LIE-ADMISSIBLE ALGEBRAS AND THE VIRASORO ALGEBRA

HYO CHUL MYUNG*

1. Introduction

Let A be an (nonassociative) algebra with multiplication xy over a field F, and denote by A^- the algebra with multiplication [x,y] = xy - yx defined on the vector space A. If A^- is a Lie algebra, then A is called Lie-admissible. Lie-admissible algebras arise in various topics, including geometry of invariant affine connections on Lie groups and classical and quantum mechanics(see [2,5,6,7] and references therein). The main approach to the structure theory has been to determine all Lie-admissible products on a prescribed Lie algebra under certain conditions. Flexibility or, more generally, third power-associativity is commonly used in the study of Lie-admissible algebras [1,2,4,5,7].

An algebra A is termed flexible if A satisfies the flexible law

$$(1) (xy)x = x(yx)$$

for all $x, y \in A$. More generally, A is called third power-associative if

$$(2) x^2 x = xx^2$$

for all $x \in A$. Much of the structure theory for Lie-admissible algebras has focused on finite-dimensional algebras [1,5]. The primary concern of this note is to determine all third power-associative, Lie-admissible products on the Virasoro algebra.

Received May 14, 1996. Revised July 15, 1996.

¹⁹⁹¹ AMS Subject Classification: 17B68, 17D25. Key words: Lie-admissible algebra, Virasoro algebra.

^{*}Partially supported by KOSEF Grant 96-K1-0101-01-01.

2. Main section

Let L be a Lie algebra with multiplication [x,y] over F of characteristic $\neq 2$. A multiplication xy defined on the vector space L is said to be *compatible* with L if xy-yx=[x,y] for all $x,y\in L$; i.e., $L^-=L$. If xy is compatible with L, then

$$(3) xy = \frac{1}{2}[x,y] + x \circ y$$

for $x, y \in L$, where $x \circ y = \frac{1}{2}(xy + yx)$. In particular, L with product xy is Lie-admissible. A central problem in the study of Lie-admissible algebras is to determine all compatible multiplications defined on Lie algebras. This problem has been resolved for finite-dimensional third power-associative Lie-admissible algebras A with A^- semisimple over an algebraically closed field of characteristic 0 [1,5], whereas this is open for the infinite-dimensional case. In this note, we consider this problem for the Virasoro algebra, which is important in theoretical physics and provides a basic example of graded Lie algebras [3].

Let \mathfrak{W} be the (full) Witt algebra over F with multiplication

$$[e_i, e_j] = (j - i)e_{i+j}, \quad i, j \in \mathbb{Z},$$

where $\{e_i : i \in \mathbb{Z}\}$ is a basis of \mathfrak{W} . The Virasoro algebra \mathfrak{V} over F(of characteristic 0) is a one-dimensional extension $\mathfrak{V} = \mathfrak{W} \oplus Fc$ of \mathfrak{W} with multiplication

(5)
$$[e_i, e_j] = (j-i)e_{i+j} + \frac{1}{12}(i^3 - i)\delta_{i+j,0} \ c, [c, \mathfrak{V}] = [\mathfrak{V}, c] = 0, \quad i, j \in \mathbb{Z}.$$

The following is our principle result.

THEOREM. A multiplication xy defined on $\mathfrak V$ is third power-associative and compatible with $\mathfrak V$ if and only if it is given by

(6)
$$xy = \frac{1}{2}[x,y] + \tau(x)y + \tau(y)x + \sigma(x,y)c,$$
$$cx = xc = \alpha x + \lambda(x)c, \quad c^2 = \beta c, \quad x, y \in \mathfrak{W},$$

where $\lambda, \tau: \mathfrak{W} \to F$ are linear functionals, $\sigma: \mathfrak{W} \times \mathfrak{W} \to F$ is a symmetric bilinear form and $\alpha, \beta \in F$ are fixed scalars. Moreover, the multiplication (6) is flexible if and only if $\lambda := \tau = 0$, $\alpha = 0$ and σ is identically zero on $\mathfrak{W} \times \mathfrak{W}$.

