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CONJUGATION AND STRONG SHIFT EQUIVALENCE

YOUNG-HwA HA

ABSTRACT. The strong shift equivalence of nonnegative integral square
matrices is a necessary and sufficient condition for the topological con-
Jjugacy of topological Markov chains. In this paper we study the relation
between strong shift equivalence and matrix conjugation.

1. Introduction

Two nonegative integral square matrices A end B are elementary
equivalent, denoted by A =, B, if there are nonnegative integral ma-
trices R and § such that A = RS and B = SR. The strong shift
equivalence is the transitive closure of ~4;, and we denote it by ~. It
is well known as Williams’ theorem [W][LM] that two subshifts of finite
type (two topological Markov chains) are topologically conjugate if and
only if their representing transition matrices are strong shift equivalent.
There is, however, no simple algorithm to decide strong shift equivalence.
Some sufficient conditions for strong shift equivalence of 2 x 2 matrices
have been known [Bal][Ba2]. In this paper we show certain connection
between strong shift equivalence and matrix conjugation with a hope to
derive later some other sufficient conditions.

THEOREM. Let A and B be nonnegative integral square matrices.
Then A and B are strong shift equivalent if and cnly if there exist non-
negative integral square matrices A, B,Q1,Q,- - ,Qx of the same size
such that the following properties are satisfied:

1) A and B are extensions of A and B, respectively.

Received October 18, 1995. Revised November 26, 1995,

1991 AMS Subject Classification: 58F03.

Key words: subshift, topological Markov chain, SFT, strong shift equivalence,
topological conjugacy.

Research was partially supported by a grant from Ajou University(1994), GARC-
KOSEF, and KOSEF Grant 95-0701-02-01-3.



192 Young-Hwa Ha

i) @, are invertib]e over Z forv1=1,2,--- k.
m) (@1 - Q)TTAQ:- Q)]QT 1s nonnegatzve fori =1,2,--- k.
(@1~ Qk) 1A(Q1 Qk) =

This 1s our main theorem. As a corollary we give a nice necessary
condition for strong shift equivalence.

COROLLARY. If A and B are strong shift equivalent nonnegative in-
tegral square matrices, then there exist nonnegative integral square ma-
trices A, B and Q of the same size such that the following properties are
satisfied:

1) A and B are extensions of A and B, respectively.
1) Q is invertible over Z.

i) Q7'AQ = B.

I1. Proof of the sufficiency

We first need to define the notion of extensions of ‘a square matrix.

DEFINITION. Let A be a square matrix.

(1) The k-th state of A is trimmable if either the k-th row or the
k-th column contains only zero entries.

(2) Trimming A at the k-th state means obtairing the submatrix of
A by deleting the k-th row and column.

(3) A trimmed submatrix of A4 is a submatrix o’ A obtained by trim-
ming A at some trimmable states.

(4) A square matrix B is an extension of A if there is a finite sequence
{Ci}o<i<k of square matrices such that A = Cp, B = Cy, and
C;-1 1s a trimmed submatrix of C; for7 = [,--- , k.

Let A and B be nonnegative integral square matiices. Suppose that B
is an extension of A and K is the graph with B as its transition matrix.
Then we can find a subgraph H of K with A as its transition matrix. It
1s now easy to see that the two topological Markov chains Xx and Xpg
are identical.
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We now introduce some notations:

(1) Let A and B be I x m and [ x n matrices, respectively. Then
[4, B] denotes the I x (m + n) matrix obtained by appending B
to the right of A.

(2) Let A and B be m x p and n x p matrices, respectively. Then
[A/B] denotes the (m + n) x p matrix obzained by appending B
to the bottom of A.

(3) For every matrix A, we denote the number of rows of A and the
number of columns of A by r(A) and c(A), respectively.

LEMMA 1. Let A be a nonnegative integral square matrix with a
trimmable state. If B is a trimmed submatrix of A trimmed at a single
state, then A ~; B.

