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THE GEOMETRY OF LEFT-SYMMETRIC ALGEBRA

Hyuk Kim

1. Introduction

In this paper, we are interested in left invariant flat affine structures
on Lie groups. These structures has been studied by many authors in
different contexts. One of the fundamental questions is the existence of
complete affine structures for solvable Lie groups G, raised by Milnor
[15]. But recently Benoist answered negatively even for the nilpotent
case [1]. Also moduli space of such structures for lower dimensional
cases has been studied by several authors, sometimes with compatible
metrics [5, 10, 4, 12].

For a given left invariant affinely flat connection V on G, if we define
a product on its Lie algebra by X - Y = V¥, XY € g, then this
product satisfies the so-called left symmetry of the associator and g
becomes a left-symmetric algebra compatible with its Lie structure.
(See Section 3 for the definitions and details). This term seems to
be first used by Vinberg in his study of convex homogeneous cones in
conjunction with the study of homogeneous bounded complex domains
[20, 13]. To a left-symmetric algebra structure on g, we can naturally
associate a canonical Lie algebra representation to the Lie algebra of
affine transformations of g, and we study some basic geometry of this
representation in this paper.

We will start with left invariant (A4, X )-structure on G as a more
general setting, where X is a model space on which a Lie group A
acts so that a pair (A, X) defines a geometry in the sense of Klein’s
Erlanger program. (See Section 2 for the more precise definitions.)
Once G has a such structure, then a devoloping map into X is defined
and left invariance of the structure induces a greup representation from
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G to A, and hence a Lie algebra representation. We will compare this
setup with the left-symmetric algebra formulation and its canonical
representation in the following secticn. And then we will make some
basic investigations in Section 4 to understand the geometry of the
canonical representation using both view points.

Especially we would like to interprete the algebraic objects or results
geometrically and vice versa. Some of the results about the left invari-
ant affine structures in Section 3 arc studied in [10] for the complete
case, but we are more interested in the general case (i.e., incomplete
situation) in this paper. We intend to make the initial steps to lay
the foundations on the subject of left invariant geometric structures on
Lie groups, especially focusing on the interplay between algebra and
geometry of affine structures on Lie groups.

This paper is based on the material presented at the topology con-
ference held in honor of Professor Jehpill Kim on the occasion of his
retirement.

2. Left-invariant (A, X )-structures

Let us recall some basic facts about (A4, X )-structures on manifolds.
We will follow the basic setup and notations as given in {11]. See also
[7]. [14], [16] and [19] for more on (A, X )-structures. Let A be a Lie
group acting smoothly on a smooth manifold X in such a way that the
action is determined locally, i.e., for a € A, viewed as a map of X, if
alu is identity for some open set U of X, then a = e = the identity
element of A. A smooth manifold M is called an (A, X )-mansfold if
it has a cover of coordinate charts mapped into X whose coordinate
transition maps are restrictions of elements of A. A maximal atlas of
such coordinate charts will be called an (A, X )-structure on M.

A map f : M — N between (A,.X)-manifolds is an (A4, X)-map if
it can be represented locally through coordinate charts as a restriction
of an element of A. Note that (A, X )-map is a local diffeomorphism
from the definition.

Let M be a connected (A, X )-manifold and consider the universal
covering M of M with the pull-back (A, X)-structure. Then there
exists an (A4, X )-map D : M — X, by the usual analytic continuation
argument, unique up to composition with an element of A. i.e., if D' is



The geometry of left-symmetric algebra 1049

another (4, X )-map from M into X, then D' = a o D for some a € A.
Such a map D is called a developing map. More generally, it is easy to
show the following, which is the proposition 1.2 of [11].

PROPOSITION 2.1. Let M and M’ be simply connected (A, X)-
manifolds with developing maps D and D', respectively. Then a map
f:M — M'isan (A, X)-map if and only if there exists a € A such
that ao D = D' o f. Such a is, of course, uniqie.

Now consider a Lie group G with a left-invariant (A4, X )-structure,
Le., G has an (A, X)-structure such that all the left translations /.
g € G are (A, X)-maps. By passing to the universal covering group,
we will assume G is simply connected, if necessary, so that the existence
of developing map is guaranteed. Then G has a developing map D :
G — X. Since the (A, X )-structure is left-invariant, for each lg,9€G,
there exists a unique ¢(g) € A such that Dol, = ¢(g)o D by 2.1. Since
¢(gh)oD = Dolgy =Dolyoly =¢(g)oDoly = ¢(g)e(h)o D, ¢(gh)
and ¢(g)o ¢(h) agree on an open set D(G) and hence are equal. Hence
we obtain a Lie group homomorphism ¢p = ¢ : G — A.

For a given point z € X, let Ev, : A — X be the evaluation map
given by Ev,(a) = a(z) = a 1. and ev, : G — X be the composition
given by ev, = FEv, 0 ¢. Now observe that D := ev,, where 2 = D(e).
Indeed, D(g) = D(g-¢) = ¢lg) - D(e) = ¢ig) - & = Ev,(8g)) =
ev.(g). Furthermore, d(ev, )|, should be non-singular since D is a local
diffeomorphism. From this observation, we iminediately obtain:

PROPOSITION 2.2. D: G — Q = D(G) C X is a covering map.

