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CONVEX DECOMPOSITIONS OF REAL
PROJECTIVE SURFACES. III: FOR
CLOSED OR NONORIENTABLE SURFACES

SunYouNnGg CHOI

The purpose of our research is to understand geometric and topolog-
ical aspects of real projective structures on surfaces. A real projective
surface is a differentiable surface with an atlas of charts to RP? such
that transition functions are restrictions of projective automorphisms
of RP?. Since such an atlas lifts projective geometry on RP? to the
surface locally and consistently, one can study the global projective
geometry of surfaces.

This paper is the final piece of the series of the papers [2] and [3].
With this paper, we get a satisfactory classification of all real projective
structures on surfaces (see [4]). This final paper shows that a nonori-
entable real projective surface also has an admissible decomposition
and a closed real projective surface decomposes into pieces that are
convex real projective surfaces or 7-Mobius bands.

Recall that the complement of a one-dimensional subspace in RP?
has a canonical affine structure of a complete atfine plane. The comple-
ment is said to be an affine patch. A real projective surface has convex
boundary if each point of the boundary has a neighborhood admitting
a chart to a convex domain in an affine patch. Let S be an orientable or
nonorientable real projective syrface with convex or empty boundary.
(We will often refer to {2] and [3] for definitions and results needed in
this paper). Let S denote the universal cover of S, and 7(S) the fun-
damental group of S, identified with the group of deck transformations.
Given S. there is an immersion dev : § — RP? and a homomorphism
h:m(S) — PGL(3,R) satisfying dev oy = h(~) o dev for each deck
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transformation v € 7;(S). The pair (dev, k) is said to be the devel-
opment pair. The sphere S? double covers RP? and has an induced
real projective structure. A projective map is a map preserving real
projective structures. Consider S? as the quotient of R® — {O} by
the equivalence relation given by z ~ y if z = sy for s € R*. An
element of GL(3,R) induces a projective automorphism of S?. and
every projective automorphism of S? arises in this way. Hence the
group Aut(S?) of projective automorphism is isomorphic to GL(3,R)
quotient out by the subgroup {sI|s € R*}. Hence, Aut(S?) is isomor-
phic to the group SL4(3,R) of linear maps of determinant +1. Given
the development pair (dev,h) of S. we can lift dev to a projective
immersion dev’ : § — S% and h to &' : m1(S) — Aut(S?) satisfying
dev’oy = h/(y)odev for each deck transformation y. (dev’, k') is also
said to be a development pair. We will say that dev' is a developing
map and h' a holonomy homomorphism and drop the primes in the
paper. (see 2, Section 1] for details.)

Since an open hemisphere in §? identifies with a complement of a
one dimensional subspace of RP? under the double covering map, the
open hemisphere has an affine structure of a complete affine plane,
compatible with the projective structure in the sense that an arc in
the hemisphere is affinely geodesic if and only if it is projectively ge-
odesic up to parametrizations. S2 has a standard Ricmannian metric
of curvature 1 as S? is realized as the standard sphere in R®. An arc
in S8? is geodesic in this metric if and only if it is projectively geodesic
up to parametrizations. Let us denote by d the distance metric on S?
induced by the Riemannian metric. A convex segment in S* is a geo-
desic segment of d-length < 7. A convex subset of §* is a subset such
that given any two elements there exists a convex segment connecting
them. Under this definition, S? itself and any great circle is convex,
and in an open hemisphere, the convexity in the atfine sense agrees
with our notion.

A surface S is convex if given two points in S, there exists a geodesic
segment which dev maps homeomorphic to a convex segment. Given
a convex compact surface S with x{S) < 0, we proved that dev :
S — 8% is an imbedding onto a convex domain in a hemisphere of
S? (see Lemma 1.5 of [2]). Furthermore, if x(S) < ¢, then dev(9) is
a convex subset of an open hemisphere bounded with respect to the
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affine coordinates, i.e., a simply convex subset of S2.

A Klein model of hyperbolic plane can be understood as the in-
terior () of the unit disk in an affine patch in RP? with the group
PS0(2,1) ¢ PGL(3,R) acting on it as the group of isometries. Hence,
each hyperbolic surface gives rise to the quotient surface Q/T" where T
1s a discrete torsion free subgroup of PS0(2,1). Since I consists of pro-
Jective transformations, the quotient surface is a real projective surface.
2/T" is convex since its developing map is realized as a section  — S2
of the double covering map. We can deform these surfaces to obtain
other convex real projective surfaces (see Koszul [7] and Goldman [6]).
In fact, the deformation space of convex real projective structures on
a closed surface of genus g, ¢ > 1, is determined by Goldman [6] to be
topologically a cell of dimension 16¢ — 16, and Goldman gives explicit
parameters to describe any convex real projective surface of genus ¢
up to isotopy.

Not all real projective surfaces with convex or empty boundary are
convex. This was shown by Goldman [5] and Sullivan-Thurston [10]
by grafting annuli with geodesic boundary to a convex real projective
surface. However, we will show that orientable real projective surfaces
decompose into convex pieces (see Theorem 2). Nonorientable surfaces
decompose into convex pieces and 7-Mébius bands.

We say that S is the sum of connected subsurfaces Si,..., S, if
S is the union of Sy,....S, and S; N S; is the union of imbedded
closed geodesics disjoint from one another or the empty set whenever
t#7J,%5 =1,...,n (compare with Section 3.1 in [5]). If S is the sum
of §1,...,5,, then we say that S decomposes into Si....,S, (along
closed geodesics) and that {S;,...,5,} is a decomposition collection
of S. (See [3], [5], and [6].)

A hyperbolic automorphism of S? is one induced by a linear map
with three distinct positive eigenvalues. A quasi-hyperbolic automor-
phism of 8% is one induced by a linear map with two distinct positive
eigenvalues and a nondiagnalizable matrix. Let D be a compact simply
convex domain in §? whose boundary is the dis Joint union of a segment
a and a compact smooth open arc 3 with two common endpoints p and
g. The quotient surface of D — {p, q} by a properly discontinuous and
free action of < ¥ > where ¥ is a hyperbolic or quasi-hyperbolic pro-
jective automorphism of S$? has an induced real projective structure.
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A real projective surface projectively homeomorphic to such a surface
is called a primitive trivial annulus. It is homeomorphic to a compact
annulus. One of its boundary components is not geodesic, and the
other is geodesic. A trivial annulus in S is a primitive trivial annulus
A imbedded in S such that a component of é5 equals the nongeodesic
component of 0A. (We will give some examples in Section 1).

For a surface S of negative Euler characteristic, a simple closed
curve « in S° is freely homotopic to a multiple of a component curve
of 65 if and only if the union of & and a component 3 of 45 forms
the boundary of an annulus in S. (To see this use the model of S in
the hyperbolic plane.) Hence, a is freely homotopic to 3 or 37! for a
boundary component curve 7 but to no other multiple of 3.

A purely convex surface is a convex compact surface 4 with nega-
tive Euler characteristic that does not include a compact annulus with
geodesic boundary components freely homotopic to a component of 64
or include a trivial annulus with respect to A. (See Appendix A of
[3].) An elementary annulus is defined in Section 1. A boundary ele-
mentary annulus in S is an elementary annulus including a boundary
component of S.

By Proposition 4.5 of [3] gives us:

PROPOSITION 1. A convex compact orientable surface S of negative
Euler characteristic is a sum of purely convex surface and boundary
elementary annuli and trivial annuli. Furthermore, 5 is purely convex
if and only if S does not include any boundary elementary annuli or
trivial annuli.

One can obtain a convex but not purely convex surface by attaching
an elementary annulus to a purely convex surface (see Section 4.4 of
2.

A maximal purely convex surface in S is a purely convex surface in
S that is not included properly in a purely convex surface in S.

