquad \downarrow^{q}$$

$$(A_{k}, a) \xrightarrow{i_{k}} (X, a). \quad (B_{k}, b) \xrightarrow{j_{k}} (Y, b)$$

commutes [6,p.42, Proposition 1.2(i)]. Let $H:I\times I\to Y$ be the homotopy from $f\circ\alpha$ to $g\circ\alpha$, i.e. $H(t,0)=f\circ\alpha, H(t,1)=g\circ\alpha$. Then $\widehat{f}\circ\alpha$ determines a lifting $\widetilde{H}:I\times I\to \widetilde{Y}$ of H. Denote β the path $\{H(1,s)\}_{0\leq s\leq 1}$ in B_k . Lift the path $\beta:I\to B_k$ from \widetilde{b} to get a path $\widetilde{\beta}$ in \widetilde{B}_k , then $\widetilde{j}_k\circ\widetilde{\beta}:I\to \widehat{Y}$ is a lifting from $\widehat{f}\circ\alpha(1)$ in \widetilde{Y} of the path $j_k\circ\beta$. By the unique lifting property of covering spaces, we have $\widetilde{H}(1,s)=\widetilde{j}_k\circ\widetilde{\beta}(s)$. Then $\widetilde{j}_k\circ\widetilde{\beta}(0)=\widetilde{H}(1,0)=\widehat{f}\circ\alpha(1)$ and $\widetilde{j}_k\circ\widetilde{\beta}(1)=\widetilde{H}(1,1)=\widehat{g}\circ\alpha(1)$, there exists a unique lifting $(\widetilde{f}_k,\widetilde{g}_k)$ of $(f_k,g_k):A_k\to B_k$ such that $\widetilde{f}_k(\widetilde{a})=\widetilde{\beta}(0),\widetilde{g}_k(\widetilde{a})=\widetilde{\beta}(1)$. Thus $\widetilde{j}_k\circ\widetilde{f}_k(\widetilde{a})=\widetilde{f}\circ\widetilde{i}_k(\widetilde{a}),\widetilde{j}_k\circ\widetilde{g}_k(\widetilde{a})=\widetilde{g}\circ\widetilde{i}_k(\widetilde{a})$. By the unique lifting property of covering spaces, we have $\widetilde{j}_k\circ(\widetilde{f}_k,\widetilde{g}_k)=(\widetilde{f},\widetilde{g})\circ\widetilde{i}_k$, i.e. $(\widetilde{f},\widetilde{g})=(\widetilde{i}_k,\widetilde{j}_k)_{\text{lift}}(\widetilde{f}_k,\widetilde{g}_k)$. This implies $[\widetilde{f},\widetilde{g}]=(i_k,j_k)_C[\widetilde{f}_k,\widetilde{g}_k]$, i.e. $p\Gamma(\widetilde{f},\widetilde{g})$ is a weakly common coincidence class of (f,g) and (f,g).

COROLLARY 2.4. A coincidence class of $(f,g): X \to Y$ containing a coincidence point on A is a weakly common coincidence class of (f,g) and (\bar{f},g) .

In [3], the number N(f, g; f, g) of essential common coincidence classes of (f, g) and (\tilde{f}, \tilde{g}) is introduced, and we have

PROPOSITION 2.5.
$$N(f, g; f, \bar{g}) \leq E(f, g; f, \bar{g}) \leq N(f, g)$$
.

Proof. By Corollary 2.4 and [3,Definition 4.1], we know that a common coincidence class is always a weakly common coincidence class. This implies the left inequality. The right one is obvious.

In general, $E(f,g;f,\bar{g})$ is different from $N(f,g;\bar{f},\bar{g})$. A simple example is the identity map $(f,g):(D^2,S^1)\to (D^2,S^1)$ of the pair of a 2-disc and its boundary, it is easy to see N(f,g)=1 and N(f,g)=0, then $N(f,g;\bar{f},\bar{g})=0$, but $E(f,g;f,\bar{g})=1$.

