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AN INVERSE HOMOGENEOUS INTERPOLATION
PROBLEM FOR V-ORTHOGONAL
RATIONAL MATRIX FUNCTIONS

JEONGOOK KIM

1. Introduction

For a scalar rational function, the spectral data consisting of zeros
and poles with their respective multiplicities uniquely determines the
function up to a nonzero multiplicative factor. But due to the richness
of the spectral structure of a rational matrix function, reconstruction of
a rational matrix function from a given spectral data is not that simple.
Our purpose here is to use the state space approach as elucidated
in [BGR] to interpolation theory to recover a V-orthogonal rational
matrix function from a given spectral data. An important basic idea
to this approach is to represent a proper (i.e., analytic at infinity)
rational matrix function W(z) by

W(z)=D+C(zI - A)" B.

Then zero and pole data for W(z) is encoded in constant matrices A,
B, C, D. This approach spurred by diverse applications in many en-
gineering context has undergone rapid development in the past couple
of decades. Here the spectral data is given by a certain quintuple of
matrices 7 = (Cr, Ap; A¢, By T') called a Sylvester data set and a
rational matrix function ©(z) having 7 as its local null-pole triple 1s
found in terms of given spectral data (see Section 2 for definitions).
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This matrix ©(z) is the so called resolvent matrix for the nonhomo
geneous interpolation problem. For example, we are asked to find a
rational matrix fuction F(z) for which

(1.1) rFlz)=y, +=1,-".n¢
(1.2) Flujju; =v,. =1 ng
where {z;,-- -z, . wyp, Ly, }are given distinet points in C. xy. u,

are given 1 x M, N x 1 nonzero vectors respectively. y,. ¢, are given
1 x N. M x 1 vectors, If we organize the data as

z 0
wy e
Cr= { S I O .
Ui Uy
0 T,
zy 0 & —~Yy
p— . T N
Ac = . . Be=| :
0 “ng L Y1,
I = [‘L‘lu’] - y”‘j]
Z; — W ,
? ] 1<ang, 1 <y<ny

then ©(z) having 7 = (Cr, An; Ac, Bey 1) as its local null-pole triple
provides the coefficients for a linear fractional map which parametrizes
the set of all solutions of the nonhomogeneous interpolation problem
(1.1)(1.2) in terms of free parameter matrix functions. The details are
found in the literature, e.g., [ABKW!, [BGR]. If we consider an extra
constraints

Fi:)yl'= F(z). v:-eC,

(correseponding to the transfer function of a reciprocal network i eir-
cuit theory)to (1.1)(1.2), then the resolvent matrix O z) should satisty
the V-orthogonality condition.

(1.3) O2)'ve)=1., v:eC

. 0 I
with V = [—I ()}



An mverse homogeneous interpolation problem 719

This same state space approach was applied in the series of pa-
pers [ABGR1]-[ABGR4] to a variety of factorization and interpolation
problems involving other types of symmetries. Also the inverse prob-
lem without V-orthogonality constraint is discussed in [GK][GKR1,2]
[BKGK].

This paper consists as follows: In section 2, some auxiliary notions
and terminologies are introduced. In section 3, the zero-pole structure
of rational matrix functions ©(z) which satisfy an identity (1.3) for
some square matrix V for which V = aV7 where o = £1 is developed.
The last section includes the existing results on the inverse problem
without the extra constraint {1.3). By refining this results further, a
local spectral structure of rational matrix functions satisfying (1.3) 1s
understood and finally. an rational matrix function having prescribed
local spectral data and satisfying {1.3) i1s found in terms of given data.