Proof. Assume that xy is third power-associative and compatible with \mathfrak{V} . In view of (3), it suffices to determine the commutative product $x \circ y$ on \mathfrak{V} . Since xy - yx = [x, y], (2) expresses as $[x, x \circ x] = 0$ for $x \in \mathfrak{V}$ which is linearized to the identity

(7)
$$2[x, x \circ y] + [y, x \circ x] = 0, \quad x, y \in \mathfrak{V}.$$

If $\phi(e_i, e_j) = \frac{1}{12}(i^3 - i)\delta_{i+j,0}$ for $i, j \in \mathbb{Z}$, then ϕ is an F-valued 2-cocycle of \mathfrak{W} . Since the product $x \circ y$ is commutative, we can let

(8)
$$e_i \circ e_j = \sum_{k \in \mathbb{Z}} \gamma_{ij}^k e_k + \sigma(e_i, e_j) c, \quad i, j \in \mathbb{Z}$$

with $\gamma_{ij}^k = \gamma_{ji}^k \in F$ for a symmetric bilinear form $\sigma : \mathfrak{W} \times \mathfrak{W} \to F$. Letting $x = y = e_i$ in (7), one has from (5) and (8)

$$0 = [e_i, e_i \circ e_i] = \sum_k \gamma_{ii}^k(k-i)e_{i+k} + \sum_k \gamma_{ii}^k \phi(e_i, e_k)c,$$

and hence

$$\gamma_{ii}^k = 0, \quad i \neq k, \quad i, k \in \mathbb{Z}.$$

If $x = e_i$ and $y = e_j$ in (7), then, as above,

$$2\sum_{k}\gamma_{ij}^{k}[e_{i},e_{k}]=\gamma_{ii}^{i}[e_{i},e_{j}],$$

$$2\sum_{k}\gamma_{ij}^{k}(k-i)e_{i+k}+2\sum_{k}\gamma_{ij}^{k}\phi(e_{i},e_{k})c=\gamma_{ii}^{i}(j-i)e_{i+j}+\gamma_{ii}^{i}\phi(e_{i},e_{j})c,$$

which imply

$$egin{aligned} \gamma_{ij}^{k} &= 0, \quad i
eq k
eq j, \ 2\gamma_{ij}^{j} &= \gamma_{ii}^{i} &= 2\gamma_{ji}^{j}, \quad i
eq j \end{aligned}$$

for $i, j, k \in \mathbb{Z}$. Therefore, (8) becomes

$$e_i \circ e_j = \frac{1}{2} \gamma_{ii}^i e_j + \frac{1}{2} \gamma_{jj}^j e_i + \sigma(e_i, e_j) c,$$

and the first relation of (6) follows from this with the linear functional $\tau: \mathfrak{W} \to F$ defined by $\tau(e_i) = \frac{1}{2} \gamma_{ii}^i \ (i \in \mathbb{Z}).$

Next, we linearize (7) to the identity

(9)
$$[u, v \circ w] + [w, u \circ v] + [v, w \circ u] = 0$$

for $u, v, w \in \mathfrak{V}$. Since $2[e_i, c \circ e_i] = [e_i \circ e_i, c] = 0$, there exist linear functionals $\mu, \lambda : \mathfrak{W} \to F$ such that

$$ce_i = e_i c = c \circ e_i = e_i \circ c = \mu(e_i)e_i + \lambda(e_i)c.$$

If $u = e_j$, v = c and $w = e_i$ in (9), then it follows that

$$\mu(e_i - e_j)[(i - j)e_{i+1} + \phi(e_i, e_j)c] = 0$$

and hence $\mu(e_i) = \mu(e_j)$ for $i \neq j$. Since $[e_i, c \circ c] = 0$ by (7) for all $i \in \mathbb{Z}$, $cc = c \circ c = \beta c$ for some β . Letting $\mu(e_i) = \alpha \in F$ for all $i \in \mathbb{Z}$, we have the last relations of (6). Since third power-associativity is equivalent to (9), it is easy to see that any multiplication on \mathfrak{V} given by (6) is third power-associative.

Notice that flexibility (1) is equivalent to the identity

(10)
$$u \circ [v, u] = [u \circ v, u], \quad u, v \in \mathfrak{V}.$$

Assume that \mathfrak{V} is flexible under the product in (6). If u = x and v = y in (10), then

$$\tau(x)[y,x] + \tau([y,x])x + \sigma(x,[y,x])c = \tau(x)[y,x]$$

and hence

(11)
$$\tau([y, x]) = \sigma(x, [y, x]) = 0$$

for all $x, y \in \mathfrak{W}$. Since $[\mathfrak{W}, \mathfrak{W}] = \mathfrak{W}$, $\tau = 0$ and the linearization of $\sigma(x, [y, x]) = 0$ gives the invariance of σ :