A maximal annulus in S is a compact annulus with geodesic bound-
ary that is not included properly in a compact annulus or a compact
Mébius band with geodesic boundary in S. A maximal Mobius band
in S is a compact Mobius band with geodesic boundary that is not
included properly in a compact Mébius band with geodesic boundary

m S.
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A4

FIGURE 1. A picture of an admissible decomposition: purely
convex surfaces Sy, S, a trivial annulus 7}, and maximal

annuli A;, 1 =1,2,3,4.

We say that the above three categories of subsurfaces of S, ie.,
trivial annuli; maximal annuli or Mébius bands; and maximal purely
convex surfaces in S are admissible subsurfaces in S. The three cate-
gories of surfaces are considered to have mutually distinct types. If §
decomposes into admissible subsurfaces of S, then the decomposition
collection is admissible.

We will prove the nonorientable case of the Admissible decomposi-
tion theorem of [3]:

THEOREM 1. Let ¥ be a nonorientable compact real projective sur-
face with convex or empty boundary and negative Euler characteristic.
Then ¥ admits a unique admissible decomposition.

For a surface with boundary, the admissible decomposition does not
necessarily mean that we can further decompose it using Goldman’s
annulus decomposition theorem [3, Appendix B] to convex pieces since
a maximal annulus whose fundamental group has a generator of quasi-
hyperbolic holonomy does decompose into elementary annuli of type
I, convex ones. One can easily construct a purely convex surface with
a boundary component curve whose holonomy is quasi-hyperbolic as
noted in Section 4.4 of [3]. An elementary annulus of type Ila is not
convex (see Section 1). By attaching an elementary annulus of type Ila
to a purely convex surface with a boundary component curve whose
holonomy is quasi-hyperbolic, we can obtain admissible decomposition
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which does not further yield a decomposition into convex pieces. For
a closed surface, we will show that elementary annuli of type II do
not occur because of strange behavior of a closed geodesic curve whose
holonomy is quasi-hyperbolic.

A m-Mobbius band is a real projective Mobius band projectively
homeomorphic to the quotient surface of a compact annulus that is
a sum of two elementary annuli of type I by the action of the group
generated by an order-two projective automorphism. We give a con-
struction of 7-Mobius bands at the end of the paper.

THEOREM 2. Let ¥ be a closed orientable or nonorientable real
projective surface with negative Euler characteristic. Then ¥ uniquely
decomposes into purely convex subsurfaces, elementary annuli of type I
(which is convex), and m-Mébius bands such that no two purely convex
subsurfaces are adjacent.

In particular, if ¥ is orientable, then ¥ decomposes into convex
subsurfaces, since elementary annuli of type I are convex. This implies
the Convex decomposition theorem, which we mentioned in [4]. These
theorems answer the question of Thurston and Goldman raised around
1977 for closed or nonorientable surfaces.

In Section 1, we give examples of elementary annuli and trivial an-
nuli. In Section 2, we prove that an admissible decomposition of a
surface induces one on its covering and vice versa. This implies Theo-
rem 1 easily. To prove this property, we discuss the properties of tight
curves, show that purely convex surfaces, trivial annuli, and bound-
ary elementary annuli are preserved under the action of the covering
maps, whether pushing it to the quotient surface or pulling it back by
taking the components of the inverse images under the covering map.
Finally, we show that a decomposition into purely convex surfaces, triv-
1al annuli, and maximal annuli or Mdbius bands 1s admissible if and
only if the adjacent surfaces are of different types. This will complete
the proof of this property. In Section 3, we prove Theorem 2. Since
any closed real projective surface has an admissible decomposition, we
further decompose maximal annuli and Mobius bands into elementary
annuli or 7-Mobius bands by Goldman’s annulus decomposition theo-
rem. We show that elementary annuli of type II does not occur since
the surface is closed. This follows since the boundary components of
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an elementary annulus of type II have quasi-hyperbolic holonomy. In
Section 4, we classify 7-Mobius bands.

This paper is a revised version of a part of the author’s doctoral
dissertation [1]. The author wishes to thank his adviser W. Thurston
for his help. The author also wishes to thank R. Bishop, Y. Carriere,
W. Goldman, Hyuk Kim, and P. Tondeur for many helpful discussions
and Jinha Jun for writing the graphics program for Figures 2 and 3.
The other graphics were drawn by Hunminjungum™.

1. Examples

For convenience of the reader, we will repcat some examples given
in [3]. Given a point z of S? we let —z denote its antipodal point.
Let ¥ be a hyperbolic automorphism. It has three fixed points s, m,
and w corresponding to eigenvalues Aj, Az, A3 respectively where A\; >
Ag > A3 > 0. Their antipodal points —s, —m, and —w are also fixed
points. The great circles including two pairs of antipodal fixed points
are U-invariant and each component arc of the circle removed with fixed
points are Y-invariant lines. (A line in a real projective surface is an
imbedded geodesic defined on an interval.) Let [, be the great circle
containing m, —m, w, and —w; l, that containing s, —s, w, and —w; and
I3 that containing s, —s,m, and —m. S? removed with these circles are
simply convex triangles where ¥ acts on. s and —s are attracting fixed
points of the action of < 9 >, and the corresponding attracting basins
are the open hemispheres that are components of §? — I; containing
s and —s respectively. w,—uw are repelling fixed points and m, —m
fixed points of saddle type. The closure of any invariant open triangle
has three fixed points from each of the pairs {s, —s}, {m,—m}, and
{w,-w}.

For points y and z in S’ that are not antipodal, by 77 we mean a
unique minor geodesic segment connecting y and z. An oriented arc is
curved in one direction if a convex neighborhood of each of its point
has two components such that the one in the given direction is convex.
An unoriented arc is curved in one direction if it is so when given an
orientation. Given a point z in the open triangle, Unez 9™ (z)dm+1(z)
is an arc connecting the attracting fixed point and the repelling fixed
point in the closure of the triangle. (See Figure 2.) The arc, say a,
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is curved in one-direction since one can see that the curve z¥(z) U
¥(2)9%(z) is curved in one-direction, & is the union of the images of
the curve under 9", and 9" preserves the orientation of 82 and that of

the curve.

FIGURE 2. The action of a hyperbolic automorphism stere-
ographically projected.

One way to understand Figure 2 is to realize 9 as generated by a
Lie algebra element corresponding to a vector field in S2. The vector
field is zero at s, —s,m, —m,w, and ~w, and the complement of the
zero set is foliated by flow lines. The components of [; removed with
fixed points are flow lines. At s, each flow line in the open ¥-invariant
triangles is tangent to the lines 37 or 5 — m, at w to Wm or w — m,
and m is a saddle type singularity. Similar statements hold at —s. —w,
and —m. Thus, the orbit usually starts off tangent to a ¥-invariant

line.
Let  be a quasi-hyperbolic automorphism. Then the linear map '
corresponding to ¢ has two eigenvalues one of which corresponds to a
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two-dimensional subspace P where ¢’ is represented by the matrix

Al
(0 3)
¢ has four fixed points s/, —s', w’, and —w'. Let I} be the great cir-
cle containing the four fixed points. Then exactly one of {s’,~s'} or
{w', —w'} is a subset of a p-invariant great circle I}, corresponding to
P, the other is disjoint from I}, and w acts as an affine translation on
I3 removed with the fixed points of I5. (Since components I}, removed

with the fixed points are open 1-dimensional hemispheres, they have
the natural affine structure of an affine 1-space.)

FIGURE 3 The action of a quasi-hyperboiic automorphism
stereographically projected.

Assume without loss of generality that ¢',--s' € I}. Each of the
six components of [j U I} removed with fixed points is a @-invariant
open line. Each of the four components of S — I} — 1} is a ¢-invariant
open lune. The closure of the open lune contains s', —s' as vertices and
exactly one of w', —w' in the boundary. Suppose that the eigenvalue
corresponding to w' is less than that to s’. Let B be the closure of
one of the lunes above. Suppose that B contains w' in the boundary
and the action of ¢ on the interior of I, N B is & translation toward s'.
Then for each point z in B°, UnEZ o"(z)e"*1(r) is an arc connecting
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s" and w' curved in one-direction. 'This holds by a reason similar to
the hyperbolic case. For any other choice of the lune B, the action on
the interior of ) N B, and the condition on the eigenvalues of ' and
w', the corresponding statements hold (See Figure 3 )

To understand Figure 3, we see ; as generated by a Lie algebra
element corresponding to a vector field on S2. The zero set of the
vector field is {s, —s,w, —w}. Components of I} removed with the fixed
points are flow lines. At s, each flow line in an oper. @-invariant lune
is tangent to ;. At w, each such flow line is tangent to —sw. Similar
statements hold at —s and —w. Hence, we can see the behavior of the
orbits in Figure 3 (similar to the arcs of the vin-yang symbol).