2. Preliminaries

By an M x N rational matrix function, we understand an M x N
matrix with rational functions as its entries and shall regard it as a
meromorphic matrix function over the extended complex plane C.
For an M x N proper (i.e., analytic at infinity ) rational matrix function
W(z). we define a realization of W(z) to be a representation of the form

(2.1} W(z)=D+CizI -A)'B. :40a(4)

where A, B.C, D are matrices of sizes n x n,n x N, M x n. M x N
respectively, and o(A) refers to the spectrum of the matrix A. A
realization (2.1) is said to be minimal if (C A) is a null-kernel pair
and (A, B)1s a full-range par. that is

" Ker CAY = {0)

=0
n:l ‘
Z Im A’B =C".

j =0

If D is invertible i (2.1), thew

(2.2) W Yzy=D""'  DC(:I-A%y"'BD"
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with A = A — BD™!(C is a minimal realization of W~!(z) and (2.1)
is minimal if and only if (2.2) is. Realizations for a rational matrix
function always exist. In the rest of this section, we assume M = N
and W(z) is regular (i.e., det W(z) # 0 for some z € C ). When (2.1)
1s a minimal realization for W(z), the pair (C, A) is said to be a (right)
pole pair of W(z) and (A, B) is said to be a (left) null pair of W(z),
= PX|ImP is a null-pole coupling matriz of W(z), where P(P>)
represents the Riesz projection of A(A*). By a global null-pole triple
of W(z), we mean a set of matrices r = (C, 4; A*, B;T).
A collection of matrices

T = (Crr»An;Ag'vBC;F)
is said to be an admissible Sylvester data set if

(CryArx) 1s a null-kernel pair of matrices of respective
S1Z€S M X Ny, Ny X Ny

(A¢, Be)is a full-range pair of matrices of respective sizes
e X NeyNe Xm
and the n¢ x n, matrix I' satisfies the Sylvester equation

TAy — AT = BeCp.

We note that a null-pole triple for a rational matrix function is an
admissible Sylvester data set. From now on , 7 denotes an admissible
Sylvester data set

where the matrices Cr, Ay, A¢, B¢, T have respective sizes m X g, ng x
N Me X M Mg X ML, Ne X T

THEOREM 2.1. For a given admissible Sylvester data set 7 as In
(2.3), there exists a rational matrix function W{(z) which has 7 as 1ts
global-null-pole-triple if and only if T' is invertible. In this case, such a
W {z) is given by

Wi(z) =1+ CxlzI-- Ay)"'T7'B;

and

W z)=1-CrI (2]~ A;)'Be.
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Proof. See [GK].
Two Sylvester data sets
7= (Cr, An; A¢, B T)
7 =(C,, A AL B T
are said to be similar if there exist invertible matrices ®, ¥ such that
Cl=Cr®, A =07"4,0
Al = UAD, B, = v'B,
['=9"'To.
Let us denote the similarity of 7 and 7’ by 7 ~ 7/. When we want

to emphasize the matrices ® and ¥ we say that 7 and 7' are (®,¥) -
similar. The proof of the next theorem is found in [BGR].

THEOREM 2.2. Two admissible Sylvester data sets 7 and 7' are the
global null-pole triples of a rational matrix function ©(z) if and only
ifr~r7

3. The spectral structure of V-orthogonal rational matrix
functions

Let V be an m x m invertible constant symmetric or anti-symimetric
matrix, that is,
VT =aV

where either « = 1 or @ = —1. Here, given an admissible Sylvester
data set 7 as in (2.3), our goal is to find an m x m rational matrix
function ©(z) for which

(3.1) © has 7 as its global null-pole triple
(3.2) 0T:z:)ve) =V, vzeC.

The first step toward the solution is to understand the null and pole
structure of O(z) satisfying (3.2). To a given 7 as in (2.3), we asscciate
another set of matrices

(3.3) = (=v il Al Al . clvir?).
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It is easy to check that r7 is an admissible Sylvester data set if and

only if 7 is. The next theorem gives a characterization of a global

null-pole triple of ©(z) satisfying (3.2).

