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A CLASS OF INFINITE SERIES SUMMABLE
BY MEANS OF FRACTIONAL CALCULUS

JUNESANG CHOI

ABSTRACT. We show how some interesting results involving series sum-
mation and the digamma function are established by means of Riemann-
Liouville operator of fractional calculus. We derive the relation
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and explain some special cases.

1. Introduction

In [8] B. Ross evaluated

1-3-5---(2n - 1)
1 =1In4
(1) nz::] n2"n' "
by using the technique of the misnomer fractional calculus (see (6], [7]
and [5]). D. Callan also happened to discover the identity (1) somewhat
serendipitously in considering a probability problem as noted in [1].
In [9] B. Ross and S. L. Kalla used the same technique to obtain the

following;:

(2) v(A) — (A A) Z nrr((y/\i"g , Re(A) > Re(v) > 0
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where T is the well-known gamma function and the psi function y(z) =
I'"(2)/T(2) is often referred to as the digamma function. Setting A = 1
and v = 1/2 in (2) with ¢(1) = —v, ¥(1/2) = -y —2In2 [3, p. 34]
reduces to (1), where v is the Euler-Mascheroni’s zonstant.

In [4] S. L. Kalla and B. Al-Saqabi used the sarne technique as in (2)
and generalized the relation (2) by giving the following:

(3)

r'(\) i I(v +n)

(2 (o A i —e/a)

5 (‘5) [(A + k) = (A — v+ k)], Re(A) > Re(v) > 0

where 3 F(a, 3;v; z) is the Gauss’ hypergeometric function. We can also
observe that letting u = 0 in (3) reduces to the relation (2).
In the paper we prove the following more general functional relation

(4)
T'(A) ~—= T(v+ ,
FEI/ E TLIE /\+nn))p+2Fp+1(‘(L1,... ,ap+1,/\;b1,... ,b,,,,\-l»n;.r/a)
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where ,F, is the generalized hypergeometric series defined as

b a - la ¥4
(5) pFylar,...  ap;by,. .. ,bq;z):z( 1)"‘_ (ap)i =

provided that the b; are not nonpositive integers and (1), denotes the
Pochhammer symbol (or the generalized factorial, since (1), = n!) de-
fined by

(6) (A)o =1 and (M =AXA+1) - (A+n--1)(n=1,2,3,...).

The series (5) converges for all z if p < ¢, converges for |z] < 1 if
p = q + 1, and diverges for all nonzero z if p > q + 1.
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Using the elementary property of the gamma function it is sometimes
convenient to write the definition (5) as the following:

F(al,... ap;bl,... bq;z)

- Pbl+k) b+k)k!'

For easy reference we also give the g-type integral

(8)
) _ pydya _F(d+l)F(a+1) d+a+1 _ ela _
/(;(;:: t)%tdt = Tdtat?) T , Re(d) > —1, Re(a) > —1.
The integral
O[T
(9) o [ @t tman Ret) 20

1s called the Riemann-Liouville integral of order v and is of fundamental
importance in the fractional calculus. This integral defines differentiation
and integration to an arbitrary order. The operator notation which best
describes this integral, invented by H. T. Davis [2], is

(10) OD;”f(.”L'),

where the subscripts on D are the terminals of integration and v is
arbitrary.

2. The Functional Relation
We begin with the following relation

1 o e LAe
F(V)/.S (.’L‘—t) ltr\ 1p+le(a1""’ap+];b1""7bp;t/a)dt

1) s, DA
(11) — v 111(T(+-);)-p+2Fp+1(a1,.,.,ap+1,/\;b1,...,b,,,)\+u;x/a)

Re(A) > Re(v) > 0,
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which can readily be deduced by using the definitioa ,Fy and the formula
(8).