Let T be the closure of a J-invariant open triangle above. We may
assume without loss of generality that s, w. and m are on the boundary
of T. We obtain two elementary annuli:

T"Uws’Ums’/ <9 > T Uws’Umm’/ <9 > .

(The other choices of edges will give us non-Hausdorff quotient spaces.)
The real projective surfaces projectively homeomorphic to the above
annuli are said to be elementary annuli of type I. (Note 9 may vary.)

Let B be the closure of one of the invariant lunes of ¢ above. We
may assume without loss generality that w' is on the boundary of B
and ¢ acts on the interior a of I, N B as a translation toward s’. Then
there are two elementary annuli:

B Usw U=sw'’} < ¢ > B°Usw" Ua/ <p>.

{(As above, the other choice of the edges will result in non-Hausdorff
spaces.}) The real projective surfaces projectively homeomorphic to
the above annuli are said to be elementary annuli of type Ila and IIb
respectively. (Note ¢ may vary.)

One can easily see that the above four are all the corpact elementary
annuli one can construct that include the open annuli obtained from
T or B® by the actions of < ¥ > or < ¢ > respectively.

We can give examples of primitive trivial annuli. In T above, let
a be the curve | J, .z 9"(2)9"*+1(z). Then a and @s bound a convex
J-invariant open set K, and K Ua U@35°/ < 9 > is a primitive trivial
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annulus. We may choose a to be any 9-invariant curve in T° connect-
ing w and s curved in one direction and construct a primitive trivial
annulus.

In B above, let a be the curve Unez ¢7(£)¢"*t1(z). Then a and

w’s’ bound a convex w-invariant open set K, and K Ua UW"/ <>
1s a primitive trivial annulus. Again, we may choose a to be any 9-
invariant curve in B° connecting w and s curved in one direction.

Any trivial annulus 7T is projectively homeomorphic to one con-
structed as above: Let D be a compact simply convex domain in S2
whose boundary is the disjoint union of a segment 5 and a compact
smooth open arc 4 with two common endpoints p and g. Suppose that
T is projectively homeomorphic to D — {p,q}/ < ¥ > where ¥ is a
hyperbolic automorphism.

Since D — {p,q} covers a compact annulus, there is no fixed point
of ¥ in D — {p,q}. If D meets a 9-invariant open line other than 3°,
then since D is ¥-invariant, D contains the endpoints of the open line.
Since the endpoints are fixed points, they must be p and g. This means
that the line is 3°. This is absurd. Thus D — pg meets no d-invariant
line and D — pq is included in one of the Y-invariant open triangle.
Hence, D is bounded by a dJ-invariant arc in the open triangle curved
in one direction and an edge of the triangle, and 7 is projectively
homeomorphic to one constructed above. If ¥ is quasi-hyperbolic, a
similar argument will show the corresponding result.

We will need the following lemma.

LEMMA 1. Let E be an elementary annuius. Then dev|E is an
imbedding onto its image. Depending on whether E is an elementary
annulus of type I, Ila, or IIb, dev(E) equals one of the following sets
respectively:

A°UT3° UT03°, B° Ua® — {z},B°Ua’ U 3,

where A is a triangle with vertices vq,vy, and vy, B a lune, o a segment
of d-length 7 in the boundary of B, z a point of a°, and 3 an open line
of d-length < 7 also in the boundary of B disjoint from o but sharing
an endpoint with «.

If E is a trivial annulus, then dev|E is an imbedding onto D — {p,q}
where D is a simply convex domain in S? bounded by a geodesic and
an arc sharing endpoints p and q.
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Proof. Suppose that E is an elementary annulus of type 1. E is pro-
jectively homeomorphic to a projective quotient surface of a convex
domain () in a closed triangle in S2. Thus E is projectively home-
omorphic to  and E is convex. By the proof of Lemma 1.5 of [2]
we obtain that dev|E is an imbedding onto its image. Since dev(E)
and ) are projectively homeomorphic and any nonsingular projective
map defined on an open domain of $? extends to a global projective
automorphism of S2, we obtain by the description of § in this section
that

dev(E) = A U757 U057,

where /A is a triangle with vertices vy, vy, and v3. The rest of the
lemma follows similarly. []

2. Admissible Decomposition

Let § and Sy be compact projective surfaces with convex or empty
boundary and negative Euler characteristic. Let f : Sy — S be a
projective finite covering map. Suppose that § is the sum of S3,....5,
and Sy the sum of Sy...., 85 m. We say that {Sfq.....Sfm} is a
decomposition collection pulled from {S,,...,S,} il Sy, for each 1,
i =1,...,m, is a component of f71(5;) for some j, ; =1,...,n.

It is obv ious that given each decomposmon collection of S, there
exists a unique decomposition collection of Sy pulled from it. Con-
versely, given a decomposition collection of Sy, there can be at most
one decomposition of S from which the decomposition collection of Sy
1s pulled.

THEOREM 3. (1) If a decomposition collection {S;,...,S,} of S is
admissible, then the decomposition collection of Sy pulled from it is
admissible.

(2) If a decomposition collection {Sg1,...,Sfm} of S5 is admissi-
ble, then there exists an admissible decomposition collection of S from

which {S¢1,...,Sfm} is pulled.

Proof. 1t is suflicient to prove this theorem in case Sy is orientable:
Assume that the above theorem is true if Sy is orientable. Now suppose



Convex decompositions of real projeciive surfaces 1151

that Sy is not orientable. Then there is an orientable double cover
(5}", p) of 5.

Let us prove (1). Let 7 be an admissible decomposition collection
of S. There exists a decomposition collection J on S¢ pulled from 7
by f, and a decomposition collection K of S}'l pulled from 7 by p. It is
obvious that K is pulled from T by fop. By (1) in the orientable case,
K is admissible. (2) in the orientable case shows that there exists an
admissible decomposition collection 7' of Sy from which K is pulled.
Clearly, J = J', and (1) is proved.

Let us prove (2). Let J be an admissible decomposition collection
of S¢. Then the decomposition collection X of S}’ induced by p is also
admissible by (1) in the orientable case. By (2) in the orientable case,
there exists an admissible decomposition collection T of S from which
K is pulled by fop. Let J' be the decomposition of St pulled from 7.
Then K is pulled from J'. Hence, 7' = J. and J is pulled from T by
f. g

We are left with proving the theorem in the case when Sy 1s ori-
entable.

Let M be an (orientable or nonorientable) real projective surface
with convex or empty boundary. Recall that a geodesic in M always
maps into M° or else into §M as a covering of a component of §M
up to parametrizations since ¢M is convex (see Lemma 3.4 of [2] or
Section 2.1 of [3]).

A geodesic complex K in M is a compact subset with the follow-
ing property: for each point p of K, the surface M includes an open
neighborhood U of p such that

UNK = O l;
t=]

holds where each I;,7 = 1,...,n, is a maximal line in &/ passing through
p- Recall that an image of a closed geodesic is a geodesic complex. (See
3).)

Let K be a geodesic complex. A regular point of K is a point of A
with a neighborhood in K that is a line, a vertex of K is a point of
K that is not regular, and a regular arc of K is a component arc of K
removed the set of vertices. Regular arcs of K are imbedded geodesics.
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LEMMA 2. Let K be a geodesic complex in M°, and p a vertex of
K. Then there exists a closed geodesic into K passing through p in
the direction of each regular arc ending at p.