(12)
$$\sigma([x,y],z) = \sigma(x,[y,z]), \quad x,y,z \in \mathfrak{W}.$$

We now show that σ is identically zero on $\mathfrak{W} \times \mathfrak{W}$. If $i \neq 0$, then by (4) and (12)

$$\begin{split} \sigma([e_i, e_{-i}], e_0) &= -2i\sigma(e_0, e_0) \\ &= \sigma(e_i, [e_{-i}, e_0]) = i\sigma(e_i, e_{-i}) \end{split}$$

and hence $\sigma(e_i, e_{-i}) = -2\sigma(e_0, e_0)$. For a $j \neq 0$ with $i + j \neq 0$, one has by (4) and (12)

$$\begin{split} \sigma([e_i,e_j],e_{-(i+j)}) &= -2(j-i)\sigma(e_0,e_0) \\ &= \sigma(e_i,[e_j,e_{-(i+j)}]) = -(i+2j)\sigma(e_i,e_{-i}) \\ &= 2(i+2j)\sigma(e_0,e_0), \end{split}$$

which implies $\sigma(e_0, e_0) = 0$ and so, by the above $\sigma(e_i, e_{-i}) = -2\sigma(e_0, e_0) = 0$ for all $i \in \mathbb{Z}$. Assume $i + j \neq 0$. By (4) and (12), $\sigma([e_0, e_i], e_j) = i\sigma(e_i, e_j) = -\sigma([e_i, e_0], e_j) = -\sigma(e_i, [e_0, e_j]) = -j\sigma(e_i, e_j)$, and thus $\sigma(e_i, e_j) = 0$. This shows that $\sigma(e_i, e_j) = 0$ for all $i, j \in \mathbb{Z}$.

The linearization of (10) implies the identity

$$[u,v\circ w]=v\circ [u,w]+[u,v]\circ w$$

for all $u, v, w \in \mathfrak{V}$. To verify $\lambda = 0$ and $\alpha = 0$, for any $i \in \mathbb{Z}$, choose $j \in \mathbb{Z}$ such that $i + j \neq 0$ and $j \neq 0, \pm 1$, so $\frac{1}{12}(j^3 - j) \neq 0$. If $u = e_j$, $v = e_i$ and $w = e_{-j}$ in (13), then

$$0 = [e_j, e_i \circ e_{-j}] = e_i \circ [e_j, e_{-j}] + [e_j, e_i] \circ e_{-j}$$

= $\frac{1}{12} (j^3 - j) e_i \circ c = \frac{1}{12} (j^3 - j) (\alpha e_i + \lambda(e_i)c),$

and hence $\lambda(e_i) = \alpha = 0$ for all $i \in \mathbb{Z}$.

Conversely, it is easy to see that the multiplication (6) with $\sigma = \lambda = \tau = 0$ and $\alpha = 0$ satisfies (10) and thus is flexible. \square

As a corollary to the proof of the Theorem, we have :

COROLLARY. Let $\mathfrak W$ be the Witt algebra given by (4) over a field F of characteristic 0. A multiplication xy defined on $\mathfrak W$ is third power-associative and compatible with $\mathfrak W$ if and only if it is given by

(14)
$$xy = \frac{1}{2}[x,y] + \tau(x)y + \tau(y)x, \quad x,y \in \mathfrak{W}$$

for a linear functional $\tau: \mathfrak{W} \to F$. The multiplication (14) is flexible if and only if $\tau = 0$, i.e., $xy = \frac{1}{2}[x, y]$ for all $x, y \in \mathfrak{W}$.

Proof. This follows from the same calculation as in the proof of the Theorem. \Box

Multiplications similar to (6) and (14) have been obtained for matrix algebras, octonion algebras and finite-dimensional simple Lie algebras over an algebraically closed field of characteristic 0 [1,4,5]. It is reasonable to pose the conjecture that the Theorem holds for any affine Kac-Moody algebra.

It was brought to our attention by Georgia Benkart that $\lambda = 0$ and $\sigma = 0$ for the flexible case in the Theorem.

References

- G. M. Benkart, Power-associative Lie-admissible algebras, J. Algebra 90 (1984), 37-58.
- A. Elduque and H. C. Myung, Mutations of Alternative Algebras, Math. Appl. Vol. 278, Kluwer Acad. Publ., Boston, 1994.
- V. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge Univ. Press, New York, 1990.
- 4. H. C. Myung, Power-associative products on octonions, Comm. Algebra 13 (1985), 1681-1697.
- H. C. Myung, Malcev-Admissible Algebras, Prog. Math. Vol. 64, Birkhäuser, Boston, 1986.
- H. C. Myung, Non-Unital Composition Algebras, Lecture Notes Ser. no. 22.
 Global Analysis Research Center, Seoul, 1994.
- S. Okubo, Introduction to Octonion and Other Non-Associative Algebras in Physics, Cambridge Univ. Press, New York, 1995.

Department of Mathematics KAIST

Taejon 305-701, Korea

E-mail: myung@hardy.kaist.ac.kr