2t BROL0) AAES 218t B8 ZEIDICIY M2 REel HHXIE, Se0|ME- A 2E o

B HEE e Aade
22 ANAFE, &

akigh:
PoldE-AMH Fx
4 £ 8 o g a”

2 o

e 4 Helurel Axgl #2364 deirx 24 MuAs AQshs] 98 e FET|e] gl o]

Aol 2L Az 2RL FTHEY A AARg, SetoldE Ay Tz sk 71z
ol 2dE B4 gEUU AlAdld gag 94 velele] ojge 9% TN Euygm A3 2E
Aol &8, 281 muiole] Hgolut £73 o BHUUY Held g He weoln, o
2l 259 AF, Zelntd Ty eld AS, Foln Zadgeld Ax Soz TAH. B 2
= o] 2Ed 2 AFd AEHEs 24H dojgt APe Ao)HT olxe] 2 Ao Mvlael A2
AAAYE 7iFe s AF= API(Application Programming Interface)7} A% dZgeA 7]y
o 2212 dA 7EE) 98 2] EAE 45 U4 ORYD niroe) 23 AFsjor ¢ W
2 Ay &S Pyt

An Object-Oriented, Client-Server Architecture for a
Generalized Multimedia Processing Model in a
Distributed Multimedia System

DooHyun Kim ' Young-Hwan Lim '

ABSTRACT

In this paper, we describe a mullimedia data processing model that supports a wide variety of
applications based on multimedia production model. This model supporls network-transparent ac-
cess to stored mullimedia deta, real-time multimedia inputl devices, and multimedia processing. The
model addresses real-time data switching and delivery, as well as acquisition, processing, and out-
put. Most translation, compression, and synchronization services are integrated. This model consists
of three layers? (1) stream, (2) multimedia presentation, (3) hyperpresentation. This paper de-
scribes the data abstractions associated with each laver. These data abstractions provide & frame-
work f{or defining the services provided by each layer, and describe the object-oriented mecha-
nisms that provide those services. A sample scenario is presentated to illustrate the use of this
model. A server-client architecture and implementation issues, and future directions are also dis.

cussed.

1. INTRODUCTION scripting language. The MuX system provides
. real-time support for streams (e.g., audio,
We are developing a multimedia I/0 system, video, mouse, and graphics). It also provides the
called MuX. The MuX consists of a multimedia capability to interactively define, edit, and re-
I/0 server, a presentation manager, an applica- view a multimedia presentation via the APL
tion programmer’s interface (API), and a Once a presentation has been edited, its struc-
ture can be stored for later retrieval, editing,
”' g :} gg:%ﬁi%%iﬁ gg%ig and playback using the scripting language.

ETHF 1995 8 19, A4bskE 1 19959 124 8%

10 BIRESHEIEE =2 X B M1E(96 1)

‘While & multimedia presentalion is being pre-
sented, il can be controlled by either the applica-
tion or the presentation manager. These muld-
media presentations can be linked together 1o
form hvperpresentations.

Most vendor multimedia solutions[33, 34, 35,
36] address the problem of attaching various
media devices, such as VCRs and camcoders, di-
rectly to the computers. This approach to multi-
media processing limits computers to being only
1/0 control boxes. Similarly, system developers
and researchers have defined abstractions for
multimedia processing that support specific ver-
tical applications (e.g., computer-hased train-
ing)[407, specific lopics (e.g., synchronization)
[15, 16, 37], or specific media types (e.g.
music, video)[13, 29, 34]. This approach limis
the richness of applications that can be support-
ed by native services. A more general approach
10 multimedia compuling is required to supports
a variety of applications such as hypermedial3,
22, 327, video conferencing[12, 30], mulimedia
authoring, archiving, and collaberationf 6, 231

To make multimedia technology more useful
for information producer and hence for consum-
ers, a multimedia production model was defined
for the MuX. In the multimedia production
model, multimedia information systems help
users compose presentations by enabling them
to record, process, mix, and integrate media
from a variely of different sources, and store
and play the resulting compositions. With an ef-
fective multimedia information system, a media
producer can extract Important information
from stored media and compose a presentation
that conveys a message concisely and effective-
ly. Ultimately, a multimedia presentation will re-
quire less effort for a user to assimilate infor-
mation, because multimedia presentations take
advantage of the user’s natural ability to proc-
ess multiple information media in parallel, and
thus magnify the impact and intelligibility of the

information presented.
The objective of the MuX system is to provide
a more conductive environment for the multime-
dia production model. To suppert the objective,
the MuX provides the following f unctionalities:
© Media integration and syschronization
o Adaptive, fine—frained media syschroniz-
ation that adjusts to changes in resources
and demand
© Synchronization between the presentation
of different media across multiple /0O
channels
O Network transpareni access Lo mulumedia

dala in a distributed system environment

(]