Proof. See Section 3.6 in [3]. O

Recall that a geodesic in M always imbeds to a one-dimensional
manifold by Section 4.8 of [2] since (M) < 0. A convex line in M is
an imbedded line ! such that dev|! is an imbedding onto a convex line
in S%,

A closed geodesic a : 81 — M, where S! is a circle, is called a tight
curve in M if its lift to M is a geodesic imbedding onto a convex open
line (see Section 2 of [3]). For example, a closed geodesic in a convex
real projective surface of negative Euler characteristic is a tight curve
(see Lemma 1.5 of [2]). The boundary components of elementary annuli
are tight curves by Lemma 1; so is the geodesic boundary component
of a trivial annulus. Basic properties of tight curves are described in
Proposition 2.2 of {3]. They are very similar to those of closed geodesics
in hyperbolic surfaces.

LEMMA 3. Let a be a tight curve and 3 a closed geodesic with same
tmage as «. Then 3 is a tight curve. Moreover, if g : M — M' is a
covering map, and g o v for a closed curve v is a tight curve, then so is

~

Y.

Proof. Since a geodesic returning to its starting point tangent to its
initial vector must be an infinite cyclic cover of a closed curve up to
parametrizations, a equals 3' o ¢ up to parametrizations where ¢ is a
finite covering map S! — S' and 3’ is a tight curve injective except
at finitely many points. Since 3 must equal 3’ o ¢’ for a finite covering
map S' — S! by same reason, 3 is a tight curve also. The last part
follows from the first. [

Let M' be a real projective surface with a projective covering map
g: M'" — M. Let a C M’'° be an imbedded tight curve. Then g(a) is
a geodesic complex in M°. Moreover, ¢7'(g(a)) is a geodesic complex
in M'°. Suppose that g|a is not a covering map onto its image. Then
some points of a are vertices of the complex g='(g(a)).

LEMMA 4. Under above assumptions, there exists a tight curve in
M?® intersecting essentially with « in homotopy.
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Proof. By Lemma 2 there exists a closed geodesic 4 in 97 (g(a))
passing p transversally with respect to o at p. Since g o 3 is also a
closed curve mapping into g(«), Lemma 3 shows that gofis a tight
curve. Hence, 3 is a tight curve.

We claim that 3 intersects a essentially. We obtain a finite cover
M" of M' with covering map p: M" — M’ sc that 3 lifts to a simple
tight curve 8" (see Proposition 2.2 of [3], a result following from Scott
[8] and [9]). M" includes an imbedded tight curve a” corresponding
to « under p that intersects with 3.

If 3 intersects trivially with « in homotopy, then there is a homotopy
{8:}, 0 <t <1, 50 that 8y = $ and B3y does not meet a. The lift {3!'}
of {8} to M" with 3 = B" has the property that the lift By does
not meet a’. That is, 4" intersects o trivially in homotopy. By
Proposition 2.2 (4) of [3], a” equals the image curve of 3”. Hence, a
equals the image curve of 3. This is a contradiction. O

We will now begin to show Proposition 2, which says that the cov-
ering maps preserve the types of surfaces.

-

LEMMA 5. Let M be a convex surface. Then a covering of M is
convex, and so Is a surface covered by M.

Proof. We defined a convex surface to be a projective surface whose
universal cover is convex. (See also Section 1.5 of [2].)

A boundary elementary annulus in S is an elementary annulus (see
[3]) including a component of 6.

PROPOSITION 2. Let A and Ay be subsurfaces of S and Sy re-
spectively such that f|A; is a finite covering map onto A. Then the
following statements hold :

(1) Ay isa trivial annulus in Sy if and only if A is a trivial annulus
inS.

(2) Ay is a boundary elementary annulus in Sy if and only if A is
a boundary elementary annulus in S.

(3) Ay is a purely convex surface if and only if A is a purely convex
surface.

Proof. (1) If Ay is a trivial annulus in Sy, then by Lemma 2.5 of (3],
one of its boundary components is the unique imbedded tight curve
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in Ay, and the other component is a component of 6Ss. Hence, A is
homeomorphic to an annulus, and one of its boundary components is
a component of 5. The other boundary component ¢ is an imbedded
tight curve since it is covered by the boundary component of 4 £, which
is a tight curve. ¢ must be the unique imbedded tight curve since Ay
would have more than one imbedded tight curves by taking inverse
images under f otherwise. Hence, A is a trivial annulus by Lemma 2.5
of [3].

Conversely, if A is a trivial annulus in S, then one of its boundary
component ¢ is a unique imbedded tight curve and the other component
1s a component of 65 by Lemma 2.5 of [3]. Hence, A ¢ is homeomorphic
to an annulus, and one of its boundary component ¢ is an imbedded
tight curve and the other component is a component of §Sf. Let v be
a tight curve to A. Then v is freely homotopic to a finite covering of ¢
since 71(A) = Z. By Proposition 2.2 of [3], ¥ maps into a tight curve,
which must be ¢ since A is a trivial annulus. Since all tight curves in
A map into ¢, it follows that given any imbedded tight curve +' in Ay,
f(¥") = ¢, and, hence, cy is the unique imbedded tight curve in 4.
Hence, A; is a trivial annulus in Sy by Lemma 2.5 of [3].

(2) This is proved similarly to (1).

(3) Suppose that Ay is a purely convex subsurface of S;. Then A
is convex by Lemma 5 and has negative Euler characteristic. If 4 is
not purely convex, then A includes E, a trivial annulus or an annulus
with geodesic boundary, whose components are freely homotopic to a
boundary component of A. By (1), a component of the inverse image
of E in Ay is a trivial annulus or an annulus with geodesic boundary,
whose components are freely homotopic to a component of é4;. This
is a contradiction, and A is purely convex.

Suppose that A is purely convex. Then A is convex by Lemma 5
and has negative Euler characteristic. If A is not purely convex, then
Ay includes E, a trivial annulus or a boundary elementary annulus by
Proposition 1.

A component c of §E is an imbedded tight curve in S%. The inverse
image f~!(f(c)) is a geodesic complex in 5% (see above). Since ¢ is
freely homotopic to a component of 65y, closed curves intersect trivially
with ¢ in homotopy. By Lemma 4, there is no vertex of f~!(f(c)) in
¢, and f|c is a covering map onto an imbedded tight curve ¢4 in S°.
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Since f(c) is an imbedded tight curve, f71f(c)) consists of compo-
nents that are disjoint imbedded tight curves. By Lemma 2.5 of (3],
E? includes no component of f~1(f(c)) since E is a trivial annulus or
an elementary annulus. Hence, intE is disjoint from f~1( f(¢)) and is
a component of Sy — f~1(f(c)).

Let d be the other boundary component of £. Then fldis a covering
map onto a boundary component dg of S. Let S, be the component
of § — ¢4 including d4. Clearly, fintE is a covering map onto Sy, and
S4 is homeomorphic to an annulus. If ¢4 is not separating, then since
S is the union of Sy and ¢y, S is homeomorphic to a Mébius band,
which is a contradiction. By Lemma 6, SyUcy is a compact subsurface
of S with a boundary component ¢4, and flE is a covering map onto
S4 U cq. Hence, Sq U ¢y is an annulus.

By (1) and (2), SqUcq is a trivial annulus or a boundary elementary
annulus with respect to A. This contradicts the assumption that A is
purely convex. Hence, A ¢ 1s purely convex.

LEMMA 6. Let I be the union of disjoint simple closed curves in
§°. Suppose that there is no closed curve intersecting I at a point
transversally and intersecting [ at no other point. Let T be the closure
of a component of S — I, and Ty that of a component of S —f7HD).
Then

(1) T is a surface whose boundary is the union of components of
I and 65 intersecting T.

(2) Ty is a surface whose boundary is the union of components of
f~Y(I) and 8S; intersecting Ty.

(3) If a point of intTy maps into intT, then fITy is a covering map
onto T.

Proof. Straightforward.