Proof. G acts on X as (A4, X )-map through the representation ¢ :
G — A Since D = ev, where x = D(e), Q = D(G) = ev (G) =
G - x = the orbit of z, and  can be canonically identified with G/G,,
where G, = {g € G|g -z = 2} is discrete since D = ev, is a local
diffeomorphism. This shows that the projection p : G — G/G, is a
covering map and so is D : G — G/G, = Q. []

In general, for a given y € X, ev, : G — X does not have to be a
covering map. But if y = g-x, r = D(e), then evy = evy., = ev o7, for
a right translation r, and ev, becomes a covering map for y € 2. This
identity also shows that {r,|g € G,} is a deck transformation group of
the covering D : G — Q.
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Let’s examine what happens if we choose a different developing map
D' =aoD, a€ A. If we denote the corresponding representation by
¢' = ¢p, then ¢'(g) - D' = D' ol,. From ¢'(g)oaoD =aoDol, =
ao@d(g)oD, we have ¢'(g) = aog(g)oa™! and hence ¢’ = ¢, 0 ¢, where
¢, 1s the conjugation by a. If we denote ' = D'(e) = aD(e) = a(z),
then D' = evy

We can now conclude that a left-invariant (A4, X )-structure on G
gives rise to a class of representations [¢] € A\Hom(G, A), where A
acts on Hom(G, A) by composition with conjugatior.. And the repre-
sentation ¢ has the property that d(ecv.)|. is a linear isomorphism for
some ¢ € X.

Conversely, suppose we have a Lic group homomorphism ¢ : G —
A with the property that d(ev,)|. is a linear isomorphism for some
r € X. Observe that ev, ol; = ¢(g) o ev, for all ¢ € G. Taking
differential at ¢ € G on both sides, we see that d(ev;)|, is a linear
isomorphism for all ¢ € G and hence that ev, is an immersion. In
fact, non-singularity of d(ev,)|. implies that the isotropy group G, is
diserete and the orbit map ev, is a covering map onto its image. Now
the pull back (A, X)-structure under D = ev, is left-invariant since
Doly=cevyo0ly, = ¢(g)oevy = ¢(¢g)o D and so l;. g € G, becomes
an (A, X )-map by 2.1. Alternatively we can see as follows: Since ev,
is a covering projection and ev, o l, = ¢(g) o ev,; helds, [, is a lifting
of ¢(g) and hence [, should be an (4, X )-map. Notice that if ¢ has
the property that d(ev,)|. has rank / for some ¢ € X, then the above
argument shows that d(ev;)|, also has rank k for all ¢ € G, and hence
the orbit map ev, becomes a submersion onto its image which is just
a quotient map: G — G/G, 2 G - z.

A left-invariant (A, X )-structure in G will be said to be complete if
a developing map D : G — X is onto. A complete structure can be
characterized as follows.

PROPOSITION 2.3. Let X be connected and let G be a Lie group
with a left- invariant (A, X )-structure determined by a developing map
D. Let ¢p : G — A be the associated representation with ev, =
Ev,o0dép, v € X. Then the followings are equivalent.

(1) D:G — X is onto.

(2) G action on X determined by ¢ is transitive
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(3) d(evy)|e is a linear isomorphism for all » € X.

Proof. The equivalence of (1) and (2) follows immediately from that
D = ev,, where 0 = De. Suppose that G action on X is transitive.
Then for any r € X, there is ¢ € G such that . = g - 0, 0 = De. Since
evg., = €v, 01y and d(ev,)|, = dD|, is an isomorphism, d(ev;)|. =
d(evg.o)|e 1s an isomorphism. Conversely, if d(ev,)|. is an isomorphism,
the orbit containing r is open since ev, is a covering map. This implies
that each orbit is open and hence it is closed, being a complement of

the union of other orbits. Since X is connected, it consists of a single
orbit. O

As we already saw, the study of left-invariant (A4, X')-structures on a
Lie group G is equivalent to that of Lie group homomorphisms ¢ : G —
A with the property that d(ev,)| is an isomorphism for some & € X.
This immediately suggests us to look at Lie algebra homomorphisms
with the corresponding property. Since d(ev,)|. = d(Evg)|e-dé|. is an
isomorphism, dim X = dim G, d(Ev,)|. is surjective and dé|. is injec-
tive. If we identify the Lie algebra g of G with the tangent space T.G
of G at e, and similarly the Lie algebra a of A with T, A, then the Lie
algebra homomorphism d¢ : g — a is injective. Let A4, be the isotropy
subgroup of A at r € X and a, be its Lie algebra. Since d(Ev,)|. is
surjective and its kernel is a,, d(ev;)|, is an isomorphism if and only
if dp(g) is transversal to a,. Let us summarize these discussions as
follows.

THEOREM 2.4. Let G be a simply connected (hence connected) Lie
group. Then the followings are equivalent.

(1) G admits a left-invariant (A, X )-structure.

(2) There is a Lie group homomorphism ¢ : G — A such that
d(ev,)|e is an isomorphism for some r € X.