. Multimedia presentalion creation, editing
and control * the ability to define and mod-
ifv presentation thal specify time, space,
and intermedia relationships

o Powerful multimedia processing: capabili-

tles such as

— Data compression and decompression

— Media transformation, including synthesis

and decomposition, such as speech synthe-
sis, speech recognition, natural language
understanding, character recognition, and
gesture recognition

This paper is focused on the multimedia data
processing model and software architecture to
embody the above functinalities, especially, the
media integration and synchronization .

In the following section, we discuss the multi-
media production, the multimedia processing
model including its data abstractions, services
and mechanisms. Then we discuss an object—
oriented design issues and its implementation is-

sues.

2. MULTIMEDIA PRODUCTION

In the multimedia production model, there are
essentially four steps in preparing and using
multimedia information, as illustrated in (Fig-
ure 1.) T ’)

=Al HEDID|Y AARE ©f

Stage 1 Stage 2 Stage 3 Btage &

MULTMEDIA
FROLUCTION
AUInminG

LATDIUM SAPTUIE MEDHBA F TG

Ve
ieo prorgy 2| il
I ven |7

B

VMR Tamm

ML THAL 1A
FunUEHNG

ARG)
Auie
Rty T -

Hy-
S Y
)

thm Tlatogranh

X
GRAFINCT
AeATYOH

(Figure 1) Multimedia Production Model Process

Step 1. Capturing multimedia data in real time:
This step consists of capturing data
from a single medium, such as video or
audio, and recording it on some interme-
diate storage medium that may or may
not be used as the final storage medium.
Examples include shooting video on a
camcorder using 8-mm tape, laping
music on a cassetle tape, or shooting a
picture with a camera on 35-mm film.

Step 2. Editing and representation of each medi-
um’s data! Depending upon the medi-
um, lhis step consists of editing data
from each medium in its original format
(such as cutting and splicing video or
filtering an audio recording); transfer-
ring medium from one storage format
to another (such as transferring video
from 8-mm tape to a digital format, or
scanning a photograph); or actually
creating data and editing the medium
itself as in the case of text, graphics, or
animations.

Step 3. Preparing a coherent multimedia pre-
sentation based on captured and edited
data:This step consists of taking cap-

S UEDICH M| DHL| MM, B20IHE- M 2 1

tured and edited multimedia data and
integrating all of the data inlo a coher-
ent presentation, including specification
of the time and space relationships be-
tween dala from each of the media, and
creation of hypermedia links between
multimedia presentations.

Step 4. Publishing the multimedia presentation:
This final step is Lo slore and prepare
the delivery of the multimedia presenta-
tion. In preparation for delivery, the
multimedia presentations are usually
stored in a mullimedia database; or
some multiple presentations can be or-
ganized as a hypermedia presentatior,
which allows a wuser 1o browse
imteractively in a nonlinear fashion by
traversing links and nodes. Finally, the
presentation can be directly relayed to a
communication channel for on-line pre-
sentation.

For real-time delivery of the mullimedia In-
formation, some of the steps, such as Step 2 or
Step 3, can be skipped;or the processed data
can be passed directly to the next step without
being stored. Depending on the application,
these steps can be combined into a single proc-
ess In the application. Multimedia teleconferen-
cing, for example, does not have Step 2, so that
after Step 1 the captured audioc and/or video
data passes directly to Step 3, in which this
data is combined with other data such as mouse
pointer input or text from a graphics window,
and then i1s immediately broadcast to the other
participant in the teleconference.

The consumer system, in contrast to the com-
plex production system, will consist of only a
multimedia browsing system. This browsing
system will give end users access to on-line
presentations via communication through the
computer network, or by access to stored multi-
media or hypermedia databases. Production and

12 BFERHEXRIEE =X H3H H1S(96.1)

consumption of multimedia products are bridged
by publishing multimedia products. The relation-
ship belween the published product and the con-
sumer system is illustrated-in (Figure 2).

PUBLISHING MULTIMEDLA
RODUCTS

CONSUMER

Presantation|
Farwarding
{Comm.)

(Figure 2) Relationship Between Published Multime-
dia Products and a Consurner

3. MuX MULTIMEDIA DATA PROCESS-
ING MODEL

In this section, we present a multimedia data
—processing model that is intuitive to develcpers
and end-users of applications for multimedia
production, but is powerful enough to accommo-
date real-time multimedia synchronization and
integraiion services across a network of cooper-
ative processors. This model supports network-
iransparent access to stored multimedia data,
real-time multimedia input devices, and multi-
media processing. The model addresses real-
time multimedia data routing and delivery, as
well as acquisition, processing and output.
Media translation, compression, and synchro-
nization services are integral to the model.

As illustrated in (Figure 3,) our model com-
prises a stream layer, a multimedia presentation
layer, and a hypermedia presentation, or
hyperpresentation layer. The stream layer pro-
vides services similar to a video router used in

HyperPresentation Layer

Muftimedia Presentation Layer

Stream Layer

(Figure 3) Muitimedia Data Processing Model
Layers

video production studios, where sources and des-
tinations are local or remote files or devices
(such as microphones, musical instruments,
video cameras, displays, and audio speakers).
The multimedia presentation layer is based on
the concept of a programmable media multiplex-
er or media mixer, such as an audio mixer used
in concert productions, or a switch or video edi-
tor used in a video producticn studio. In this
layer, the media multiplexer takes input from a
variety of sources, mixes them according to con-
trollable parameters, and directs the result to an
output port or destination. The hyperpresentat-
ion layer is a generalization of the links used in
hypermedia document, where the document
may include time-based media such as audio
and video, and the links are dynamic and vary
over time.

3.1 STREAM LAYER

The base layer of the model is the stream
layer. The abstraction of a slream represents
the data associated with a particular medium.
Examples of media include standard media
(audio, video, images, graphics, and text) as
well as other media streams including mouse/

keyboard, pen, animation, and musical instru-

Bal

BA HEDIC0 AAHE 2

ment digital interface (MIDI) streams. These
sireams may originate {rom a file, a device, a
connection, or from the higher layers. Streams
representing these media can be classified into
the following categories:

1. Digitally sampled continuous media strea—
ms: The medium siream represents a set
of samples with a continuous sampling
rate and pattern.

2. Synthesized continuous media streams:
These streams are not originally generated
by sampling a device. Rather, the output
samples are synthesized from a data model
to form a continuous stream.

3. Event-based streams:. These streams are
interrupt- or event-driven and therefore
have a nondeterministic sample rate.
Although the sireams are not conlinuous,
the stream data is time stamped at the
time of each event. These streams often
correlate to human inleraclion, such as
mouse movement or keyboard input.

Streams within each of these categories can

be further classified as real time (ie., generated
al the time of execution) or playback (i.e.,
prestored and played back from a storage de-
vice).

3.1.1 Stream Services

The services provided by the stream layer in-

clude the following:

O Accessing multimedia data from a file, a
device, or a connection, or from the higher
layers.

o Delivering multimedia data to a file, a de-
vice, or a connection, or 10 the higher lay-
ers, In & timely manner

0 Processing of an individual stream (e.g.,
COMpPression)

0 Selecting an input from one or more
streams and distributing 1t to one or more

&t

=il

e
ao

YEIDICIH M| 2He) My X, S210IHE - M 27 13

destinations
O Time-stamping or marking [Shepard
19907 stream data for downstream synch-

ronization.
3.1.2 Stream Layer Abstractions

To provide these services, several absiractio-
ns and mechanisms have been defined, including
a stream, source, destination, filter and filter
pipe, and switch. These mechanisms are illus-
trated in (Figure 4) and are described in more
detail below.

STREAM

DESTINATION

(Figure 4) Stream Layer Mechanisms

3.1.2.1 Stream

A stream 1s a flow of data through a conduit
[Northeutt 1991] that reads data from a
source, perform data type conversion, and deliv-
er data to a destination. Source and destination
mechanisms provide access to multimedia data
in a file, device or connection. Sources and des-
tinations are similar to transducers, described
by Northeutt and Kuerman [1991]. Data from
a source can be digitally sampled, synthesized,
or event driven, as noted above. For synchron-
ization purposes, the source is responsible for
marking data or time stamping data with a
system clock time value. For streams that origi-
nate from a remote site, the time stamp is cor-
rected, within a margin of error, for differences
between the remote site and the local site. A
level of performance and quality of service be-

14 oFREEHE|E =R H3Y H1E(%6 1)

{ween the destination and the sources may be

specified for each siream.
3.1.2.2 Filters®

Before a stream delivers data to a destina-
tion, a filter can perform one of several types of
processing operations on it, including format
conversion (e.g., RGB images to YUV images);
duta compression and decompression; and data
{ype conversion (e.g., speech to text). Varying
degrees of quality of service and performance
can be achieved by having alternate filters for
these operations.