Now we show that decomposition of surfaces are admissible if and
only if the types of adjacent surfaces are different. Let M be a real
projective surface with convex or empty boundary.

PROPOSITION 3. Suppose that two admissible subsurfaces in M
(orientable or nonorientable) are adjacent. Then their types are differ-
ent from each other.
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Proof. As before, it follows from the following Lemma 7, a nonori-
entable version of Lemma 5.4 of [3]. [

LEMMA 7. Let M,,..., M, be purely convex subsurfaces of M. If
{M,,...,M,} is a decomposition collection of a connected subsurface
M', then M' is a purely convex subsurface of M.

Proof. We may assume that M is not orientable by Lemma 5.4 of
[3]. Let M? be the orientable double cover of M with double covering
map p. Then let M"” be a component of p~!(M'), where p|M" is a
covering map onto M'. Now, M" admits a pulled decomposition into
subsurfaces My',..., M]. Since M’ for each ¢ covers M; for some j,
M|’ 1s purely convex for every 7, i = 1,...,m by Proposition 2. By
Lemma 5.4 of [3], M" is purely convex. By Proposition 2, M’ is purely
convex. [J

COROLLARY 1. Suppose that M admits an admissible decompo-
sition. If an imbedded tight curve « is a boundary component of a
surface in the admissible decomposition collection, and a is not freely
homotopic to a boundary component of M, then a is & common bound-
ary component of a maximal annulus or Moébius band A and a purely
convex surface B.

Proof. A curve in a trivial annulus is always freelv homotopic to a
curve in a boundary component of M. [J

A converse of Proposition 3 is proved.

ProPosSITION 4. Let {S},...,S5.,} be a decomposition of S into
trivial annuli, annuli or Mébius bands with geodesic boundary, and
purely convex surfaces. Suppose that the types of adjacent surfaces
are distinct. Then it is an admissible decomposition.

Proof. We only need to show that the annuli or Mdbius bands and
purely convex surfaces are maximal. First, we assume that S is ori-
entable. Suppose that S be an annulus with geodesic boundary and
that A is a compact annulus with geodesic boundary including S} prop-
erly. Then there exists an adjacent surface S} of S}, which could be
a trivial annulus or a purely convex surface, whose boundary compo-
nent is included in A°. This is a contradiction by Ccrollary 4.6 of [3].
Hence, S! is maximal. If S!is a purely convex surface, then a similar
argument shows that S/ is maximal.
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Suppose that S is not orientable and S} an annulus with geodesic
boundary. If S! is not maximal, then Si is included properly in a com-
pact annulus or Mobius band A4 with geodesic boundary. Let §" be
the double cover of S and {S¥,..., 5"} for some n be the induced de-
composition of $”. Then there exists S  covering S! and a component
A', a compact annulus with geodesic boundary, of p~!(A) including
S}' properly. This leads to contradiction as in the above paragraph
by Corollary 4.6 of [3]. When S’ is a Mébius band or purely convex
surface, a similar reasoning shows that S! are maximal. [

We give the proof of Theorem 3.

(1) Let each S¢, be a component of f71(S,) for some j. Hence, by
Proposition 2, each Sy ; is a trivial annulus, an annulus with geodesic
boundary, or a purely convex surface. Since the types of adjacent
surfaces in {$;,...,5,} are different, the types of adjacent surfaces in
{Sfa.-...Ssm} are different. By Propositiorn 4, the admissibility is
proved.

(2) We have an admissible decomposition collection {Ss1.-- o Sfm}
of §y. There is the collection of imbedded tight curves that are com-
ponents of S;; N Sy, for 1,7 = 1,...,m, ¢ # 7. Let us denote this
collection by Z;. This collection is composed of imbedded tight curves
in S} disjoint from one another. Let

Ij’»: U x.

O‘EI}

Naturally, intSy; for each 7 is a component of S¢— If and that the
closure of each component of Sy —1Isis Sy, for some j.

We prove (2) by the following three steps:

(1) We claim that for each tight curve « in Iy, the map flo is a
covering map onto an imbedded tight curve ‘n $°. It is clear that
fla) € §°. Suppose that f|a is not a covering map onto its image.
By Lemma 4, « intersects essentially with a tight curve 3, and hence,
a 1s not freely homotopic to a component of ¢S 7. By Corollary 1, «
1s a component of §A4 for a maximal annulus .4 in the decomposition
collection of Sy. Since each boundary component of A is not freely
homotopic to a component of ¢Sy, all boundary components of A are
boundary components of maximal purely convex surfaces in the decom-
position collection of Sy. By Proposition 4.5 (8) and Lemma 5.5 of (3],



1158 Suhyoung Chot

A includes a 7-annulus B. However, Lemma 3.8 of [3] contradicts the
previous claim that a intersects essentially with a tight curve 3. Hence
fla is a covering map onto an imbedded tight curve in S°. Similarly,
Lemma 3.8 of [3] shows that given two distinct elements a and 3 of
Ty, the imbedded tight curves f(a) and f(3) in S° are either identical
or disjoint.

(i1) Let 7 be the collection of mutually disjoint imbedded tight curves
in 5° that are images of elements of Z; under f. Let

I={]a

acT

Clearly, Iy C If = FHI). Welet T} denote the collection of imbedded
tight curves that are the components of Iy, (Each component is not
null-homotopic. )

We claim that S includes no closed curve intersecting I at a point
transversally and intersecting I at no other point. Suppose not. Let
« be an element of 7 such that an imbedded closed curve 3 in §°
intersects a at a point transversally and intersects I at no other point.
A component S of § — I includes J — a. Let a; be an element of
Iy mapping to «, and Sy ; and Sy ; the subsurfaces in the admissible
decomposition collection of Sy with a common boundary component
ay. Then every finite-covering curve y of « intersects with 3 essentially
in homotopy: We can obtain a neighborhood U of ol 8 homeomorphic
to a punctured torus or a Klein bottle. If U is homeomorphic to a
punctured torus, then under the orientable double covering S' of S, it
follows that v and o lift to a punctured torus in §' corresponding to
U under the covering map. But in S, the closed curves respectively
homotopic to the lifts of v and 8 nmust always meet by the oriented
intersection theory. By the homotopy lifting property. v and 3 intersect
essentially. If U is homeomorphic to a Klein bottle, then under the
same covering U is covered by an orientable surface U' in S’. and
v, o, and A%, a double covering curve of 3, lift to U'. Then a similar
argument shows that v and 37 intersect essentially. Thus. no conjugate
of the homotopy class of v equals a multiple of a homotopy class of any
component curve of 65. Hence, no conjugate of the homotopy class of
the curve corresponding to plas equals a multiple of a homotopy class
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of any component curve of 6S. Since p, : m1(5f) — m1(S) is injective,
ay is not freely homotopic to a component of §S I

By Corollary 1, we may assume without loss of generality that Sy,
is a purely convex surface and $ £ @ maximai annulus. Let C; be the
component of intSy; — I f 1ntersecting a one-sided neighborhood of a,
and C; that of intSy ; — I§. Then C; is an open surface of negative
Euler characteristic. Otherwise, we would have two freely homotopic
tight curves in the purely convex surface S f,i» which is a contradiction
by Lemma 4.5 of [3]. However, C; is an annulus. Since C; and C;
are components of Sy — I, fIC; and f|C; are covering maps of intS®.
This is a contradiction by the Euler character:stic consideration.

(111) Lemma 6 and (ii) imply that the closures of components of §— T
form a decomposition collection. Let us denote it by {S{,...,S"}.
Similarly, the closures of components of S 5 — 1§ form a decomposition
collection of purely convex surfaces, compact annuli or Mobius bands
with geodesic boundary, or trivial annuli. Moreover, given each com-
ponent R of Sy — I} and its closure CI(R) of R in Ss, fICH(R) is a
covering map onto CI(R’) for & component R’ of § — I.