(3) There is a Lie algebra homomorphism r : g — a which is
transversal to a, for some r ¢ X, where a, is the Lie algebra of the
isotropy subgroup A, of A.

Note that to talk about left-invariant (A.X)-structure on a Lie
group G, it is necessary from the start that A acts on X locally tran-
sitively.

If A acts on a connected X transitively as in the most interesting
cases, then any z € X can be written as ¢ = a - o for some a € A with
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respect to a fixed base point 0 € X. And the isotropy group at = would
become A; = ad,a™! so that a, = Ad,(a,). Thus we have

COROLLARY 2.5. Suppose that A acts on a conaected X transi-
tively. Then G admits a complete left invariant (A, X )-structure if
and only if there is a Lie algebra homomorphism r g — a which is
transversal to each of Ad,(a,), a € A

3. Left-invariant affine structures

A smooth manifold which admits a linear connection ¥V whose tor
sion and curvature tensor vanish will be called an affinely flat (or sim-
ply affine in short) manifold. By a well known theorem of differential
geometry, such a manifold is locally equivalent to an open subset of
Euclidean space with the standard connection, i.e., for each point of
M, there 1s a neighborhood and a coordinate map into the Euclidean
space which is an affine equivalence. ln fact, the torsion and curvature
are exactly the obstructions to the existence of such a map. A diffeo
morphism f : (M, V) — (M',V'} is an affine equivalence if f*V' =V,
e, fL(VxY) = \7}. y f+Y for any vector fields X, Y on M. Moreover,
if M is a simply connected complete affine manifold, then M is affinely
equivalent to E", the Euclidean space with the standard connection.
Therefore, an affine manifold can be considered as an (A, X )-manifold
where X = E" and A = Aff(n), the group of affine transformations on
E". and its universal cover M has a developing map 0 into E™ and D
is an affine diffeomorphisiu if the affine structure of M is complete.

Now let us consider a Lie group with a left-invariant affine structure,
Le., aleft-invariant (Aff(n), E”)-structure. We can study this using two
different approaches : One way is through a representation ¢ : G —
Aff(n) as in the previous section and the other way is to use a left
invariant flat connection V on G. Each has its own advantage and it
certainly would be more helpful if we can view the subject in many
different ways.

In general a connection V on a Lie group G is completely deter-
nuned by the action on the left invariant vector fields, i.e.., by VY
for X.Y € g, using the Leibniz rule. And V is left invariant if and
only if VxY € g whenever X.Y € g. Indeed, V is left invariant iff
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lpo(VxY) = Vi, xlgY for all ¢ € G and X =XifX €eg To
perceive the problem algebraically, denote VxY by X - Y for a left
invariant connection V and vector fields X,Y € g. Then having a left
invariant connection on G is the same as having an algebra structure
on g, and a Lie group isomorphism ¢ : (G,V ) — (G', V') is an affine
equivalence if and only if ¢, = d¢ : (g,-) — (g,') is an algebra iso-
morphism. In this way, the geometric problems involving left invariant
connection become algebraic ones. We will pursue this point of view
in the study of left invariant affine structures on Lie groups.

A left invariant connection V on G is said to be bi-invariant if it
is also right invariant. As usual, this holds if and only if V is ad-
joint invariant. We can characterize bi-invariant connections using the
associated algebra structure X - ¥ = VxV as follows.

PROPOSITION 3.1. The following statemen's are equivalent.

(1) A left invariant connection V on G is bi-invariant.
(2) Ad, is an algebra automorphism on (g, -) for all g € G.
(3) adx is an algebra derivation on (g,-) for all X € g, i.e.,

adx(Y - Z) = adx(Y)- Z+Y - adx(Z)
or

(XY Z]=[X,Y] Z+Y-[X,Z], X.Y,Z € g

Proof. Let V be a left invariant connection on G. Then V is bi-
invariant iff V is adjoint invariant, i.e., a,V =V for all g € G, where
ag(h) = ghg™' for h € G. As noted above, this holds iff a,, = Ad, :
(g,') — (@,-) is an algebra isomorphism for all ¢ € G. And this is
equivalent to say that adx : (g.-) — (g, ) is an algebra derivation. [

If furthermore V is torsion free, then the algebra automorphism
becomes a Lie algebra automorphism since [X,Y] = X - ¥ -V - X,
X,Y € g. Hence we obtain the following diagram for torsion free
bi-invariant connection.

g =% Der(g,-) C Der(g)
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Now suppose further that a left invariant connection V is aflinely
flat so that it has vainshing torsion and curvature tensor, then this
condition becomes algebraically as follows. We will use small letters
for element of g and zy for X - Y = VxY from now on.

(3.1) ry -y = [z,y]
(3.2) z(yz) —y(zz) - [z,ylz =0

for all z,y,2z € g. Notice that (3.1) corresponds tc the torsion-free
condition and (3.2) to flatness of V. From these we obtain immediately
that

(3.3) (r,y,2) = (y,x,2),

where (z,y,2) = (zy)z — z(yz), the associator of z,y,z. An algebra
which satisfies (3.3) is called a left-symmetric algebra. (See [20], [9].
[17].) Hence finding a left invariant affinely flat connection on G is
the same as finding a left-symmetric algebra structure on g which is
compatible with Lie algebra structure of g in the sense of (3.1). Also
note that a left symmetric algebra is so called Lie-admissible, that is,
if we define a bracket with the equation (3.1), then the first Bianchi
identity R(x,y)z + R(y,2)z + R(z,z)y = 0, where Rlz,y)z = z(yz) —
y(zz) — [z,y]z, with (3.1) and (3.2) gives the Jacobi identity and the
bracket defines a Lie algebra structure.

