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A REGULARITY THEOREM FOR
THE INITIAL TRACES OF THE
SOLUTIONS OF THE HEAT EQUATION

SooN-YEONG CHUNG

0. Introduction

In the theory of partial differential equations with given initial val-
ues and boundary values one usually investigates to examine the well-
posedness, that is, the unique existence of the solution as well as its
continuous dependence on the data. This theory is strong enough for
us to determine the situation anywhere and anytime provided that the
initial data are actually given. However, in many cases the data are not
completely known for us. Then in those situations arise the new prob-
lem to determine the unknown initial data by taking other conditions
for the solution.

From this point of view, in this paper we discuss a very simple
problem for the heat equation (8; — A)U(z,t) = 0 with the initial data
whose regularity is unknown. The main theorem states that if U(z,t)
is a heat solution satisfying

/|8“U(m,t)l”d:r <M

for 0 <t < T, |a| < sandp > 1 then its initial value U(z,0") must
belong to the Sobolev space WP* (see Theorem 2.4). Thus in view of
Sobolev imbedding theorem we can obtain the regularity of the initial
condition by considering the growth of solution. At a first glance, it
is easily expected result. But, nevertheless, we can see that it is no
longer true when p = 1.
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§1. The Cauchy problem

We use the multi-index notations: |af = a; + -+ + a, for a € N7,
where Ny is the set of nonnegative integers; 8 = 921 ... 5% 0; =
0/8z;,j =1,2,-- ,n. Also, we denote by C° the set of all infinitely
differentiable functions in R™ and by Cg®° the set of all C'™® functions
with compact support.

We recall the definition of Sobolev spaces. Let s be a nonnegative
integer and let 1 < p < 4o00.

DEFINITION 1.1. We denote by W?* the space of all distributions
u such that
0%u e LP, |l <s

equipped with the norm

1/p
lullp.s = | > 10l
laf<s
where || - ||, denotes LP-norm on R".

Let E(r,t) be the heat kernel defined by

(47t)~"/ 2 exp ( —|z|?/4t), E>0
0, <0

Ba.t) = {

First, we present a direct problem which is, in fact, an initial value
problem for the heat equation with initial data in W?*.

THEOREM 1.2. Suppose that T > 0, S >0 and 1 <\ p < +00. Then
for every u € WP U(z,t) = E x u is well defined and a C> function
in R™ x (0,T) satisfying that

(1.1) (8= A)U(x,t)=0, (z,t)€e R"x(0,T)

(1.2) There exists a constant M > 0 such that

/IB"U(r,t)\”dm <M, 0<t<T, |a|<s

(1.3) U(x,t) = uin WP ast — (.
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where * denotes the convolution with respect to the space variable z.

Proof. Since E is exponentially decreasing at infinity with respect
to the space variable, the convolution E * u = U(z,t) is well defined
and a C* function in R™ x (0, T) satisfying the heat equation (1.1).
Moreover, considering E(-,t) as an approximation identity we have

10°U (. t)llp < |E + 0%ull,
SNEC D0, = 10%u]l, 0<t<T,

and

18°U (2, t) = 8 ull, < |E * 8°u — 8%ull, — 0

ast — 0% for all |a] < s, since 9%u € L?, |a| < s. Thus it follows that

(1.4) UG Dllp,s < llullp,s
and
(1.5) U(-,t)-»u in WP

which proves the theorem.

REMARK. (i). The above theorem implies that every solution U(x, )
= E * u of the initial value problem

{ (8 — AYU(z,t) = 0

1.6
(1.6) Ulz,0) = u € WP

is uniquely determined in the category of (1.2) and continuously de-
pends on the initial data in view of (1.4).
(i1). In general, if f € L? then we can obtain the similar inequality

/|3"(E * f)lfde < 4
as (1.2) for every @ € N7, since E is exponentially decreasing at infinity.

But we should note that the upper bound may not be independent of
the time variable t.
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§2. Regularity problems

Here we restate a uniqueness theorem for the heat equation in a
simple form which will be very useful later.

THEOREM 2.1. ([F], Theorem 1.16) Let U(z,t) be a continuous
function on R™ x [0,T') with the following property
(1) (O — A)u(z,t)=01in R™ x (0,T)
(i1) fOT Jan ]u(x,t)|e"‘|1|2dx dt < +o0 for some k > 0.
Then u(x,0) = 0 implies that u(z,t) = 0 in R® x [0, T).

Actually the regularity problem given here is nothing but a converse
part of Theorem 1.2. But that result will give a meaningful information
as a corollary.

Now we are in a position to state and prove the main theorem in
this paper. The idea of this proof is, so called, the heat kernel method
which was introduced in [CK], [KCK]|, and [M].

THEOREM 2.2. Suppose that U(z,t) is a C™ function in R" x (0, T)
satisfying

(2.1) (0 —A)U(z,t)=0, (z,t) € R" x (0,T)
(2.2) there exists a constant M > 0 such that

/]3“[7(x,t)|pdx <M, 0<t<T, |af <s,

for T >0, s >0 and 1 < p < oo. Then the initial value U(z,0%)
exists in WP»* where the limit U(z,0%) = lim,_¢+ U(z,1t) is taken in
the topology of WP *. Furthermore, U(z,t) can be uniquely expressed
by U(z,t) = U(z,0+4) * E.