THEOREM 3.1. Given is a Sylvester data set

7= (Cr,Ar; Ae, Be:T)
of sizes as in (2.3). If
{3.4) 7 is a global-null-pole triple for ©(z)
with ©(oc) = D for an invertible D satisfying V"'D~1V = D. Then,
OT(:)/VO(z)=V, VzeC

if and only if T ~ 17,

Proof. Since 7 is a global null-pole triple for O(z), by Theorem 2.1
I 1s invertible and

(3.5a) O(z) =D+ Cr(zl — AL) 'T7'B:D
(3.6a) O Y z)=D"'-D'C,.I ' (zI - A;) "' B.
Take the transpose of (3.5a) and (3.6a) premultiply by V™!, postmul-
tiply by V and then substitute D in place of V"'D~7V; the results
(3.5b) V' "v=D -V 'Bl(zI-A})"'T"C]VD
and
(3.6b) V'OV =D"'+ D 'W'BIT (2 - A])"'C]V.
If
(3.7) r7Al - Alr" = ¢lv(-v~'B),
holds, from (3.5b), (3.6b), and (3.7) we know that
T =(-v'Bl Al Al.cTv,TT)
is a global null pole triple for V"'0~7V. But, (3.7) is equivalent to
A, — AT = B¢Cr which is a part of our hypothesis. Hence
(3.8) 77 is a global-null-pole triple for V'@~V

Applying Theorem 2.1 to (3.4) (3.8) we conclude that 7 ~ 77 if and
only if V-10-T(2)V =0(z). O
The following theorem gives a canonical form of 7 which is similar

to TT.
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THEOREM 3.2. If a Sylvester data set T as in (2.3) is similar to 77,
then 7 1s similar to 7. which is in the form

7o = (Cry A A: _GCZ VI
with y
I’ = —al..
Proof. Suppose a given Sylvester data set
7= (Cr, Ari A¢, B; T

is similar to , ' | '
= (=v-'Bl Al AL cIviTT).

From the similarity, there exist invertible matrices @ and ¥ such that

(3.9) Cr=-V7'Blo. A, =040
(3.10) Ac=v"'ale. B, =v"'cly
(3.11) r=v-'r'o.

Taking transpose in (3.9) (3.10) (3.11), we see that the same equalities
are valid with ¥ replaced by —««®? and & by —a¥7. By the uniqueness
of the similarlity of two Sylvester data sets.

(3.12) ¥ =_—ad’.
Let

7o = (Cry A AL —aCTV. T,
with
(3.13) e =—al'6.
Upon substituting (3.12) into (3.10) and (3.11), we get
(3.14) Ac=¢"TAale" B,=-ae TClV
(3.15) [=-ad 'T"0.

Replacing I'7® by —al', in {3 15), we can see from (3.13) (3.14) that
7is (1,7 - similar to 7.. To complete the proof, the only thing left
is to show that I'T = —aT',. But, the equality is straightforward from
(3.13) and (3.14). O

The following more detailed version of Theorem 3.2 1s derived by

substituting (3.12) in (3.9), (3.10) and (3.11).
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COROLLARY 3.3. Suppose an admissibile Sylvester data set T as in
(2.3) is similar to 7. Then there exists an invertible matrix @ for
which T and 77 are (®, —a®T) - similar.

We get the following theorem from Theorem2.1 and Theorem3.1.

THEOREM3.4. Given is a o-admissbhle Sylvester data set 7. There
exists a rational matrix function W(z) satisfying (3.11(3.2) if and only
if 7 ~ 71 and T is invertible. In this rase, such a function is given by

W(z)=1+Ca(zI- Ay)"'T7'Be.

4. An inverse homogeneous problem for V-orthogonal func-
tions

Throughout Section 4, 7 denotes a o-admissible Sylvester data set
given by (2.3). By an inverse homogeneous interpolation problem. we
mean a problem of finding a rational matrix function W(z) which has
a given o-Sylvester data set 7 as its ¢-null-pole triple.