Observe that an associative algebra is a special case of left symmetric
algebras since (3.3) is trivially satisfied. In fact, it is well observed
that a bi-invariant affinely flat connection corresponds exactly to an
associative algebra. (See [9], [15], [17:.)

PROPOSITION 3.2. Let V be a left invariant affinely flat connection
on G. Then V is bi-invariant if and only if the associated algebra is
associative.

Proof. By 3.1, we have |r,yz] = [z,y]z + y[z,z for z,y,z € g.
Change the brackets in this equation into the difference of two products
using (3.1), and the associativity follows. [

A simple example of bi-invariant flat connection can be obtained

easily on G = Gl(n,R) using 3.2, by defining VxY = XY, the usual
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matrix multiplication, for X,Y" € gl(n,R). This is the usual flat con-
nection induced on Gl(n,R) viewing as an open subset of R™.

Having an algebra structure on a vector space g is the same as having
a linear map A : g — gl(g), where A\, = A(z) is the left multiplication,
l.e., A;(y) = zy. The right multiplication p, is defined as p,(y) = yz.
In terms of A, the flatness condition (3.2) holds if and only if ) is a
Lie algebra homomorphism. Hence having a left-symmetric algebra
structure on g which is compatible with the Lie structure of g is the
same as having a Lie algebra homomorphism A : g — gl(g) such that
[z,y] = Az(y) — Ay(z) or equivalently ad, = ), — p,.

Now let’s take a different approach to the subject and go back to the
representation view point developed in the previous section and com-
pare with our left-symmetric algebra structure on g. As we mentioned
earlier, affinely flat structure is a special case of (A4, X )-structure with
A = Aff(n) and X = E", the Euclidean space as an affine space with
the standard affine structure. Hence a left invariant affinely flat struc-
ture on a Lie group G (which is a left-symmetric algebra structure on g
compatible with Lie structure of g) corresponds to a left invariant affine
structure on G. By Theorem 2.4, we have a Lie group homomorphism
¢ : G — Aff(n) such that d(ev,)|. is an isomorphism for some z € X.
Again assuming G is simply connected, this is equivalent to having a
Lie algebra homomorphism r : g — a = aff(n) which is transversal to
a, for some r € X, where a, is the Lie algebra of the isotropy subgroup
A; of A. Choose r € X = E™ as the origin sc that the affine space X
becomes a vector space V(= R") and identify a with gl(V)+ V', where
gl(V') corresponds to a,, z =o€ V. If (M,m ,(N,n) € gl(V)+ V. the
Lie algebra structure is given by

[(M,m),(N,n)] = (MN — NM,Mn — Nm)
= ([M,N], Mn - Nm).

This follows viewing Aff(n) as a subgroup {( ‘g ?) |[A € Gln), ac

R"} of Gi(n + 1), and its Lie algebra as {(]E[ 7(1)1) |M € gl{n), meg

R"}. Now if we denote the Lie algebra representation r : g — a by
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r=(h,t):g — a=gl(V)+V, then the transversality condition exactly
corresponds to that ¢ is an isomorphism. Also note that r = (h,t) :
g — gl(V) + V is a Lie algebra homomorphism if and only if h is a Lie
algebra homomorphism and t is a 1-cocycle of g-module V with g action
on V' given by h; ie, t: g — V and t([z,y]) = h(z)t(y) — h(y)t(z).
Furthermore, if we 1dent1fv T,E" with R™ as usual for arbitrary z € E™,
then we have

PROPOSITION 3.3. For any z € E" = V, d(ev,)l, : T.G = g —
T,E™ =V is given by Y — A(Y)z + #{Y). In particular, d(ev,)|e = t.

Proof. From the equation ev, = Ev, o ¢, we have dev,|. = dEv,|,0
d¢ = dEv,|, or and the conclusion follows from the fact that dEv,|, :
(M,m) — Mz + m. Indeed, take any Y = (M, m) € a and consider
l-parameter subgroup e‘¥ of A, then dEv,|,(Y) = %|0va(e”’) =
-{;—i;[oetyx = Mz +m. In the calculation of the last equality, we identify
Aff(n) as the subgroup of GI(n + 1) mentioned above and note that

2
Y M m ﬁ M m z
¢ I‘(“”(o 0>+2! o o) T 1) H

PROPOSITION 3.4. Let ¢ : G — A = Aff{n) be a Lie group homo-

morphism such that d(ev,)|. is a linear isomorphism for some z € R",
and let d¢ = (h,t) : g — a = gl(n) + R" be its differential. Then the
pull back connection V on G under the map ev, : G —» R™ is given by

d(ev,)(VxY) = hX)(h(Y )z +4(Y)), X, € g

In particular, if z = 0, then VxY =t 1 (A(X)#(Y)).