PROOF. Let A be of m x m, and suppose firs; that the m-th row of
A is zero. Then A = [[B,*]/O] with O the 1 x m zero matrix. Let
R = [B,*] and S = [I/O], where I is the (m — 1) x (m — 1) identity
matrix. Then RS = B and SR = A, and so A and B are elementary
equivalent.

If the m-th column of A is zero, then consider the transposes A! and
B! to find nonnegative integral matrices Ry and So so that A! = Sy R,
and B' = RyS,. Hence A = RS and B = SR with R= R}, § = S..

Now suppose the k-th state of A is trimmable. Let E be the m x
m matrix obtained from the m x m identity matrix by moving the k-
th,(k + 1)-th, - mn-th rows to the m-th,k-th,(k + 1)-th,--- (m — 1)-th
rows, respectively. Then E' = E~!. Observe that the m-th state of
EAE' is trimmable, and B is obtained by trimming EAE! at the m-th
state. Hence there are nonnegative integral matrices Sy and Ry such
that EAE' = RySy and B = SyRy. Now, if we put R= E'Ry, S = Sy E,
then we have A = RS and B =SR. O

LEMMA 2. Let A and B be nonnegative integral square matrices. If
B is an extension of A, then A ~ B.

PROOF. Choose a finite sequence {C;}o<i<x cf nonnegative integral
square matrices such that A = Cy, B = C4, and C;_; is obtained by
trimming C; at a single state for ¢ = 1,--- k. Then by Lemma 1,
A=Co~r Cimy -2 Cr=B. O
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We now show the sufficiency of the main theorem. Suppose that A4,
B, A, B, Qq, Q,, Qs, - -+, Qy satisfy the properties 1),ii),iii), and iv) in
the main theorem. Then, by Lemma 2, A ~ A and B ~ B. Let R; =
(Q1---Qi)7TAQ - Q:))Q7",¢ = 1,--- k. Then R; is nonnegative

and

A=Q1R) ~ RiQ1 = Q2R =1 - &y Rp1Qr—
= Q+Ri ~1 RiQy == B.

It now follows that A ~ B. Since the strong shift equivalence is transi-
tive, we can conclude A =~ B.

II1. Proof of the necessity

Suppose that A and D are square matrices, and B and C are rectan-
gular matrices such that r(A) = o(B), ¢(B) = ¢(D), r(C) = (D), and
c(A) = ¢(C). We define a square matrix [4, B;C, D] by [A,B;C,D] =
[[A, B)/[C, D]] We say that square matrices [A1, A;; A;, A4] and [By, By;
Bj, By] are compatible if each pair of Ay and By, 1 < k < 4, have the
same size. One can easily see that if two square matrices [A, B; C, D]
and [P, Q; R, S| are compatible, then

[4,B;C,D|[P,Q; R, S] = |[AP + BR, AQ + BS;CP + DR,CQ + DS).

DEFINITION. Suppose that the matrices I and O in the following
statements are the identity and the zero matrices of appropriate size.
Let A be a square matrix and S a rectangular mat -ix.

(1) If ¢(S) < c(A), then we define square matrices a(A4,S) and
6(A,S) by
a(A,S) =1[4,0; S5,0],

and

é(A,S) = [Iv Sh; O’A])

where Sy = [0, 5] such that ¢(Sp) = c(4).
(2) If r(S) < r(A), then we define a square matrix F(A4,5) and
(A, S) by
/'}(Av S) = [()a ()1 SV7 A]v
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and

(4,5) =[A, S,;0,1],
where S, = [S/0] such that r(S,) = r(4).

If Ais a square matrix and ¢(S) < c¢(A4) and (T, < r(A), then a( A4, S)
and 3(A,T) are extensions of A. If I and O are the identity and the
zero matrices, then y(1,0) and §(1,0) are the identity matrices.

Direct computation gives the following results.

LEMMMA 3. Suppose that A and B are square matrices of the same
size, and C and D are rectangular matrices.

(1) Kr(A) =1(C) = x(D) and ¢(C) = ¢(D), then
(A4, C)v(B,D) = vy(AB,AD + ©).
(2) I r(A) =1(C), «(B) = ¢(D), and ¢(C) = r( D), then
7(A,C)(B, D) = a(AB+CD, D), and a(B,D)y(A,0) = a(BA, DA).
(3) K c(4) = ¢(C) = «(D) and 1(C) = £(D), then
§(A,C)é(B,D) = §(AB,CB + D).
(4) Ifc(A) = ¢(C), 1(B) = (D), and r(C) = (D), then
A(B,D)6(A,C) = B(BA+DC, D), and §(A,0)3(B, D) = (AB, AD).

COROLLARY 4. Suppose that Q is an invertible matrix and R is a
rectangular matrix. Then

(1) v(Q,0)7" =+(Q™,0), and 4(1,R)~! = y(I,—R).
(2) 8(Q,0)71 = §(Q~",0), and 6(I1, R)~" = 6(/, —R).

We now define a relation, and derive some results about this relation.

DEFINITION. Let 4 and B be nonnegative integral square matrices.
We write A ~. B if there is a nonnegative integral square matrix Q
which is invertible over Z such that 1) @A is nonnegative, and 11)
Q'AQ = B. In this case we write A ~. B by Q.

It is obvious that if A ~, B, then 4 ~, B.
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LEMMA 5. Suppose that A, B, R, and S are nonnegative integral ma-
trices. If A= RS and B = SR, then (A, S) =, (B, S) by v(I, R).

PrROOF. Observe

y(I,R) (A, S) = v(I,-R)a(A,S) = a(A - RS, S) = (0, S),
and so

A(I, R)" (A, S)UI, R) = (0, S)y(I, R) = (SR, S) = B(B.S).

Since a0, S) is nonnegative, the proof completes. [

LEMMA 6. Suppose that A, B,Q, and S are nonnegative integral ma-
trices and @ is invertible over Z. If A ~. B by @ and 5Q = S, then
a(A,S) =~ aB,S) by v(Q, 0).

PROOF. Observe
HQ,0) ' a(A,8) =v(Q ', 0)a(A4,S) = (Q 1A, S),
and so
1Q.0)'a(A,517(Q,0) = «(Q7'4,5)7Q,0)
a(Q7TAQ, SQ) = a(B, S).

Since a(Q~!A,S) is nonnegative, the proof complztes. O

LEMMA 7. Suppose that A, B, @, and S are nonnegative integral ma-
trices and Q is invertible over Z. If A ~, B by () and Q~'S = S (or
equivalently, QS = S), then 8(A, S) ~. B(B,S) b’ 6(Q,0).

ProoOF. Observe
8(Q.0)7'B(A,S) = 8(Q7,0)8(4,5) = B(QTA,Q7'S) = B(QT'A4,9),
and so
85(Q,0)7'8(4,5)6(Q,0) = B(Q™' A, 5)6(Q,0)
= B(Q™1AQ,S) = A(B,S).
Since A(Q~'A,S) is nonnegative, the proof completes. O
We need to consider compositions of @ and 7 and compositions of

v and 8. For the sake of simplicity we define the following compound
operators.
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DEFINITION. Let a%(A) = B%A) = A4, o'(4;S) = a(A4,5), and
B1(A;S) = B(A,S). Forn>1and 1 < m < n we define
(1) A Sl," ,Sn):a(a"_l(A;Sl,-‘- 7Sn—l)»Sn),
(2) p" (A Sty 8n) = BB (A; 81, , Snc1). Sn),
(3) a™" ™M 3™ A4; 51,--- v Smy Sm+1s 0 5 Sn)

=a”” m(/dm(A Sl"" 1Sm); S’m—{—l-,' T ,Sn),
(4) ﬂn—mam(A;-Sla e ’Sma5m+la e 7511)

= A" ™(a™(A; 81,0, Sm); Sma1, o0, Sa).