Proof. Consider a function

1, t>0
f(t):{o < 0.

Multiplying f by a suitable cut off function we obtain a function
v(t) such that
v'(t) = 8(¢) + w(t)
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where v(t) = f(t) for t <T/4, v(t) = 0for t > T/2 and w(t) € C=°(R)
with suppw C [T/4,T/2]. Define

(2.3) G(z,t) = — /00 Uzt + s)v(s)ds
Jo

Then G(z,t) is well defined and continuous on R" x [0, T/2). Moreover,
we have

(0, — A)G(z,t) =0, 0<t<T/2

(2:4) and  8,G = U(z,t) + /Ooo U(z,t+ s)w(s)ds, 0<t<T/2
Putting

(2.5) H(z,t) = — /OOO Uz, t+ s)w(s)ds

we have

(2.6) U(z,t) = 8,G(z,t) + H(z,1)

= AG(z,t) + H(z.1),

where H(z,t) is a continuous functions on R™ x [0,T/2). Now we
estimate G(z,t) and H(z,t) more accurately. Let ¢ = p/(p — 1) and
¢ € Li. Then applying Holder inequality we have, for 0 < t < T/2,
lof < s,

/an /n 10°U (z,t + s)d(z)v(s)|dz ds

< [T 107U+ )l

0
< CM'V?||o|,

for some C' > 0. From the Fubini theorem it follows that G(x,%) is a
bounded linear functional on LY. Then 0°G(x,t) € L? and

(2.7) /|6"G(x,t)|”dm < CPM.
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By the similar argument we obtain that 0°H(z,t) € L? for 0 < t <
T/2, la| < s and

(2.8) / 6°H (z,t)[Pdz < My,

for some M; > 0. Thus if we put
g9(z) = G(z,0), Hh(z)= H(z,0)

then g(x) and h(x) are continuous on R™. Moreover, they belong to
wre If we put Gi(z,t) = G(z,t)—g+FE and Hy(z,t) = H(z,t)—h+E
then G1(z,1) and Hy(x,t) satisfy the conditions of Tkeorem 2.1. Thus
we have

G(z,t)=¢g*E, H(z,t)=hx*xE

on R" x [0,7/2).
On the other hand, it follows from (2.2), (2.6) and (2.8) that there
exists My > 0 such that for 0 <t <7, |a| < s,

(2.9) /I@‘“@tG(x,t)V’dx - /l@“AG(z,t)lpd;c < M,

Since G(z,t) converges to g in WP'* by Theorem 1.2, 8°G(x,t) con-
verges to 8%¢g(z) in the distribution sense for all 3 = NP}. Applying
(2.9) we obtain that for each ¢ € C° and |a| < s,

(2.10)
|/3“Ag(:r)¢(:z)d$| = |t1irglw 0°AG(z, t)o(z)dr|

,1_i+%1+ 10°AG(z, 1), |I8ll,
< Cllely

IN

with some constant C and ¢ = p/(p — 1). But since C§° is dense in
L7 the inequality (2.10) holds for every ¢ € L9, which means that
J%Ag(z) is a bounded linear functional on L?. Thus, *Ag belongs to
L? for |a| < s, which implies that Ag ¢ WP~,
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Now we define u € W?* by
(2.11) u=Ag+h
Then we have
ux B =(Ag+h)* E
= Mg+« E)+hxE
= AG(x,t)+ H(x.t)
= /{x,1),
and U(z,t) — u in WP as t —» 0%, which completes the proof.

REMARK. If p = 1 then this theorem may not be true. To see this
consider the heat kernel E(z,7). This satisfies all the conditions but
E(z,0%) becomes é6(z) which does not belong o L.

Now we will give some corollaries of the above result. Using the
Sobolev imbedding theorem we can directly obtain;

COROLLARY 2.3. If s > 2 + k and if U(x.t) is a C* function in
R™ x (0,T) satisfying

(O —A)YU(x,t) =0, 0<t<T

and

/l@"U(x,t)|“'dx <M, 0<t<T

then the initial value U(z,0+) belongs to C*¥(R"), i.e., k-times differ-
entiable function in R".

Finally we give an another integral representation of heat solutions.

COROLLARY 2.4. U(x,t) is a heat solution satisfying that
/|U(3?,t)|2«’,7‘ <M, 0<t<T
if and only if there exists a function f € L? such that

Ulz, t) = ‘/e”y'tyzf(y)dy, 0<t<T.
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Proof. Since L? = W%°, applying Theorem 2.2 there exists a func-
tions g € L? such that U(z,t) = g*E. If we set f(z) = (27)"g(z) then
Parseval’s identity gives

Ulz,t)=g(z)* E
= (QW)H(Q*E(:E - 7t))

S O
= [e s,

where § is the Fourier transform of g. The converse part is easily
obtained.
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