Proof. We saw in the previous section that ev, is a covering map
onto its image and the pull back connection V is left- invariant. Hence
VxY € g =T.G for X,Y € g and is determined by dev,|(VxY). Let
X = dev,(X) be the local vector field on R” defined near z which is
evg-related to X. Then dev,|.(VxY) = (DY )(z), where D is the
standard connection on R". Consider 1-parameter subgroup e'X and
compute ¥ along the curve ev (e**). Recall that ev, o ! g = ¢(g)oev,
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Then
Y at evy(e'X) = dev, (Y at ')
= devy(dleex |(Y))
= d(¢(etx))(de“zle(y))
= L)Y Yo + 1Y)

where L'(etx) is the linear part of affine transformation ¢(e'¥), that
is, L(e'*) = po ¢(e*X), p is the canonical projection: Aff(n) — Gl(n).

~ d - ‘
DiY at z = ——‘(;(Y along ev,(e'X))

d
= aih

= (E|OL(6“)) (h(Y)z + t(Y)).

(L(e™)(h(Y)x + (Y)))

Now Zi|o(L(e™X)) = &|po #(e™™) = dpo do(|e¥) = dpo do(X) =
h(X). Note that dp : gl(n) + R® — gl(n) is the projection and hence
dp o d¢ = h. Therefore

dev,| (VxY) = DiY(z) = h(X)(h(Y)z +¢(Y)). O

Now if we identify R" with g by t : g — R", then VxY = rX)Y,
where A : g — gl(g) is given by h(X) =
back the left multiplication A = A of the associated left symmetric
algebra structure on g.

= t"1oh(X)ot. Hence we recover

Let’s summarize as follows.

THEOREM 3.5. Let G be a simply connected Lie group with its Lie
algebra g. Then the followings are equivalent.

(1) G admits a left invariant affinely flat connection.

(2) There is a representation ¢ : G — Aff(n) such that d(ev,)|. is a
linear isomorphism for some ¢ € E™. (Such a representation is called
etale representation and we may phrase this as G acts on E" locally
simply transitively by afline transformations).
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(3) There is a Lie algebra representation r = (h,t) : g — aff(n) =
gl(n) + R™ such that t is a linear isomorphism.

(4) There is a Lie algebra representation h : g — gi(n) and a linear
1somorphism t : g — R"™ such that

t(lz, y]) = h(z)t(y) ~ h(y)t(x).
(5) There is a Lie algebra representation A : g — gl(g) such that
[z.y] = Ma)y - My)a.

(6) There 1s a Lie algebra homomorphism : g — aff(g) of the from
a — (Ma),a). (Such a representation will be called canonical in this
paper.)

(7) There is a left-symmetric algebra structure on g which is com-
patible with the Lie structure of g.

Note that a similar theorem was stated in [10] for the complete case.
Now suppose that V is a left invariant flat connection on G which is
geodesically complete. Then the developing map D : G — E” is an
affine equivalence and hence the affine structure is complete in the sense
of the previous section. Conversely, it is obvious that the completeness
in our sense implies the geodesic completeness. By 2.3, complete case
corresponds to a representation ¢ where d(ev,)|. is a linear isomor-
phism for all x € E", and G acts on E™ simply transitively. And on
the Lie algebra level, this corresponds to a Lie algebra representation
r = (h,t) such that Y — A(Y)z+t(Y) is an isomorphism for allz € R™.
Now if we identify g with R™ by ¢t : g — R", then this map d(ev,)|.
corresponds to the map : g — g given by ¥ — MY )(¢+ '2)+Y. Hence
V 1s complete if and only if ¥ + Y + VX 1s an :somorphism for
all X € g, and this is to say that 1 + p, is an isomorphism for all
x € g. (See [9], [17], [10].) This fact is a very interesting algebraic
formulation of the condition for the geodesic completeness of V. It
would be interesting if one can find a different proof of this condition
for completeness using a more direct geometric reasorning.
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4. Geometry of canonical representations

In general, suppose we have a group G acting on a space X so that
the action induces a group homomorphism ¢ : G — A, where A is an
automorphism group of X. Then from the definition of an action, we
obtain the following two identities which are obvious but useful for our
analysis.

(4.1) evy 0l, = é(g) o ev,
(4.2) €Vg.; = eV, 07y, ¢gE€EGand € X.

Here the ¢ € G action on a point z € X is denoted by ¢ - .

Suppose that a simply connected Lie group G has a left invariant flat
affine structure so that we have a Lie group homomorphism ¢ : G —
A = Aff(n) as described in the previous sections. Choose a point z €
X = E™ where d(ev,)|. is an isomorphism as the origin. Then the affine
space X becomes a vector space V and the afline transformation group
A can be written as a semi-direct product GI(V ) ix V' and its Lie algebra
can be correspondingly written as a sum, a = gl(V' )+ V. Therefore the
differential of ¢ has two components d¢ = (h,t) : g — gl(V) + V and
the condition that d(ev,)|. is an isomorphism 1s equivalent to that ¢ is
an isomorphism. Now if we identify V with g by t, then we obtain a
canonical representation, r = (A,id): g — gl(g) + 8. As we saw in the
previous section, this A is exactly the left multiplication determined by
the left invariant connection V pulled back by ev,, i.e., A,(y) = Vy for
z,y € g. Hence the algebraic formulas appeared in the representation
or left symmetric algebra are expected to have differential geometric
meanings and intrepretations, and vice versa.