Proposition 2 implies that each S! is either a trivial annulus, an
annulus or Mébius band with geodesic boundary, or a purely convex
subsurface. We can form a new decomposition collection {51,...,S"}
by taking unions of adjacent surfaces whenever they have the same type
until every pair of adjacent surfaces have different types. By Lemma 7,
the union of adjacent surfaces of one type is still a surface of that type.
So, each S is either a trivial annulus, an annulus or M6bius band with
geodesic boundary, or a purely convex surface, and adjacent surfaces
in {S1,...,S5,,} are of different types. By Prorosition 4, {S;,...,S! }
is admissible.

The pulled decomposition collection of S of {S},....8".} is admis-
sible by (1), and hence is identical with {Ss1,-.-,Sfm} by the unique-
ness part of the Admissible decomposition theorem of [3]. Hence, this
completes the proof of (2).

We will now prove Theorem: 1 : That is, we show that when & is
not orientable, ¥ has a unique admissible decomposition collection.

We first prove existence. Let ©¢ be the orienzable double cover of T,
The cover ©¢ has an admissible decomposition collection {&¢,... ©4
by the Admissible decomposition theorem in [3:. By Theorem 3 (2), ©
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has an admissible decomposition collection {£, ... yEm}

We now prove uniqueness. Let {T}, ..., £} be an admissible decom-
position collection of £. Then by Theorem 3 (1), the decomposition
collection {ZY,...,Z7} of £¢ pulled from it is also admissible and,
hence, is identical with {$4,... %%} by the uniqueness in orientable
case in [3]. Thus {¥},... 2} is identical with {;, .., %,,}.

It is interesting to note that we can prove the existence of admissible
decomposition not using Theorem 3. The cover ©¢ has an admissible
decomposition collection {£f,....T4}. Since S? is a regular covering,
there is an order-two deck transformation @ acting on S?¢. Since the
admissible decomposition is unique, # preserves the decomposition col-
lection. Hence, there exists a decomposition collection {£1,...,85} of
S from which {Z{...., 2%} is pulled. As before by Propositions 2 and
4, 1t is admissible. The uniqueness follows since the induced decom-
positions of ¢ from any admissible decomposition of ¥ is admissible.
(To prove this, we have to follow the proof of Theorem 3 (1).)

3. Convex Decomposition

A closed curve or an annulus is said to be hyperbolic (resp. quasi-
hyperbolic) if the holonomy of the generator of the fundamental group
1s hyperbolic (resp. quasi-hyperbolic). A Mébius band is said to be
hyperbolic (resp. quasi-hyperbolic) if the holonomy of the square of a
generator is hyperbolic (resp. quasi-hyperbolic).

We will now prove Theorem 2. Since éT = 0, the surface T is the
sum of maximal purely convex surfaces and maximal annuli or Mdbius
bands. Let us denote by 7 the admissible decompuosition collection.
By Lemma 4.3 in [3], every closed curve in a purely convex surface
is hyperbolic or quasi-hyperbolic. Every boundary component curve
o of a maximal annulus or Mébius band in 7 is hyperbolic or quasi
hyperbolic since o equals a boundary component curve in a purely
convex surface in 7.

By following Proposition 5, each maximal annulus or Mdbius band
in 7 1s hyperbolic since ¥ is a closed surface. By Goldman’s annulus
decomposition theorem in [3], every hyperbolic maxinial annulus is the
unique sum of elementary annuli of tvpe I.
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We claim that a hyperbolic maximal Mobius band is a sum of ele-
mentary annuli of type I and one 7-M&bius band: Let M be a maximal
Mobius band, and A the orientable double cover of M. Then by Gold-
man’s annulus decomposition theorem in [3], 4 is the sum of elementary
annuli of type I. The orientation-reversing covering transformation
of order two acts on A. By the uniqueness of the decomposition, 9
preserves the decomposition. Because of strong and weak boundary
components (see Section 1 and Lemma 3.1 of |3]), an elementary annu-
lus of type I does not admit an orientation-reversing order-two projec-
tive self-homeomorphism. Thus, there are even number of elementary
annuli of type I such that < ¢ > acts on the union of the pair of el-
ementary annuli in the middle. Hence, M is the sum of elementary
annuli of type I and a m-Mobius band.

The above two paragraphs imply the the existence of the decom-
position of S into purely convex surfaces, elementary annuli of type 1,
and m-Mobius bands. By construction, no two purely convex surfaces
in the decomposition collection are adjacent.

Let us call the above decomposition collection J. Let J' be any
decomposition collection of S into purely convex surfaces, elementary
annuli of type I, and 7-Mobius bands such that no two purely convex
surfaces are adjacent. We take unions of adjacent elementary annuli of
type I and 7-Mobius bands until none of the ejementary annuli of type
I or 7-M6bius bands is left. This gives a new decomposition collection
7' of S into purely convex surfaces and annuli or Mébius bands with
geodesic boundary. By Proposition 4, 7’ is admissible. Hence, 7' = 7.
Since the decomposition of an annulus or Mébius band with geodesic
boundary into elementary annuli and 7-Mdbius bands is unique by the
annulus decomposition theorem in (3], J' = J. The uniqueness is
proved. [J]

Recall the definition of elementary annuli of type Ila and IIb in
Section 1.

PROPOSITION 5. Let S be an orientable compact real projective
surface with convex or empty boundary and negative Euler character-
istic. If A is a quasi-hyperbolic maximal annulus in S, then §S is not
empty, and A includes a component of §S. Moreover, A decomposes
into elementary annuli of type Ila.

If S is not orientable, thern there is no quasi-hyperbolic maximal
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Mobius band in the admissible decomposition collection of S. This
follows from taking the orientable double covering of S, the above
claim, and the fact that the boundary component of a maximal Mébius
band lies in S°.

To prove our proposition, we need a slightly lengthy discussion in-
troducing an assignment of 1 or —1 for quasi-hyperbolic imbedded
tight curves. This will be based on the observation that two sides of a
quasi-hyperbolic imbedded tight curve are not projectively equivalent.

Let o be an arbitrary quasi-hyperbolic imbedded tight curve in S.
Then we have either a C S° or a C 6S. Let U be a neighborhood of
«. We assume that if a C S§°, then U is homeomorphic to an open
annulus and that if @ C 65, then U is homeomorphic to a compact disk
removed a single interior point. Thus [/ —a has one or two components.
We call the relative closure in U of a component of U — a a one-sided
neighborhood of a. A one-sided neighborhood is homeomorphic to
a compact disk removed a single interior point. Suppose that « is
oriented. Depending on which side of a the one-sided neighborhood
lies. we call it a left-sided or right-sided neighborhood of a.

Let a and f be quasi-hyperbolic imbedded tight curves respectively
in real projective surfaces S, and S;. Two respective one-sided neigh-
borhoods U and V of a and § are called projectively equivalent if there
are a one-sided neighborhood U’ of a in U and a one-sided neighbor-
hood V' of 7 in V such that U’ and V' are projectively homeomorphic.
This is an equivalence relation.

Let ¥ be an arbitrary quasi-hyperbolic projective automorphism of
S*, and S! the great circle of S% on parts of which ¥ acts as an affine
translation (see Section 1). Let w and —w be the fixed points of ¥ not
on 8!, and let s and —s be the fixed points on S'. {w and s do not
necessarily indicate fixed points of largest and smallest eigenvalues.)
Let H, be the open hemisphere of §? — 8! including ws°. Let a
and ay be the two segments sharing endpoints s and —s such that
bdH; = a; Ua,. Let B; be the open lune bounded by ws, w—s, and
a1, and By the open lune bounded by W3, w—s, and .

LEMMA 8. Exactly one of B; U w3® and B, U W3° includes a 9-
invariant simply convex one-sided neighborhood of Ws°. Furthermore,
every one-sided neighborhood of W&° in the set includes a V-invariant
simply convex one-sided neighborhood of ws°.



Convex decompositions of real projective surfaces 1163

Proof. By replacing ¥ by ¢¥~! and relabeling if necessary, we may
assume without loss of generality that the eigenvalue corresponding
to s is greater than that of w and the action of ¥ on a$ is an affine
translation toward s. (See Figure 3.) Then the action of ¥ on aj is an
affine translation toward —s.

