COEXISTENCE IN COMPETITIVE LOTKA-VOLTERRA SYSTEMS

June Gi Kim

ABSTRACT. In this paper we consider n-species autonomous competitive Lotka-Volterra systems. We exhibit here simple algebraic criteria on the parameters which guarantee the coexistence of all the species.

1. Introduction

Consider a community of n mutually competing species modeled by the autonomous Lotka-Volterra system

(1)
$$\dot{x}_i = x_i \left(b_i - \sum_{j=1}^n a_{ij} x_j \right), \quad i = 1, 2, \dots, n,$$

where x_i is the population size of the *i*th species at time t, and $\dot{x}_i = \frac{dx_i}{dt}$. The mutual competition between the species dictates that $a_{ij} > 0$ for all $i \neq j$. We assume that, for each i, $b_i > 0$ and $a_{ii} > 0$, meaning that each species, in isolation, would exhibit logistic growth. As usual we restrict our attention to the closed positive cone \mathbb{R}^n_+ . We denote the open positive cone by \mathbb{R}^n_+ . It is well known that for the two-species competitive Lotka-Volterra model with no fixed points in the open positive cone \mathbb{R}^n_+ , one of the species is driven to extinction, whilst the other population stabilises at its own carrying capacity. Moreover, M.L. Zeeman[Z1] proved the following

Received July 29, 1995. Revised November 18, 1995.

¹⁹⁹¹ AMS Subject Classification: Primary 34C35, 92D25.

Key words and phrases: Lotka-Volterra systems, attracting(repelling) fixed points.

THEOREM 1(Z). If system (1) satisfies the inequalities

$$\frac{b_j}{a_{jj}} < \frac{b_i}{a_{ij}}$$
 $\forall i < j$ and $\frac{b_j}{a_{jj}} > \frac{b_i}{a_{ij}}$ $\forall i > j$,

then the axial fixed point

$$R_1 = (\frac{b_1}{a_{11}}, 0, 0, \cdots, 0)$$

is globally attracting on \mathbb{R}^n_+ .

In other words, for all strictly positive initial conditions, species x_2, x_3, \dots, x_n are driven to extinction, whilst species x_1 stabilises at its own carrying capacity. Hence it is natural to consider the conditions which guarantee the coexistence of all the species. In this paper we give a slightly different simple algebraic criteria on the parameters which guarantee the coexistence of all the species.

2. Statement of Result

Our main result is the following

THEOREM 2. If the system (1) satisfies the inequalities

$$(2.1) \frac{b_j}{a_{jj}} < \frac{b_i}{a_{ij}} \forall i \neq j,$$

then there is a unique point $p \in \mathbb{R}^n_+$ which is globally attracting on \mathbb{R}^n_+ .

This means that for all strictly positive initial conditions, all the species x_1, x_2, \dots, x_n are stabilise to some positive constants p_1, p_2, \dots, p_n respectively at their own carrying capacities.

Let us first discuss the two dimensional case. The general n-dimensional case follows easily from this particular case. Now if n = 2, the inequalities (2.1) reduce to

$$(2.2) \frac{b_1}{a_{11}} < \frac{b_2}{a_{21}}, \frac{b_2}{a_{22}} < \frac{b_1}{a_{12}}.$$

Consider the vector field $V(x) := \left(v_1(x), v_2(x)\right)$ corresponding to the system (1). Here

(2.3)
$$v_1(x) = x_1(b_1 - a_{11}x_1 - a_{12}x_2),$$
$$v_2(x) = x_2(b_2 - a_{21}x_1 - a_{22}x_2).$$

Hence

(2.4)
$$v_{1}(x) = 0 \iff x_{1}(b_{1} - a_{11}x_{1} - a_{12}x_{2}) = 0$$

$$\iff \begin{cases} x_{1} = 0 & \text{or} \\ a_{11}x_{1} + a_{12}x_{2} = b_{1} \end{cases},$$
(2.5)
$$v_{2}(x) = 0 \iff x_{2}(b_{2} - a_{21}x_{1} - a_{22}x_{2}) = 0$$

$$\iff \begin{cases} x_{2} = 0 & \text{or} \\ a_{21}x_{1} + a_{22}x_{2} = b_{2} \end{cases}.$$