4.1. A minimal complement

The next result comes from [GK] (see also [GKR1], [GKR2]) and is
also discussed in [BGR]. A more refined version appears in [BKGK].

THEOREM 4.1.1. For a given o-admissible Sylvester data set 7 as
in (2.3), there always exists a rational matrix function W(z) which has
T as its o-null-pole-triple.

Theorem 4.1.1 is obtained as a result of a complerion problem of a
Sylvester data set 7 in which 7 is augumented to a Sylvester data set
7 with matrices of larger size by adding extra zeros and poles in such a
way that 7 has an invertible coupling matrix. A construction of such a
# due to [GK] is following. Suppose a o-admissible Sylvester data set
7 as in (2.3) is given with ¢ C C. Let

79 2= (Co, Aro; -"1407 By; F())

be a e-admissible Sylvester data set for e, a subset of C, satisfying
eNo = 0. We call 74 a complement to 7 if the matnx

= r Ty
.=
[Fm Ty }
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is square and invertible, where I'j; and I'y; are the unique solutions of

Fi2Are — ALy = BeC
La1Az — A¢el21 = BoChr.

The complement will be called minimal if and only if among all com-
plements of 7, the size of the matrix " is as small as possible. If 1y is
a complement to 7, then the function

2l — Ag)! T
O(z) =1 +[C (o] = (34) (zl-glno)“l}r‘ 1[5’}

has 7 as a o-null-pole triple, and if 7y is a minimal complement, then
O(z) has the minimal possible McMillan degree among all rational
matrix functions having 7 as a o-null-pole triple.

To describe such a minimal complement, first we need to introduce
some notions. Let N be a complement of Ker I' in C* and A be a
complement of Im T' in C™¢, i.e.,

C" = Ker T+ N
C™ =ImT +K.

Let pr be the projection onto Ker I" along N and p. be the projec-
tion onto K along Im I'. Further, let 7, be the embedding of Ker T
into C" and 5, be the embedding of i into C™¢. The controllability
indices of a full-range pair can be defined in many ways. Here the con-

trollability indices of the pair (p;A¢|x,p¢B) are introduced through
the following incoming subspaces. Let

Hy:=Im7T
Hj:=ImT +ImAB  +--+ImA"'Bg, j=1.2.-

We define the incoming indices w; > -+ > w, by
s:= dim(H,/H,)

and

wj =##{k : dim(Hx/Hx-1) >3}, j=1,--+,s.
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Then, the numbers w; > - -+ > w, are the nonzero controllability indices
of (p¢A¢|k, p¢Be). Similarly, the observability indices of the null-kernel
pair (Crlker 1y PrAr|Kerr) are defined through outgoing subspaces

Kog:=KerT
Kj:=RKerTNKer ChAyN0---0 Ker C',rA{r_l., 7=12,....

We also define outgoing indices ay > -+ > ay by t = dim(Ko/K,) and
a; =#{: dom (K- /K) >3}, j=1,.... ¢

Then a; > ... > ay are the nonzero observability indices of the pair
(C7r|l\'er T, pnAfrlk'erT‘)-

Choose a point € ¢ o. Let {djk}zj t

L1j=1 be an outgoing basis for

Ker T’ and {fjk}:;szl be an incoming basis for K. This means
(4.1.1)
{f;1}}=; forms a basis of a complement of ImI"in ImI" + ImDB

(412) (AC - EI)f]‘k - f]]k+1 e Iml 4 IT)’lBg for all _] k (f]"%+1 = 0)
(413) (A,r - EI)d]k == dj,k«{—l-, k= 1,...,&1‘ - 1, j — 1,...,t

(4.1.4) {djk}(z;;]ji:] forms a basis for Ker I' 0 Ker C.

Such a basis can be constructed (see [BGK]). The next theorem gives
a minimal complement of 7. For the proof, see [GKR1].