Let 3 be |J,,cz 97(z)9"H1(2) in B, for z € B,. This is curved in one
direction. Then from Figure 4, it is easy to see that B and ws bound
an open simply convex domain D in By, and 3° U D is a ¥-invariant
simply convex one-sided neighborhood of @s°. (The reason that D is
convex is that the boundary of Cl(D) can be easily shown to be curved
in one direction only. D is simply convex since Cl(D) is a subset of a
lune Cl(B;) and does not contain both of the vertices of Cl( B, )

Moreover, if there is a J-invariant convex open domain D’ in B, such
that ws® U D' is a one-sided neighborhood, then ¥"(z#) for a point z
of ws” and t of D' converges to a, as n — oo. Since a; includes a pair
of antipodal points and the closure of D' incliudes ay, it follows that
D' is not simply convex. Hence, B, U W3 includes no simply convex
one-sided neighborhood.

Since the choice of z in By is arbitrary, the final statement of the

lemma holds. [

We let BY to be B;, i = 1,2, such that B; U ws® includes a 9-
invariant simply convex one-sided neighborhood of ws° (see Figure 4).
Let B~ be B;, i = 1,2, such that B; Uws° includes no 9-invariant
simply convex one-sided neighborhood of ws°.

Let E be the open annulus given by (H; — w—s)/ < ¢ >, and ay
the imbedded tight curve in E corresponding to ws°. Then E is the
union of two one-sided neighborhoods Esy and Ey _ of ay that are
the respective images of B* U @s° and B~ U 73° under the quotient
map.

By Lemma 8, E; . includes a simply convex one-sided neighbor-
hood of oy and Ey _ no simply convex one-sided neighborhood of ay.
(Moreover, every one-sided neighborhood of ay in Ey + includes a sim-
ply convex one-sided neighborhood of ay.) Therefore, Ey , and Ey _
are not projectively equivalent one-sided neighborhoods of a.

A short tight curve is a tight curve such that dev composed with
its lift to the universal cover is an imbedding onto a convex line in
S? that is simply convex. For example, by Lemma 1, the boundary
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components of elementary annuli of type I are short, and so are those of
elementary annuli of type Ila. However, only one boundary component
of an elementary annulus of type IIb is short; the other one corresponds
to a line connecting a pair of antipodal points. Since the developing
map of a convex compact surface of negative Euler characteristic is an
imbedding onto a simply convex subset of S2. it follows that any tight
curve in such a surface is short.

Let o be an arbitrary imbedded short tight curve in S whose holo-
nomy 1s conjugate to 1. We claim that an open extended surface S’
of § includes an open neighborhood of « projectiveiy homeomorphic
to an open neighborhood of ay in Ey: Let o' be the component of
p~'(a)in S. Then a deck transformation v corresponding to o acts on
o' where h(7) is quasi-hyperbolic. Recall that we can always change
the development pair (dev. ) of the given real projective surface S as
follows:

dev' = Jodev,h'(-) = doh(-)o s~

for any 3 € Aut(S8?) (see [2] and [10]). By changing the development
pair if necessary, we may assume that A(y) = . Then since a’ is an
nnbedded line, dev]a' is an imbedding onto a ¥-invariant simply con-
vex line in §%. Thus, it is one of the four ¥-invariant simply convex
lines: W3 w — ", “ws’, or “w — s~ By changing dev by automor-

phisms commuting with o if necessary, we may assume without loss
of generality that it is Ws°. Therefore, dev immerses a y-invariant
open neighborhood of o' to a ¥-invariant open neighborhood of w3°.
Hence, dev induces a projective immersion f from a neighborhood of
@ to that of ay in Ey. Obviously, f restricts to an imbedding from a
neighborhood of o to that of ay.

The above shows that each one-sided neighborhood in S of a quasi-
hyperbolic tight curve a is projectively equivalent to Eg 4 or Es _.
Moreover, a one-sided neighborhood of « is projectively equivalent to
Ey 4 if and only if a one-sided neighborhood of & cn the other side
15 projectively equivalent to Ey . We now introduce an assignment
of integers 1 or —1 to a given an orientation. Suppose that the right-
sided neighborhood of « is projectively equivalent to Ey 4 or that the
left-sided neighborhood of « is projectively equivalent to Ey _. Then
we let sign(a) = 1. Suppose that the right-sided neighborhood of « is
projectively equivalent to Ey _ or that the left-sided neighborhood of
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@ is projectively equivalent to Ey ;. Then we let sign(a) = —1. (See
Figure 4).

FIGURE 4. Es yand Ey _

Let us now list properties of this assignment and introduce another
assignment:

(i) Suppose that a is a boundary component, of a purely convex sur-
face or trivial annulus P in S. Let a be given a boundary orientation.

Suppose that P is a purely convex surface. Let & be a component of
p~!(a) with a deck transformation ~ acting on 1t corresponding to a.
Let P’ be a component of p~*(P) including & in the boundary. Then
since P’ is a universal cover of P, and P is purely convex, it follows
that dev|P’ is an imbedding onto a simply convex domain D in S?
(see the proof of Lemma 1.5 of [2]). Let o’ be the image of &. Then
h(7) acts on a' and h(7) is quasi-hyperbolic.

Choose a small segment I in D meeting o' transversally. Let p be
the endpoint of I in D° and g one on o’. The endpoints of a', say w and
s, are fixed points. Since o’ is simply convex, we have w # —s. Let S!
be the great circle where h(7) is represented as a nondiagonal matrix
and assume without loss of generality that s,-s € S! and w, —w ¢ S!
(see Section 1). If D intersects S! — {s, —s}, then since v acts on P’,
h(7) acts on D hence, and D is convex, it follows that D includes a
component of 8! — {s, —s}. This is a contradiction since D is simply
convex. Thus, D is a subset of a closed lune B bounded by a segment
B in S' with endpoints s and —s, and the segment ws U w — s.

By changing vy to y~! if necessary, we may assume without loss of
generality that the eigenvalue corresponding to s is greater than that
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of w. h(7) acts as an affine translation on 3°. If the action of h(%) on
3 is a translation toward —s, then h(y)™(I) converges to 3 as n — oo.
Since the closure Cl(D) of D is simply convex, this is a contradiction.
Hence, the action of h(7y) on 3° is an affine translation toward s.

The proof of Lemma 1.5 of [2] shows that dev|P’ induces a projective
homeomorphism f : P — D/T where T' is the image under % of the
group of deck transformations acting on P'. Let g : D — D/T denote
the quotient map and A a one-sided neighborhood of a in P. Let A’
be the component of ¢=!( f(A)) including @s°. Then we may choose [
short enough so that the convex quadrilateral E bounded by I, h(y)(1),
ph(7)(p), and qh{~)(q) is included in A’. Then Uncz H(7)"(E) is a
simply convex neighborhood of @s° in A’ as in the proof of Lemma 8
and corresponds to a simply convex one-sided neighborhood of o in A
(up to removing a boundary component).

If P is a trivial annulus, then P removed with a boundary component
is a simply convex one-sided neighborhood of . Hence, sign(a) = —1.

(i) Given an elementary annulus E of type Ila, let o and 3 be
components of dE, which are not oriented. We let signp(a) be the
sign of o given the boundary orientation from E and sign p(0) that
of 3 given the boundary orientation. (That is, an interior one-sided
neighborhood of « includes a simply convex one-sided neighborhood if
and only if sign g(a) = —1.) Then fromn the model of elementary annuli
of type Ila in Section 1, we see that if a has a simply convex one-sided
neighborhood, then 8 does not and vice-versa: Again this depends on
the direction of affine translations ou the interior of I, N B and the
eigenvalues associated with fixed points w' and s'. (Use the notation
of Section 1.) To illustrate, suppose that the eigenvalue associated with
s' is greater than that of w'. If the action of ¢ in the mterior of I}, N B
is toward s, then W3° has a simply convex one-sided neighborhood in
B Uws®. If not, then w —s does. Therefore, we have signp(a) =
—signg(5).