Observe that the axial fixed points $\frac{b_1}{a_{11}}$, $\frac{b_2}{a_{22}}$ are in the positive part of the nullclines $b_2 - a_{21}x_1 - a_{22}x_2 = 0$ and $b_1 - a_{11}x_1 - a_{12}x_2 = 0$ respectively. Let p be the solution of the following linear system

(2.6)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

In this situation we easily see that p is the unique globally attracting fixed point in \mathbb{R}^2_+ of the system (1).

3. Proof of Theorem 2

Consider the vector field $V(x) := \left(v_1(x), v_2(x), \cdots, v_n(x)\right)$. Here

$$v_i(x) = x_i(b_i - \sum_{j=1}^n a_{ij}x_j), \qquad i = 1, 2, \dots, n.$$

June Gi Kim

We first show that under the inequalities (2.1) V has a unique singular point p in \mathbb{R}^n_+ . To do this we have only to examine the solutions of the following linear system

(3.1)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n. \end{cases}$$

Since $b_i > 0$, $i = 1, 2, \dots, n$, the above system (3.1) is equivalent to the following system

(3.2)
$$\begin{cases} \frac{a_{11}}{b_1}x_1 + \frac{a_{12}}{b_1}x_2 + \dots + \frac{a_{1n}}{b_1}x_n = 1, \\ \frac{a_{21}}{b_2}x_1 + \frac{a_{22}}{b_2}x_2 + \dots + \frac{a_{2n}}{b_2}x_n = 1, \\ \vdots & \vdots \\ \frac{a_{n1}}{b_n}x_1 + \frac{a_{n2}}{b_n}x_2 + \dots + \frac{a_{nn}}{b_n}x_n = 1. \end{cases}$$

We claim that the inequalities (2.1) imply that the coefficient matrix

$$A = \begin{pmatrix} \frac{a_{11}}{b_1} & \frac{a_{12}}{b_1} & \dots & \frac{a_{1n}}{b_1} \\ \frac{a_{21}}{b_2} & \frac{a_{22}}{b_2} & \dots & \frac{a_{2n}}{b_2} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{a_{n1}}{b_n} & \frac{a_{n2}}{b_n} & \dots & \frac{a_{nn}}{b_n} \end{pmatrix}$$

is nonsingular. To see this, we divide the *i*th column vector A^i

$$\left(\frac{a_{1i}}{b_1}, \frac{a_{2i}}{b_2}, \cdots, \frac{a_{ni}}{b_n}\right)$$

of A by $\frac{a_{ii}}{b_i}$. Then we have

(3.3)
$$\frac{b_i}{a_{ii}} A^i = (c_{i1}, c_{i2}, \cdots, c_{i-1}, 1, c_{i+1}, \cdots, c_{ni}).$$

Now the inequalities (2.1) imply that

$$(3.4) 0 < c_{ki} < 1, \forall k \neq i.$$

Hence the vector $\frac{b_i}{a_{ii}} A^i$ lies on the *i*th face of the *n*-dimensional unit cube. Therefore the column vectors of A are linearly independent and hence A is nonsingular. Moreover the fact that each $\frac{b_i}{a_{ii}} A^i$ lies on the *i*th face of the *n*-dimensional unit cube implies that the system (3.1) has a unique positive solution p in \mathbb{R}^n_+ which is a singular point of the vector field V corresponding to the system (1). Inequalities (2.1) further implies that the axial fixed points of the vector field V lies either positive or negative side of the other nullclines. Hence they are all repelling fixed points. On the other hand p is positive and lies on each of the nullclines $b_i - \sum_{j=1}^n a_{ij} x_j = 0$. Therefore p is globally attracting in \mathbb{R}^n_+ . \square

References

- [Z1] M. L. Zeeman, Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc. 123 (1995), 87-96.
- [Z2] _____, Hopf bifurcations in competitive three dimensional Lotka-volterra systems, Dynamics and Stability of Systems 8 (1993), 189-217.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea