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LIE-ADMISSIBLE ALGEBRAS
AND THE VIRASORO ALGEBRA

Hyo CHuL Myung*

1. Introduction

Let A be an (nonassociative) algebra with multiplication zy over
a field F, and denote by A~ the algebra with multiplication [z,y] =
2y — yz defined on the vector space A. If A~ is a Lie algebra, then A
is called Lie-admissible. Lie-admissible algebras arise in various topics,
including geometry of invariant affine connections on Lie groups and
classical and quantum mechanics(see [2,5,6,7] and references therein).
The main approach to the structure theory has been to determine
all Lie-admissible products on a prescribed Lie algebra under certain
conditions. Flexibility or, more generally, third power-associativity is
commonly used in the study of Lie-admissible algebras (1,2,4,5,7].

An algebra A is termed flezible if A satisfies the flexible law

(1) (zy)x = z(yz)
for all z,y € A. More generally, 4 is called third power-associative if
(2) +*z = gzt

for all € A. Much of the structure theory for Lie-admissible algebras
has focused on finite-dimensional algebras [1,5]. The primary concern
of this note is to determine all third power-associative, Lie-admissible
products on the Virasoro algebra.
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2. Main section

Let L be a Lie algebra with multiplication [z,y] over F of charac-
teristic # 2. A multiplication zy defined on the vector space L is said
to be compatible with Lif zy —yz = [z,y]forall z,y ¢ L;ie., L™ = L.
If 2y is compatible with L, then

e,y + oy

o] —

(3) Ty =

for z,y € L, where roy = %(my + yx). In particular. L with product
ry 18 Lie-admissible. A central problem in the study of Lie-admissible
algebras is to determine all compatible multiplications defined on Lie
algebras. This problem has been resolved for finite-dimensional third
power-associative Lie-admissible algebras A with A~ semisimple over
an algebraically closed field of characteristic 0 [1,5]. whereas this is
open for the infinite-dimensional case. In this note, we consider this
problem for the Virasoro algebra, which is important in theoretical
physics and provides a basic example of graded Lie algebras [3].

Let 90 be the (full) Witt algebra over F with multiplication

(4) lenves] = U = ideinys i) € 2,
where {¢; : 1 € Z} is a basis of 20. The Virasoro algebra U over F'(of

characteristic 0) is a one-dimensional extension U = 20F Fe of 0 with
multiplication

lei €] = (] — )eir; + E(ZJ — )iy 0 C,
(¢, V] =[V,c] =0, i,5j€L.

(5)

The following is our principle result.

THEOREM. A multiplication xy defined on U is third power-associa
tive and compatible with U if and only if it is given hy

1 |
(6) Y = §[‘T'y]+7($)y + T(y)$+a(r7y/cu

cr =rc=azr+ Mz, =P x,yc0,
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where A\, 7 : 9 — F are linear functionals, ¢ : W x W — F is a
symimetric bilinear form and «, 8 € F are fixed scalars. Moreover, the
multiplication (6) is flexible if and only if A = 7 = 0, a =0 and o is
identically zero on 90 x 97.

Proof. Assume that zy is third power-associative and compatible
with 0. In view of (3), it suffices to determine the commutative product
z oy on Y. Since zy ~ yz = [r,y], (2) expresses as [z, o z] = 0 for
x € U which is linearized to the identity

(7) 2z, zoy]+ [y, xox] =0, z,y€D.

If (e e;) = -112(1'3 —1)biyj o for i,5 € Z, then ¢ is an F-valued 2-
cocycle of 20. Since the product z oy is commutative, we can let

(8) ﬂioej:Z‘Yi’;CkwLU(@n‘i:‘)ca nJEZ
k€Ez

with 7{3- = ’y]’-“l- € F for a symmetric bilinear form o : 90 x 99 — F.
Letting ¢ = y = ¢, in (7), one has from (5) and (8)

0= [eia €; 0 61'} = Z Wzlc:(k - i)8i+k + :2 7:‘;(}5(61')6’6)67
k k

and hence
k=0, i4k i kecz

If z = e and y = ¢; in (7), then, as above,

2 vhlen el = vilene ],
k

2 bk = ek + 23 vhdles ex)e = v4(j — Deirj + 7ho(ei €)e,
k k

which imply

vE=0, i#k+#y
27’3;‘ =75 = 2’7;1" LF
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for 1,7,k € Z. Therefore, (8) becomes