Let us set and fix the notations for the canonical representation as
follows.

Y o= aff(e) = glle) + 9

a
lexp Jvexp
¢ *"TLY A— Afilg)=Ci(g) x g

We will frequently use the notations A, Ly, - - - for A(a), L{g),- - -, ete.
in the computations below.
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Using this set up, let’s first calculate ev, : G — g explicitly.
Let g = expa,a € gand g € G. Then

1 )
exp(Aq,a) =14 (Aq,a) + ;)—'(/\a,a)z 4o

1 1 1
= (14 Ao+ aAﬁ +-La+ 5/\&((1) + o Aba) + )
— ((?)\u. uﬁa o 173)
where “e® — 17 = a+§1—!a-a+ %a-(a-u)%»- -+ . Recall that (A\,,a)%. -

' 2
is calculated using (AO“ 8) ()E)“ ;1)) = (AO" /\"éa)> -, ete.

Hence ev,(g) = ¢ 7 = Ly(z) + ¢, = e*+(z) + “e® — 1", and record this
as

g-r=¢ed(z)+ -1, ¢g=expa
(4.3) L, = el

qg:‘-“(ia—']_”:an‘”a av]t%a(aa)_}_

We know that ev, is a covering map and a left translation [, cor-
responds to ¢ action on g as given in {4.1). To compute locally the
vector fields on g which corresponds to left invariant vector fields on
G, differentiate (4.1) to obtain d(evz)?g ~dly| = d(d(0))]r o dlevy)]e.

Note that d(ev, )| = 14 p; by 3.3 (or we can compute this directly
using explicit formula for ev, given above} and since ¢(g) is an affine
transformation, its differential d(¢(g): is its linear part L,. Hence we
obtain

(4.4) dleve)lgodlyle =Lgo(14+p;), z€X =g, g€G.

Let y € g be a left invariant vector field on G. Then the corresponding
vector field on X = g under the map ev, will be given by Lyo(1+4p,)(y)
at the point ¢g-z € X = g.

Similarly, to obtain the vector fields corresponding to the right in-
variant vector fields, differentiate (4.2) to have d(ev,..)|. = d(ev,)|y 0
dry|.. Then the right invariant vector field generated by y € T.G = g
descends on X = g by ev, to a vector field given by (14 pg.z)(y) at the
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point g-x € X = g. In particular, the left (resp right) invariant vector
field generated by y € T.G = g is locally (resp. globally) ev,-related
to the vector field given by Y,., = L,(y) (resp. Y, = (1 + px)(y)).

Also from this, we see that 14 p,, 2 =g-0 € X = g, can be seen as
the differential of the local map of X = g into itself which corresponds
to the right translation r, on a neighborhood of ¢ € G through ev,.
More precisely, if we choose a neighborhood U of ¢ € G so that ev,|u
is a diffeomorphism, and let 7y = ev, 07y 0 ev,”! on ev (/) C g, then
we have

(4.5) drgl, =14 Pg-o-

We have a following interesting formula for a fixed point of G-action

on X =g.

PROPOSITION 4.1. z € X = g is fixed by l-parameter subgroup
determined by a € g if and onlv if (1 + p,)a = ).

Proof. Observe that

“(explta) - 2) = Leo,explta)
dt(cxp( a) )= T evalexp(tal

= d(ens)], (5 exp(ta)

= d(ev,)| (dl,],(a))

= d(q’)(g))hd(ez,r,) Ja) +differentiate (4.1))

= Ly(d(ev,)| () (recall that ¢(g) = (L, q,))

Hence exp(ta) -z = z if and only if d(ev;)|.(1) = 0, and note that
dlevy)le=14p, : T.G=g—yg O

As an immediate corollary of 4.1, we obtain the following well known
observation [9, 17).

COROLLARY 4.2. —u € X = g is a fixed po.nt of the canonical G-
action on g if and only if 1 — p, =0, ie., u is the right identity of the
left-symmetric algebra structure on g.

Note that in general, the proof of 4.1 shows that a G action on X
has a fixed point z € X if and only if d(ev;)le = 0. In affine case, if
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we choose z as our origin, then G acts as a linear transformation and
¢ : G — GI(V), where V is the vector space obtained from the affine
space by choosing z as the origin. Such an affine structure is called
radiant [6] and this happens exactly when the 1-cocyle t becomes a
coboundary. In terms of the canonical representation, t corresponds to
the identity on g and being a coboundary means thas this equals to p;
for some z € g, which is exactly the content of 4.2.