THEOREM 4.1.2. Let 7 = (Cq,Ar; A¢,B¢;T) b2 a o-admissible
Sylvester data set. Then a minimal complement to T is given by

0= (~CrX — FT;S5,-YB: + G;YTX = Yne — prX).
Here S: KerT'— Ker T and T : K - K are given by

(4.1.5) (S — e)djk = dj k41 (€j,a;41 = 0),
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(4.1.6) (T = &)fjk = fik+1 (fiw+1 =0).
Furthermore, G: C™ — Ker I', F: K — C™ are chosen so that

(4.1.7) pe(A¢ik + BeF) =T

(418) (p-,rA"— - Gcn)”"e,«p =5

(For the details of the choices of G, F see [GK R1]). Finally,

(4.1.9) X = Y:(A,, — &) 'TH(A¢ + B F)(T — €)™
v=1

(4.1.10) Y = 21:(5 — )" pa(Ay — GC)TH(A; — €)™
v=1

where I't is a generalized inverse of T such that TTt =T —p., 7T =
I—pn, KerTY =K and ImTt =N,

REMARK. In Theorem 4.1.2, a 0 U {e}-admissible Sylvester data set
T @ 79 1s given by
(4.1.11)

(e —ewxr=r [ 2[4 ] [vatee] )

where the null-pole coupling matrix Tis an (ne+n¢—rank I') x (n. +
n¢ — rank I') invertible matrix given by

T r —T'X +n¢
T | =YT +px YTX — pr — Y

and
1= [UWY + Xpe + r+ 7711']
Pe 0
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In this case, an n x n rational matrix function (:)(z) with O(oc) = 1
and having 7 as its o-null-pole triple is given by

(4.1.12)
Oz) = 1 4+ Cp(z] — A) YT + Xpe)Be + 112G}
—(CxX + F)(2I -T)'B;

and

07 '(z) = I — {C(TF +n.Y) — Fpc}(2I — A¢)"' B¢
= Cp(z] = 8) N =Y B¢ +G).

4.2. An homogeneous problem with a symmetric spectral
data

Assume now that o is a proper subset of C. An nmportant step to
the main result Theorem 4.2.2 of this section is to construct a minimal
complement

(4.2.1) 7o = (Co, Ano; Acos Bo: Ty)
to a given o-admissible Sylvester data set
7= (Cr, Ar A¢, B T)

similar to 77 so that

(4.2.2)

TI=T®To
A 0 A 0 B ' Tye )
= {Cr Co],| T i o0
(e a5 LT B
is similar to (7 @ 14)7, where T4, 'y, are the unique solutions of

TigAre — ALy = BeCy
Iy Ar — Al = ByCr.

To establish the existence of such a 7. it is enough to show that we can
construct a minimal complement 7y of 7 such that 7o ~ 74 .
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THEOREM 4.2.1. If 7 as in (2.3) is a o-admissible Sylvester data
set which is similar to 77, then there exists a minimal complement 7

to T which is similar to 1] .

Proof. Since 7 is similar to 77,
matrix @ for which

nn = n¢ and there exists an invertible

(4.2.3) Co=-V7'Bl®, A,=9'4]0
(4.2.4) F=—-a® 'T7®

by Corollary 3.3. Let {djk}:’zlljzl be an incoming basis for Ker I' cho-
sen as in Theorem 4.1.2 and U be an n, x n, invertible matrix having
{d]'k}gf:ltjzl as the entries in column (o + - -a;_; + k). Postmulti-
plying (4.2.4) by U and premultiplying by ' and taking transpose,
we have
(TUYT® = —aUTO'T.

By the choice of U, the first (a; + - - ay) rows of (TU)7 are equal to
zero. Thus

UT®T(ImT) C linear span of {e;|i > (a; + -+ + a/)},

Ny

where {e;}77, is the standard orthonormal basis for C*~. If we choose

fix so that f;; satisfies the relation
(4.2.5) UT®T fik = €aytetayr+a, +k—1

then, K := E({fjk}:;fj:l) is a complement of Im ', where £(A) is

the linear span of the set A. Moreover {fjx} o= :j:] is an incoming basis
for K. The details are checked in Lemma A at the end of this section.