Theorem 2.6 (Homotopy invariance). If $(f_0, g_0) \simeq (f_1, g_1)$: $(X, A) \rightarrow (Y, B)$ are homotopic, then

$$E(f_0, g_0; f_0, g_0) = E(f_1, g_1; f_1, \bar{g}_1).$$

Proof. Let $(f_t, g_t): (X, A) \to (Y, B)$ be a homotopy between (f_0, g_0) and (f_1, g_1) . There exists an index-preserving bijection $(\{f_t\}, \{g_t\})$:

 $C(f_0, g_0) \to C(f_1, g_1)$. It suffices to show $(\{f_t\}, \{g_t\})$ sends weakly common coincidence classes to weakly common coincidence classes. Let $p\Gamma(\tilde{f}_0, \tilde{g}_0)$ be a weakly common coincidence class of (f_0, g_0) and (\tilde{f}_0, g_0) , then there exists a component (A_k, B_k) of (A, B) and a lifting class $[\tilde{f}_{0,k}, \tilde{g}_{0,k}]$ of $(f_{0,k}, g_{0,k}) : A_k \to B_k$ such that

$$(i_k, j_k)_C[j_{0,k}, \tilde{g}_{0,k}] = [\tilde{f}_0, g_0].$$

Let $(\{f_{t,k}\}, \{g_{t,k}\})$, which is the restriction of (f_t, g_t) to A_k , send $[\tilde{f}_{0,k}, \tilde{g}_{0,k}]$ to $[\tilde{f}_{1,k}, \tilde{g}_{1,k}]$, then we have a commutative diagram [3]

$$\begin{split} & [\tilde{f}_{0,k}, \tilde{g}_{0,k}] \xrightarrow{(\{f_{t,k}\}, \{g_{t,k}\})} & [\tilde{f}_{1,k}, \tilde{g}_{1,k}] \\ & \downarrow (i_k, j_k)_C \downarrow & \downarrow (i_k, j_k)_C \\ & [\tilde{f}_0, \tilde{g}_0] & \xrightarrow{(\{f_t\}, \{g_t\})} & [\tilde{f}_1, \tilde{g}_1] \end{split}$$

Thus $(\{f_t\}, \{g_t\})$ sends $[\tilde{f}_0, \tilde{g}_0]$ to $[\tilde{f}_1, \tilde{g}_1] = (i_\kappa, j_k)_C [\tilde{f}_{1,k}, \tilde{g}_{1,k}]$, we get the conclusion.

DEFINITION 2.7. The number of essential coincidence classes of $(f,g): X \to Y$ which are not weakly common coincidence classes is called the Nielsen number of (f,g) on the complementary space X-A, denoted N(f,g;X-A).

By definition, N(f, g; X - A) is a non-negative integer, and

$$N(f, q; X - A) + E(f, q; \hat{f}, \hat{g}) = N(f, g).$$

Hence, we also have the homotopy invariance of N(f, g; X - A).

THEOREM 2.8(LOWER BOUND). Any map $(f,g):(X,A)\to (Y,B)$ has at least N(f,g;X-A) coincidence points on X-A.

Proof. Recall that each essential coincidence class at least one coincidence point. By Corollary 2.4, we get the conclusion.

3. Computation of N(f, g; X - A)

THEOREM 3.1. Let $(f,g):(X,A)\to (Y,B)$ be a map of pairs of compact polyhedra. If there is a component A_k of \hat{A} such that $j_{k,\pi}:\pi_1(B_k)\to\pi_1(Y)$ is onto, then N(f,g;X-A)=0.

Proof. By [3;Proposition 2.4], $(i_k, j_k)_C$ is surjective. Then every coincidence class of $(f, g): X \to Y$ is a weakly common coincidence class of (f, g) and (f, g).

The computation of N(f, g; X - A) is similar to the corresponding results for the relative Nielsen number $N_R(f, g)$ [3].

Pick a base point $a_k \in A_k \subset X$ and $b_k \in B_k \subset Y$ such that $f(a_k) = g(a_k) = b_k$. Then recall that points of universal covering spaces are identified with path classes in base spaces starting from base points. Under this identification, let $\tilde{a}_k \in p_k^{-1}(a_k), \tilde{x}_0 \in p^{-1}(a_k), \tilde{b}_k \in q_k^{-1}(b_k)$ and $\tilde{y}_0 \in q^{-1}(b_k)$ be the constant paths. Then there are unique lifting pairs $(\tilde{f}_k, \tilde{g}_k)$ of (f_k, g_k) and (\tilde{f}, \tilde{g}) of (f, g) such that $\tilde{f}_k(\tilde{a}_k) = \tilde{g}_k(a_k) = \tilde{b}_k$ and $\tilde{f}(\tilde{x}_0) = \tilde{g}(\tilde{x}_0) = \tilde{y}_0$. By [2; Lemma 1.13], $\tilde{f}_{k,\pi} = f_{k,\pi}, \tilde{g}_{k,\pi} = g_{\pi}, \tilde{f}_{\pi} = f_{\pi}$ and $\tilde{g}_{\pi} = g_{\pi}$.

Throughtout this section, the lifting pair $(\tilde{f}_k, \tilde{g}_k)$ of (f_k, g_k) and the lifting pair (\tilde{f}, \tilde{g}) of (f, g) are chosen as references.