The proof of 4.1 shows that the infinitesimal action of a € g in affine
case is given by

d .
a‘;io(exp(fa) L) = devz~e(a) = (14 p.)a)=a -z +a

This also can be seen using (4.1), by differentiating the formula exp(ta)-
r = ePe(z) + “e'® — 17 at t = 0. From this we also see that the
infinitesimal linear holonomy action of a € g is given by

d . d _ .
{ ﬁLeXP(ta)(I) = ﬁeb\"(f) = et (a )

',%‘OLexp(ta)(I) =a-x

(4.6)

In fact, we can interprete a - ¢ directly. Since a-.r = V,z and ev, :
G — Q = evo(G) C X = g is an affine equivalence. a -z corresponds
locally to D4X on 2, where A and X are local vector fields on 2
corresponding to left invariant vector fields a and x on G. Of course,
D 4X is a derivative of X (X,., = Lg(z)) in the direction of A.

From the proof of 4.1 and (4.6), we can easily calculate the higher
derivatives of the curve given as an orbit of z under the action of 1-
parameter subgroup generated by a € g.

d
'(EGXp(ta) = LEXP(M)((l + pria)) = et,\a(l + pz)(a)
2
L xplta) -z = e (14 pa)la)) = ¢ (a (14 p)(a))

dt? dt
= et/\a()‘a(l + pz)(a))

n

Et—;exp(ta) = (A1 + pe)(a))
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and

n

EFIOGXP(M) cz = A1+ p.)(a) = alal--- (a4 az)---)).

In particular, if z = 0, we can interprete a, ¢ - a,a(a - a),--- as the
first derivative (=tangent vector), the second derivative (=acceleration
vector), the third derivative, - of the image curve under ev, of of 1-
parameter subgroup generated by a € g at the origin. This also follows
from (4.3) directly.

Now let us examine the geometric meaning of the equation a - = =
0. From (4.6), we see immediately that this holds if and only if
Lexp(ta)(z) = 2 for all t € R. This means that the local vector field
X on Q which is ev,-related to the left invariant vector field z € g is
invariant (i.e., parallel) along the integral curve of A, the local vec-
tor field ev,-related to a € g. In fact, this is exactly what V,r = 0
or DX = 0 means. The following proposition is obvious from this
observation.

PROPOSITION 4.3. For each ¢ € g, the following statements are
equivalent. (Recall G is connected.)

(2) The left invariant vector field z is parallel.

(3) The vector field X on $) ev,-related to z is a constant field.
(Hence globally well-defined.)

(4) Lg(z) =z forallge€ G.

On the other hand, for A : g — gl(g), we have the following.

PROPOSITION 4.4. (i) T = ker X is a two sided ideal of the left-
symmetric algebra g.
(ii) A, = 0 if and only if ¢(g), ¢ = exp, 1s a translation.

Proof. (1) f A\, =0,z -a=0foralla € g, and a-z € T since
(a-7)-y=la,z] y=alzy)—z(ay) =0 for all y € g. (ii) follows from
the fact that Lexp . = et =1. 0O

We have a following interesting equation for p.
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THEOREM 4.5. For any z € g and any g € G, we have

PLy(z) = LngL_; "1+ Pg-o0)-

To prove this theorem, we start with the following lemma which also
shows an interesting (but almost obvious) interpretation of p,. Recall
pr = Vuz.

LEMMA 4.6. Let U be a small neighborhood of ¢ in G. For a left
invariant vector field € g, let (x, g) be the local vector field on evo(gU)
given by evo.(z|yu). If we view (z,g) as a local map : evo(gU) Cg— g
as usual, then p, = D(z,e)|,, the differential of a map (x,c) at o, and
D(-rﬂg)’g~o = LgprL_gl-

Proof. py(y) = Vyx = Dy(z,€) (note that d(evy)]. : TeG =g — @
is the identity mép)7 where D is the usual flat connection on a vector
space g, and Dy(z,e) is the directional derivative the direction of y
and hence equals D(x,e)(y).

Since [, and ¢(g) are cv,-related, from the very definition of (r, g)
we have Ly o (z,¢) = (z,¢) 0 ¢(g), again viewing (r,e) and (z,¢9) as
maps: g — @. Taking differentials on both sides at o, we get

LyoD(z,c)|, = Dlz,g)] o dio(a))], = D(a,9)[,, 0 Ly O

o

As a consequence of this lemma, we see that
(4.7) tr(p.) = div(;r,g)lg ,forallg e G.

where tr(p,) is the trace of p, and div(z,g) is the divergence of the
vector field (z, g) which is defined as the trace of the differential D(z, g).
Hence the divergence of the left invariant vector field z 1s well-defined
and equals tr(p;).
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Proof of 4.5. Let y € T.G = g. Then

pLg(r)(y)
- D(Lg(r)v e)lo(y)

d : i
= a}oLe:y(Lg(:c)) (E Ucty -0 =y and recall (v,e)p., = Lp(v))
d
= E OLety.g(.l‘)
d
= D(z, g)lg.o(ev“rg*y). (Eloety S0 = €UoulgaY

and (z,9)n.o = La(x))