1

375+ olen )

1.
€i0€; = 5751'5]' +

and the first relation of (6) follows from this with the linear functional
79 — F defined by 7(¢;) = %’yfi (1€ Z).
Next, we linearize (7) to the identity

(9) [u,vow]+ [w,uov|+ [v,wou] =0

for u,v,w € Y. Since 2[e,,coe;] = [e; 0 €;,¢] = 0, there exist linear
functionals g, A : 20 — F such that

ce;=ec=coe; =e¢e;0c = u(e;)e; + Ale;)e.
If u=c¢ej,v=cand w=e¢,in (9), then it follows that
ple; — )0 — 7)eir, + éleisej)e] =0
and hence p(e;) = p(e;) for 7 % j. Since [e;,c0¢] == 0 by (7) for all
t € Z, cc = coc = e for some J. Letting p(e;) = a € F for all
¢ € Z, we have the last relations of (6). Since third power-associativity
is equivalent to (9), it is easy to see that any multiplication on U given
by (6) is third power-associative.
Notice that flexibility (1) is equivalent to the identity

(10) wolv,u] = [uowv,ul, u,veV.

Assume that U is flexible under the product in (6). If u = z and v =y
in (10), then

T(@)ly,x] + 7([y, 2Dz + o 7, [y, 2])e = 7(2)]y, 7]

and hence

(11) (ly,z]) = o(z, [y, z]) = 0
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for all z,y € 2. Since [20,90] = 90, 7 = 0 and the linearization of
o(z,[y,z]) = 0 gives the invariance of o:

(12) U([‘T’y]vz) :a(.r,[y,z]), I,y;ZEQH.

We now show that o is identically zero on 99 x 99, If i # 0, then by
(4) and (12)

0'([61’, 6—i]7 6[]4) = - -2Z.0’(i605 60)

= olei,[e—i, e0)) = io(es,e_;)

and hence o(e;,e_;) = —20(eg, ¢0). For a j # 0 with ¢ +7 # 0, one has
by (4) and (12)

o(lese5], e—(ivi)) = =2(j ~ i)o(eo, €o)
= O’((’h €, (-(l+7)]) = "(7: + Qj)o(eive—l)
=2(1+2j5)o(ep, ep),

which implies o(eq, €9) = 0 and so, by the above o(e;,e_;) = —20(ep,
eo) = 0for all i € Z. Assume i + j # 0. By (4) and (12), o([eo, ei], e;)
=10(eie5) = —0(lei, €], €5) = —o(ey, [eo,€5]) == —jo(es,e;), and thus
o(e;,e5) = 0. This shows that (e;, e;)=0for all 7, j € Z.

The linearization of (10) implies the identity

(13) (u,v0w] = 1o fu,w]+ [u,v] 0w

for all u,v,w € Y. To verify A = 0 and a = 0. for any ¢ € Z, choose
J € Z such that ¢ +j # 0 and ; # 0, +1, so ]l—zl_j3 —J)#0 fu=e¢,,

v=-¢; and w = e_; in (13), then

0=lejcioes]=eolej e s]+[e;,eoe,
1. . 1. _ .
=130 —dleioc = (7 = i)a, + Meie),
and hence Ae;) = a = 0 for all 1 € Z.
Conversely, it 1s easy to see that the multiplication (6) with ¢ =
A=7=0and a = 0 satisfies (10) and thus is flexible. [

As a corollary to the proof of the Theorem, we have -
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COROLLARY. Let 20 be the Witt algebra given by (4) over a field F
of characteristic 0. A multiplication zy defined on 9 is third power-
associative and compatible with 20 if and only if it is given by

1 ,
(14) ey = glyl +7(2)y + rly)z, z,y €W
for a linear functional v : 90 — F. The multiplication (14) is flexible
ifand only if = 0, Le., zy = $[z,y] for all z,y € .

Proof. This follows from the same calculation as in the proof of the

Theorem. O

Multiplications similar to (6) and (14) have been obtained for matrix
algebras, octonion algebras and finite-dimensional simple Lie algebras
over an algebraically closed field of characteristic 0 [1,4,5]. It is rea-
sonable to pose the conjecture that the Theorem holds for any affine
Kac-Moody algebra.

It was brought to our attention by Georgia Benkart that A = 0 and
o = 0 for the flexible case in the Theorem.
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