LEMMA 3.2. There exist one-to-one correspondences

$$\phi_k : C(f_k, g_k) \longrightarrow \pi'_1(B_k, b_k)$$
$$\phi : C(f, g) \longrightarrow \pi'_1(Y, b_k)$$

defined by

$$\phi_{k}[\alpha_{k} \circ \tilde{f}_{k}, \beta_{k} \circ \tilde{g}_{k}] = [\alpha_{k}^{-1} \beta_{k}]$$
$$\phi[\alpha \circ \tilde{f}, \beta \circ \hat{g}] = [\alpha^{-1} \beta]$$

where $\alpha_k, \beta_k \in \pi_1(B_k, b_k)$; $\alpha, \beta \in \pi_1(Y, b_k)$ and $\pi'_1(Y, b_k)$ is the set of f_{π}, g_{π} -conjugate classes in $\pi_1(Y, b_k)$.

Proof. See [3; Lemma 5.2].

If α_k and β_k are $f_{k,\pi}, g_{k,\pi}$ conjugate classes in $\pi_1(B_k, b_k)$, then $j_{k,\pi}(\alpha_k)$ and $j_{k,\pi}(\beta_k)$ are f_{π}, g_{π} -conjugate classes in $\pi_1(Y, b_k)$. Then the homomorphism $j_{k,\pi}: \pi_1(B_k, b_k) \to \pi_1(Y, b_k)$ induces a transformation $\nu_k: \pi'_1(B_k, b_k) \to \pi'_1(Y, b_k)$.

THEOREM 3.3. Let $(f,g):(X,A)\to (Y,B)$. A coincidence class of (f,g) is a weakly common coincidence class of (f,g) and (\bar{f},\bar{g}) if and only if it corresponds to an element in the image of ν_k .

Proof. See [3; proposition 5.3].

Consider the commutative diagram

where θ_k , θ are abelianization and η_k , η are the natural projection. By some modification of [3: Lemma 5.4], we have

LEMMA 3.4. The composition $\eta_k \circ \theta_k$ and $\eta \circ \theta$ induce correspondences

$$\tau_k : \pi'_1(B_k, b_k) \longrightarrow \operatorname{coker}(g_{k, \star} - f_{k, \star})$$
$$\tau : \pi'_1(Y, b_k) \longrightarrow \operatorname{coker}(g_{\star} - f_{\star})$$

and the diagram

$$\pi'_{1}(B_{k}, b_{k}) \xrightarrow{\tau_{k}} coker(g_{k,*} - f_{k,*})$$

$$\downarrow^{\nu_{k}} \qquad \qquad \downarrow^{\nu_{k,*}}$$

$$\pi'_{1}(Y, b_{k}) \xrightarrow{\tau} coker(g_{*} - f_{*})$$

commutes

THEOREM 3.5. Let $(f,g):(X,A)\to (Y,B)$. Suppose Y is a Jiang space. If $\omega(f,g,X)=0$ then N(f,g;X-A)=0; if $\omega(f,g,X)\neq 0$ then

$$N(f, g; X - A) = \#\{coker(g_* - f_*)\} - \#\{\bigcup_{k=1}^n j_{k,*}coker(g_{k,*} - f_{k,*})\}.$$

Proof. By [4;Corollary 4.16], the correspondence τ is bijective when Y is a Jiang space. Apply Theorem 3.3 and Lemma 3.4 to get the conclusion.

References

- R. Brooks and R.F. Brown, A lower bound for the Δ-Nielsen number, Trans. Amer. Math. Soc. 143 (1969), 555-564.
- 2. R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Illinois, 1971.
- 3. C. G. Jang, A relative Nielsen number in coincidence theory, J. Korean Math. Soc. 32(2) (1995), 171-181.
- C. G. Jang, Estimation of the Δ-Nielsen Numbers, Doctoral Dissertation, Chonbuk National Univ., 1992.
- 5. J. Jezierski, The Nielsen number product formula for coincidences, Fund. Math. 134 (1989), 183-212.
- 6. Boju Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, 1982.
- Boju Jiang, On the least number of fixed points, Amer. J. Math. 102, (1980), 749-763.
- 8. T. H. Kiang, The Theory of Fixed Point Classes, Scientific Press, Peking(in Chinese), 1979.
- 9. H. Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), 459-473.
- X. Z. Zhao, A relative Nielsen number for the complement Topological Fixed Point Theory and Applications, Proceedings, Tianjin 1988 (B. Jiang, ed.), Lecture Notes in Math. Springer, Berlin, Heidelberg, New York 1411 (1989), 189-199.

Department of Mathematics Mokwon University Taejon 301-729, Korea