Choose ¢, p¢yMr, pr and define S, G, T as in Theorem 4.1.2. Then
(4.2.6) T=2o"TsTo7|.

Indeed, for 1 <j <¢,1 <k < ay,

o~ T(ST —eN@T i1 = @7 T(ST — el)Uja;—k+1
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by (4.2.5). From (4.1.5), the right hand side of the above equality is
the same as @“Tﬂj o —k ( Ujo = 0) which turns out to be f; x4 by
(4.2.5) (fj,a;41 = 0). So, we have shown (4.2.6).

If we put

(4.2.7) F=—aV7iGTeT,

then the condition (4.1.7) is satisfied.
Define X and Y as in (4.1.9) and (4.1.10) respectively. Then by
Theorem 4.1.2,

(4.2.8) 70 =(-CrX —FT;5 -YB:+ G; I'y)
with
(4.2.9) Fo=YTX —-Yne—pX

is a minimal complement to T
Now, we show that 7y ~ 7. To this end, first we derive

A, =0"TATe" A, =049,
Cr=-V7'Bl®, Tt=-a0"'(I'")07

from (4.2.3) and (4.2.4), and substitute the above equalities and (4.2.6)
(4.2.7) in places of A¢, Ar, Cr, TH, S, G of (4.1.10). Then
=&" Z — D) AT + FTBD)(—a)IM (AT —en) 7 @7

= —c@“{Z(AK — )T (A + BoF)(T — 1)1} 707

From (4.1.9), we see that the formula inside of the braces is X. Hence,
we have

(4.2.10) Y = —ad® X707
Now, we prove the similarity between 7y in (4.2.8) and

& = (=V N =YB+G)T, ST 17 (-C.X — F)'V;T{).
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On substituting (4.2.3), F = oV ~'GT®” || obtained from (4.2.6) and
X = ——a‘I"lYT(I)TM- from (4.2.10) into ~C,X — F, we have

(4.2.11) —CrX ~F=—-aV (-YB; +G)"o7 .

Upon taking transpose of (4.2.7) and postmultiplying by V', premulti-
plying by —®~! | we get

(4.2.12) -YB.+G=-%""(-C.X - )TV
Note that (4.2.6) is equivalent to

(4.2.13) T=975T07 .

From (4.2.11)~ (4.2.13) and (4.2.6), we see that if
(4.2.14) To=-a® 'T]T®7 x

then 7 and 7§ are (a@Tm, ~®|x.,r)-similar We replace (4.2.10) in
(4.2.9) and take out common factors —a® !, <I>|7;‘. to get

(4215) To=-a® (XT®'TXE " - XT tap.oxe")o" .

Upon taking the transpose of (4.2.9) and substituting Y7 = —a®X @7
obtained from (4.2.10) and T'7® = —a®TT obtained from (4.2.4), we
get

I =XTTTYTp, — p Y70 — XTp,
= —-aX'TTeX0 Tp, + ap®X0 Tp, — X pn
= (XTe'TX® T + ap,dX® 7 - XTp,.

Since the last line of the above equalities coincides with the formula in
the parenthesis of (4.2.15), we conclude

Top=-a® 'T{®" .
as we desired. This completes the proof. O

The following theorem characterizes a local null-pole triple for a
rational matrix function satisfyving

OT(:)Vo(z)=V.
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THEOREM 4.2.2. Suppose 7 as in (2.3) is a o-admissible Sylvester
data set, where 0 C C. Then there exists an m x m rational matrix
function ©(z) for which

(i) OT(z)VO(z) =V forallz € C

(ii) © has 7 as its o-null-pole triple
(ii1) ©*! is analytic at infinity if and only if 7 is similar to T
In this case such a function ©(z) is given by (4.1.12) with ©

T

in place of © where I't, X, p¢, nny G, F, T are chosen as in
theorem 4.2.1.