The compound operators 4", 8™, 4*~™§™ anc
similarly.

6’",—11’1 e

y™ are defined

Onmne can easily show that
A(A,S),T) = a(B(A,T),S),
and
BIaP(A; Sty Spy Thy o Ty) = a?BI(A; Ty, -+, Ty, Sy, Sy).

THEOREM 8. If A = Cy = RpSy, SoRo =C1 = R151," " ,Sn—-1Rn-1
=C,=R,Sy, and SR, =Cpy1 = B, then for0 < k <n

r/:]kan+l_k(ck; Ska Sk+1’ e aSnv Sk—-] 3 Sk—-?a e 750)

.~ /‘k 1 —k . v
~c /j + a” (Ck+175k+]a5k+2"" a‘f'n,SkaSk'-—lv"' sSO)

by 6’“7"“"‘([; Ry, O,---,0).

PRrRoOF. We prove the theorem by induction on the number n. The
case n = ( corresponds to Lemma 5. Suppose n > 0 and assume that
the theorem is true for n — 1. Then

a™(Co; S0, 81, + Suct) me Bra™(C1; S, 5 Sn1,So)
by v"(I; R, 0, - ,0). Since
[0, ,0,8.7"(I: Ry, 0,--- ,0) = [0, -+ ,0,5,].
it follows that

a(a™(Co; Sor++ , Sn-1),5n) xc a(Ba™(Cy; S - y Sn=1,50), Sn)
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by 7(v"(I; Ry, O, - ,0),0). Therefore,

Qn+1(C0;S(], T aS’n) = (]('Oln(CO;SU,' o sSTl—])7Sn)
~e a(#1a"(C1i 81, Sy, S0). 5n)
= ﬁlan(clasla' o 5571750)

by y"*1(I; Ry, O, -- ,0), and this corresponds to the case k = 0 for n.
Now suppose 0 < k <n. Then 0 < k-1 <n-1, and so if we apply the
induction hypothesis for the case n — 1 and k& — 1 to the chain

Cl - RIShS]Rl - CQ - R‘ZS’Za"' 75'1Rn. = Cn
we obtain that

ﬂk_l(yn_(k_])(ck;ska"‘ ’Sn’Sk—l-,' : aSI)
~. A a™ ¥ (Cryr: Sksrs - o Sn Sky oo, S1)

by ¢+~ 14n==I(; Ry, 0,---, 0).

Since
So So

SF A== ([ R, O+, 0) ? = O ,
0 0

it then follows that

ﬂ(ﬂk.—]an—(k_l)(ck;ska'" ',Sn’Sk—la"' 351)7‘;0)
e [3(Bkan_k(ck+l;sk+l7 Y 9n7Sk1' t vSI),#SO)

by 8(6F1yn—k=D([- Rt O,---,0),0). We now have

Ao = Oy Sk, Sy Skety -, 51, S0)
= BB Ta" ROy Sky o+, Sy Skt 51, S0)
~e AAF T H(Crars Ska1y 5 Sns kst o+ 151, S0)
= A K (Chyy; Skqrs o 3 80, Siy- o, So)
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by 654" K(I. R, O, - ,0). O

We can now complete the proof of the necessity of the main theorem.
Suppose A &~ B and

A=Co=RyCo,SoRy =Cy = RSy, -+, Sn—1Rn-1
= Cn == Rnsnv Snlzn = Cn+1 = B.

Let
Cr = 8™ "(Ck; Sk, Sttty 4 Sny Sk=12 Sk—2, - . So)
for0 <k <n+1, and
Qr = 8*y" "N Ry, 0.+ 0)

for 0 < k < n. Then by Theorem 8, Ck R Cry) by Qp for 0 < k < n.
Since CO = (Yn+](A;507517' o aSn) and Cn—}—l = /Hn+l(B, S‘n-,Sn—lv )

So) are extensions of A and B, respectively, the proof is now completed.
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