Now if we let z = €v,uTguy, then z = Foeevony = (14 pg.o)(y) by (4.5)
and evoxle = 1. Hence )
Lyp:Ly'(z) = D(z,4)[, (2) (Lemma 4.6)
=pL,()(¥)
= PLy(z)(l + Pg‘o)—l(z)'
O
COROLLARY 4.7. For all z,y € g and g € C, we have
(i) 1+ pge=Ly(1+ Pz)Lg_l(l + Pgo) v
(i) Lg(z-y) = Ly(z) - Lyly) = Ly(Lg (Ly(2) - (g 0)) - y)
(i) Lo(r-y) = ((1+ pyo) ' Ly(a)) - Ly(y).
The proof of this corollary is immediate from the theorem and will be
omitted. (ii) shows explicitly the deficiency for Lg, the linear holonomy,

to be a left-symmetric algebra homomorphism and the corresponding
equation for Lie algebra level is that

Aa(z - y) = Aoz} -y + 7 (Aay) ~ (paz) ¥,

which follows from the left symmetry of the algebra and shows the
deficiency for A, to be a derivation.
In (i), if we let £ = h - o, then (i) can be written as

(4.8) (14 pgro) = Ly(1+ Ph-O)Lghl(l + Pg-0)s
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and reveals a cocycle property of (1 + py.0)7!. In fact, (4.8) can be
proved in a more motivating way. The identity rpo0l; =l;or, on G
descends on 2 C g locally via ev, to the equation 7, 0¢(g) = ¢(g)o7s.
Taking differential on both sides and use (4.5). But of course. the
statement of 4.6 is more general since r can be any point in g, not only

i .

As we saw in the previous discussions, the function 14p, (= dev,|.)
g — g plays an important role in understanding the zeometry of left-
symmetric algebra. The polynomial function p(z) = det(1+ p,) : g —
R is called the characteristic polynomial in [9].

The characteristic polynomial has a following interesting property
well known for complex affine case [9]. And the real case follows 1m-
mediately from Corollary 4.7 and (4.8). Let Ry be tae multiplicative
group of positive real numbers.

COROLLARY 4.8. Let p(z) = det(1 + p,):g = R. Then p(g-r) =
Alg)p(x), g € G, where A : G — Ry is a group homomorphism given
by A(g) = det(1+ pg.0).

Th() characteristic polynomial is very useful for studying the devel-
oping maps or evaluation maps. This together with some applications
of Corollary 4.8 will be discussed in the forthcoming paper.

References

1. Y. Benoist, Une nilvariété non affine, J. Differential Georn. 41 (1995), 21-52.

. N. B. Boyom, The lifting problem for affine structures in nilpotent Lie groups,
Trans. Amer. Math. Soc. 313 (1989), 347-379.

3. A. Elduque and H. C. Myung, On transilive left-symmetric algebras, Non-assoc

(3]

jative algebra and its applications, S. (ionzalez, ed., Kluwer Academic Pub-
lisher, 1994, pp. 114--121.

4. D. Fried, Flat spacetimes, J. Differential Geom. 26 (1987), 385-396.

5. D. Fried and W. Goldman, Three dimensional affine crystallographic groups.
Advances in Math. 47 (1983), 1-49.

6. D. Fried, W. Goldman and M. Hirsch, Affine manifolds with nilpotent holo-
nomy, Comment. Math. Helv. 56 (1981}, 487-523.

7. W. M. Goldman, Geometric structures vn manifolds and varieties of represen-
tations, Geometry of group representation, Contemporary Math. 74 (1988).

8. W. Goldman and M. Hirsch, Affine manifolds and orbits of algebraic groups,
Trans. Amer. Math. Soc. 295 (1986), 175-198.

9. J. Helmstetter, Radical d’'une algebre symmetrique a gauch:, Ann. Inst. Fourier
{Grenoble) 29 (1979), 17-35.



10.

11.

12.

13.

14.

18.

19.

20.

The geometry of left-symmetric algebra 1067

H. Kim, Complete left-invariant affine structures on nilpotent Lie groups, J.
Differential Geom. 24 (1986), 373--394.

, Space of geometric struclures whose developments are coverings, J.
Korean Math. Soc. 28 (1991), 157-166.

H. Kim and H. Lee, Moduli of flul pseudo-Riemannian structures on nilpotent
Lie groups, Internat. J. Math. 3 {1992}, 483-498.

J. L. Koszul, Domains bornes homogenes et orbites de groupes de transforma-
tions affines, Bull. Soc. Math. France 89 (1961), 515-533.

R. Kulkarni, The principle of uniformizations, J. Differential Geom. 13 (1978),
109-138.

. J. Milnor, On fundamental groups of complete affinely flat manifolds, Advances

in Math. 25 (1977), 178- 187.

. T. Nagano and K. Yagi, The affine structures on the real two-torus, Osaka J.

Math. 11 (1974), 181-210.

. A. M. Perea, Flat left-invariant connections adapted to the automorphism struc-

ture of a Lie group, J. Differential Geometry 16 (1981), 445-474.

D. Segal, The structure of complete left-symmelric algebras, Math. Ann. 293
(1992), 569-578.

W. Thurston, The geometry and topology of 3-manifolds, Princeton University
mimeo graphed notes, 1977.

E. B. Vinberg, Convez homogeneous cones, Transl. Moscow Math. Soc. 12
(1963), 340-403.

Department of Mathematics

Seoul National University
Seoul 151-742, Korea

E-mail; HyukKim@math.snu.ac.kr