Proof. Suppose T is a given o-admissible Sylvester data set which is
similar to 77. By Theorem 4.2.1, there exists a minimal complement
7o given by (4.2.8) to 7 which is also similar to 7d . According to
Corollary 3.3, there exists an invertible matrix ®(®o) such that 7(7o)
is (@, —a®T)-similar ((®g, —a®] )-similar) to 77 (¢ ). Thus, 7 ¢ 70 is

&7

([((I)) ‘I(’)o] . {-—ng —a%fl)ﬁimdar to 7T @1l . But it is easy to
check that 77 & T(;l' ={(r& TO)T. Hernce if we let ©(z) be an rational
m xm matrix function which has 7@ 7q as its global nuli-pole triple with
O(oc) = I, then ©(z) satisfies the conditions (1)-(ii1) by its construction
and such a function given by (4.1.12) with © in place of 0. Applying
Theorem 3.1, we conclude that @7V O = V. Conversely, suppose there
exists an m x m rational matrix function ©(z) which satisfies (1)- (i11).
If 7 is a global null-pole triple for ©(z), by Theorem 3.1, 7 is sinular
to #7. By applying Theorem 3.2 and Theorem 2.2 consecutively, we
can assume that 7 is in form of

T = (é,r, A,r; 4j C;{V; I

T
with
I'" = —«T.
If we represent the Riesz projection of A, corresponding to the eigen-
values in ¢ by p, then

7= (Cr, An; A¢. BeiT)
is a o-null-pole triple for ©(z) where
(arvzw) = (GN|1"l P AW|1m p)
(‘ZCJ}C) = (AT}, T —ap?CTV) and T = pTl:“Imp.
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From the above equalities, we observe that (AQ,BC) = A[ ~¢1C'TV)

and I'T = —al. By applymg Theorem 3.2 to the previous observation,
we see T is similar to 77. On the other hand, two o-null- pole triples
7,7 for O(z) are similar by Theorem 2.2. If 7 and 7 are (@, ¥)-similar,
upon taking transpose of the similarity relations, we can see that 77
and 77 are (7, ®7)-similar. Since the similarity relation on Sylvester
data sets is an equivalence relation, we can conclude that 7 is similar
torT. O
t o

LEMMA A. If we take {fﬂ}] 1h=1 a8 in (£.2.5), then {fx}, 7,y
is an incoming basis for K.

Proof. To prove {fjk}jz-l]kzl is an incoming; basis for K, we need to
show that the conditions (4.1.1) and (4.1.2) are fulfilled. To compute
(A¢ — €I)fjx, we replace A¢, fjx by (4.2.3) and (4.2.5) respectively.
Then we have
(4.2.16) (A¢ —eD)fe = @ T(AT — eD)ilj o) —k41

for j = 1,...,t, k = 1,...,a,, where u; represents the (a; + --- +
a1 + k)" column of U~T. By (4.1.3) and the choice of #;, we have
that

(A7 — el)ijn € frpm + LU{Fin}ic))

for 1 <5<t 1<k < aj, where fia;+1 = 0 and L(A) denotes the
linear span of of the set A. This proves (4.1.2 .

To check the condition (4.1.1), we note that (4.1.4) implies that the
(a1 +...aj-1 + k)™ column of CrU is 0. Since Cx = —VBI® by
(4.2.3), this observation implies that

the (a;+ - a;_1+k)* of UT®"B.V is0, 1<k<a;-1,1<;<t,
Thus,

the column space of p¢ B

= the column space of p BV
=L({(e1 + - +a;)™ of @TUTY_))
= LH{@ Tt 0, }j=y)
= ‘C({fjk};zl)'
The condition (4.1.1) now follows.[]
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