Differentiating both sides of (11) with respect to A according to Leib-
niz’s rule yields

1 v |
F(V)/ (.1' —t)l/—l lntt/\—lp_l_le(a],... ,ap+1;-’)1,... ,bp,t/a)df
0
I'(A ‘
:xu+,\~1F(/\(+) —) Inz proFprr(ar,... ,app1, M0 .. by, A+ 152 /a)
(a a (A T
* Z <b1)l)k et () W0+ 8) 44 R

For convenience, we denote the right-hand side above
H(.T,/\,V,O.],... ,ap+1,b1,... ,bp,a).

The above formula, by definition (10) of Riemann-Liouville operator,
can be written as

(12) QD;"(x)‘—l111IP+1Fp(a1,... yapt1; b1, .. by x/a))
ZH(.'ZT,/\.,I/,al,... ,U,p+1,b1,... ,bp,(l).

Due to the property of analyticity and continuity at v = 0, we can
interchange the roles of —v and v (see [5], Chap. 1V).

Hence, for differentiation of z*~'lnz s Fplar, .. yapyisby, .. by
z/a) to an arbitrary order we have

oDY(2* M nz py1 Fplar, ... yapy1ibr,. . bpiz/a))

(13)
=H(z,\, —v,ay,... ,ap11,b1,...,bp,0).

We proceed to solve an integral equation of the Voltera type

(14)
1 * 1

=z*7! Inz pp1Fp(ar, ... yaptr;bi, ..o bpiz/a), Re(A) > Re(v) > 0.
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This is an integral equation of convolution type which may be solved by
Laplace transform and we would like to solve it by the use of fractional
calculus, showing the power, elegance and simplicity of the method used.
By definition (10), equation (14) can be written as

(15) oDV f(z) =z} Inz 1 Fp(ay, ... apy1;01,... b, 2/a).
Operating on both sides with ¢ DY leads to
(16) flz)= oDy (at’\_l Inzpp1Fplay,... appiiby,. .. by;z/a)).

Hence, the result (13) gives us at once the solution to (14)

(17)

.’L"\_”—l
flo) = L)

I'(A —v)

> (b(lcil)k(bi()l:a)j(:)):k' (%)k {B(A+ k) = (A - v+ k)}].

We verify this result by substituting (17) into (14) in terms of the
argument t. Write a series expansion for Int as follows:

Inz ppoFpti(ar, ... saprr, Asby, ... yop, A — vz /a)

t—=z
(18) t—,——;r—f—t—;z::m(l—{— ),
T

where = and ¢ are real and = > 0. Then

(19) lnt:lnm—{—ln(l-}-t;w).

When |(t — z)/z| < 1, we can expand In(1 + (t — z)/z) into a Taylor
series expansion. Thus

(20) lnt:Inw—i(x_t)n
n=1

nx™

with the interval of convergence 0 < ¢t < 2z.
When (20) and (17) are substituted in (14) and after simplification,
we obtain the desired result (4) by use of the 3-type integrals (8).
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3. Special Cases

Setting p = 1 in (4) with «;, ay and b replaced by «, 4 and v
respectively yields

T(\) i (v +n)

2(a, f A* sA SN
nr(A+n)3F~(“’ﬂ, i, A+ nsx/a)

n=1

= (a)k(8 T\ * ‘ ,
D e L M P S )
Re(A) > Re(v) > 0.

Letting 8 = 7 in (21) with o and a replaced by —;: and —a respectively
reduces to (3).

If @« — 0in (21), then it becomes the result of kalla and Ross (2).

Setting v = A in (21) and taking the limit as  — a in the resulting
equation yields

() & F'v+n)IA+n—-a—0)

;nl"()\+n—oz)l"()\+n—ﬂ‘)
Ny Ok k) (= w4 B)), Re(A) > Re(r) > 0
= Ww’( + k) = (A= v+ k)], e(A) > Re(r) 2 0.
i (A

In fact, setting p = 0 in (4) with a; and a repiaced by —p and —a
respectively reduces to the relation (3).

By specializing the parameters lots of special cases can be derived
from our general formula (4).
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