(iii) Let E be an elementary annulus of type IIb. Suppose that o is
the short tight-curve component of §E. Section 1 shows that the short
tight-curve component corresponds to w's’~ which has a w-invariant
simply convex one-sided neighborhood by the proof of Lemma 8. Thus,
the interior of any one-sided neighborhood of a includes a convex one-
sided neighborhood. Thus, we let signp(a) = —1. (Since the other
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boundary component of E is not short, we do not assign any value on
it.)

(iv) Let E and E; respectively be two elementary annuli of type 1lla
and IIb adjacent to each other. If 4 is a common component of §E
and §E;, then 8 is a short tight curve and signp(8) = —signg (8). If
E and E; both are of type Ila, then the same statement holds again.

We now prove Proposition 5 using the above four properties (i), (i1),
(iii), and (iv): Let A be the quasi-hyperbolic maximal annulus in S.
Then A is the sum of elementary annuli E;, 1 = 1,....n, of type 1la
or IIb by the annulus decomposition theoren: of Appendix B of [3].
We may assume without loss of generality that E, N E; is empty if
It = j| > 1 and that E; N E;y, is the common component of §E; and

0F;yyfori=1,...,n—1. Let a,,i =1,...,n—1, denote the common
component of §E; and §E, ;. Let aq denote the component of éE; not
among «;. t =1,...,n — 1, and a, the component of §E, not among

the same collection. The admissible decomposition theorem implies
that A is adjacent to a purely convex surface. We may assume without
loss of generality that ag is the common boundary component of A
and the purely convex surface.

By (i), we have signg (@) = 1. By (iii), the only short boundary
component of every elementary annulus of type IIb is given —1; thus,
E; is an elementary annulus of type Ila, oy is short, and signg, (o)) =
—1 by (i1). An induction using (i), (ii), (iii), and (iv) implies that each
a@; is short for ¢ = 0,...,n, each E, is an elementary annulus of type
ITa, and that we have

signEl(ao) =1. signEl(al | = _]__/
SignEz(al) - 1. SignE2(a2 | = —1’
SignEn(an_]) o= 1’ SignEn(an) — _1

By (i), o, is not a boundary component of an adjacent purely convex
surface or trivial annulus. Hence, Theorem 1 implies that «, is a

component of 6S and 65 # (. 0O
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4. m-Mobius bands

We give a construction of 7-Mébius bands. Let 9 be an arbitrary hy-
perbolic projective automorphism of S2. Let s,m,w,—38, —m, and —w
denote the fixed points of ¥ as in Section 1 (but without the assumption
on the eigenvalues). Then there exists a lune B bounded by two invari-
ant segments « and 3 ending at points m and —m. « contains a fixed
point s and 3 the fixed point w. (B is just the union of two ¥-invariant
triangles). We assume that s is the attracting or repelling fixed point
of the action of < ¥ >. There exists a unique orientation-reversing
projective automorphism ¢ where we have ¢? = o, p(m) = —m and
s and w are fixed points (to see this diagonalize ¥). Consider the set
B* = B°U(a’—{s}). Then < ¥ > and < ¢ > act properly discontin-
uously and freely on B*. By the definition of elementary annuli in Sec-
tion 1, B*/ < ¥ > is a compact annulus which is a sum of two elemen-
tary annuli of type I, and B*/ < ¢ > is a compact Mobius band. There
exists a projective double covering map f: B*/ < ¥ >— B*/ < ¢ >.
Since the covering is a regular two-fold-covering, there exists an order-
two deck transformation # on B*/ < ¥ > induced by ¢ so that the
quotient of B*/ < 1 > by the action of < # > is projectively home-
omorphic to B*/ < ¢ >. Hence, we constructed a m-Mobius band
B*/ < >.

We will now show that any 7-Mé&bius band is projectively homeo-
morphic to one constructed as above. Let A be the annulus that double
covers a 7-Mobius band M where A4 is the sum of two elementary an-
nuli E; and E; of type I. Then the universal cover M of M is the union
of two subsurfaces E; and E, meeting each other on a line « and they
cover E; and E, respectively. E, has two boundary components a, a
subset of M°, and a line aq; Ey two boundary components a and a
line ary, such that o and a; are all of the boundary components of M.

Let ¢ be the deck transformation of M corresponding to the gen-
erator of m)(M). Then ¥, 9 = 2, is the deck transformation corre-
sponding to the generator of 7;(A4). Let us choose a development pair
(dev,h) of M. Here dev : M — S is a real projective map and h
satisfies h(#) o dev = dev o 8 for each deck transformation 8 of M
where h(8) € Aut(S?).
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Since E; is an elementary annulus of type I, Lemma 1 shows that
(1) dev(El) = A Uv107° UTa13°,

where A is a triangle with vertices vy, vz, and v;. Clearly, A, is h(9)-
invariant. Similarly, dev|E, is an imbedding onto a subset of another
h(¥)-invariant triangle A,.

It is clear that A and A, meet at Cl(dev(¢)), and their union is an
h(?¥)-invariant lune B. We call s and w the endpoints of Cl(dev(a)),
and call m and —m the vertices of the lune B so that m € A; and —m €
Aj. By equation 1, dev(E;) equals A°Ums® Lws° or AU Uws®.
A similar statement holds for dev(E,). Hence, dev(M) equals one
of the four sets: (i) B° Umu°® U “muw”, (ii) B° Ums® U —ms°, (iii)
B°Umw® U =ms’, or (iv) B° Us° U =muw".

Above paragraphs show that dev|E{ U Eg is injective, and dev|a

is an injective map into the complement of dev(E? U ES). Since M?°
equals Ef U ES U a, dev|M?® is an injective immersion onto B°, and
hence is a projective homeomorphism. Since B? is convex, M?° is con-
vex. Recall the projective completion M of M from Section 1 of [2].
By Section 1.4 of [2], for the closure CI(M?°) of M° in M, dev|Cl(M°)
is an imbedding onto B since M? is convex. Since CI(M?°) equals M
and hence includes M, it follows that dele is a projective homeo-
morphism onto dev(M).

Moreover, < k() > and < h(19) > act on dev(M) with the follow-
ing commutative diagram holding:

~ ¢

M s M

J'dev ldev

- h{w) .
dev(M) —— dev(M),

where the same diagram with ¢ replaced by ¥ also holds. Since the
actions of < ¢ > and < ¥ > are properly discontinuous and free on
M, the actions of < h(p) > and < h(9) > on dev(M) are properly
discontinuous and free.

Since the deck transformation ¢ commutes with ¥, the action of
< ¢ > descends to an order-two projective action on A. Since the
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decomposition of A into elementary annuli are unique by the annulus
decomposition theorem (see [3, Appendix B]), the action preserves the
simple closed curve Fy N E,. Hence ¢ preserves a, and h(y) preserves
ws. Since h(y) does not fix a point of Ws°, w and s are fixed points of
h(g).

Since h() is orientation reversing, Alp)(m) = —m and h(¢)(—m) =
m. In order that < h(p) > acts on dev(M), it follows that dev(M)
can only be of the form (i) or (ii). Suppose that

dev(M) = B° Umw® U =muw’ = B¥.(1)

Then we have the following commutative diagram:

dev

M — B%

g K
M 2, BE/ < h(g) >,

where p is the covering map, ¢ the quotient map, and dev' the induced
map. It follows that dev’ is a projective homeomorphism. Since < ¥ >,
where ¥ = 2, acts on B¥ properly discontinuously, w is an attracting
or repelling fixed point of the action of < ¥ > on S%: If w is a fixed
point of saddle type, then the action of < 9 > on B is not properly
discontinuous. It follows that B¥/ < h(p) > is a 7w-Mobius band
constructed as in the beginning of this section. If B¥ is of the form
(1), we can show similarly that M is projectively homeomorphic to a
m-Mobius band constructed as above.
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