The basic elements of a filter include an
input, an output, control parameters, and a pro-
cessing program. Filters can be combined to
form filter pipes, or collections of filters. If a fil-
ter does not have anv control parameters, or if
the control paramelers are provided at the ume
of processing (such as the quantization table for
JPEG+ compression [Wallace 19917), then it
is said 10 be context free. A context-dependent
filter operates within a context that can be spec-
ified and controlled independently of the data

stream.
3.1.2.3 Switch

A stream swilch provides two main func-
tions; selecting an output siream from multiple
input streams, and directing the selected media
stream to mulliple destinations. Selecting from
multiple input streams can be used to support
chalk-passing protocols [6]. Directing to multi-
ple destinations allows the input stream to be
tapped and tailored to form separate sireams.
AYUV input stream originating from a video
device can be outpul to a stream that converts
io an RGR video to be displayed locally and to
an MPEG+ [13] compressed video stream to
be sent to a remote location.

SELECTION CONTROL

DESTINATIONY
SOURCET (STREAM A)
(STREAM A)
SOURCE2 W DESTINATION2
(STREAM B) (STREAM A}
SOURCE3
(STREAM C}

DESTINATIONZ
(STREAM A)

(Figure 5) Stream Switch

For example, consider the situation illustrated
in (Figure 5). In this example, three streams
(A, B and C) are all inputs o the stream
switch. Using selection control, the switch can
select one of the three inpul streams (in this
case siream A). The selected stream is distrib-
uted 10 the output destinations. In this situation,
sireams B and C have no final destination, so,
the switch may act as a destination and “stop”
the flow from the corresponding sources.

* Although stream mechanisms are generally
media independent, filter mechanims are, by na-

ture, media dependent.
3.2 MULTIMEDIA PRESENTATION LAYER

The multimedia presentation layer builds on’
the stream layer. A multimedia presentation is
a collection of streams that are coordinated
with respect to time and space. Streams within
a presentation are synchronized and have
shared presentation control. There are logical
groupings of media streams for integration and
media-specific presentation control. The stre-
ams of dissimilar media (e.g., aural and visual)
are synchronized and presented in parallel.
Sireams of similar media can be cut, reordered,
processed, and mixed to form a new siream.
These streams are grouped together as a chan-
nel for presentation or further processing. Ex-
ample presentations are movies, videoconfe—

rencing, and collaborative work spaces.

4 BFILICIO) A2

The model’s basic elements are derived from
the video production model, bul almost any
media could be accommodaled. Concepts from
the video production model can be represented
as follows: “tracks” are time-ordered sireams;
“channels” are a group of tracks associated
with a mixer; and a “presentation” is the com-
plete set of synchronized channels. The concep-
tual mode! for the multimedia presentation
laver is illustrated in (Figure 6).

3.2.1 Multimedia Presentation Layer Services

The services provided by the multimedia pre-
sentation layer include the following:

SOURCE
STREAM Al RN A

[z (]

X PRESENTATION
‘ Track Al
) LT —
CUPSAIY A1Z A1D "N
HANNEL A
SOURCE s EL DESTINATION
STREAM A2 MIXING —*| sTREAM A
Track An
SOURCE "_/
SIREAM AN
2 o
o T
SOURCE Rk °
STREAM B1 o
SOURCE Track B2\ N\ _CH]NNEL B
T | DESTINATION
STREAM B2 MIXING “—*] sirEAm B
SOURCE T"ﬁ’b/
STREAM BN

(Figure 6) Media Integration Concept

O Interstream (i.e., parallel streams) and
intra-stream (including integrated st-

reams and single-stream order) synch-

ronization [Yavatkar 1992]. Whereby the

synchronization Uming can be specified

using hierarchical relationships, a time

line, and reference points [Blakowski,
Hubel, and Langrehr 1991].

O Integration of synchronized multimedia
data, such as blending two video signals,
mapping a video signal onlo a graphics
surface, and mixing multiple audio streams

O Presentation-specific processing of a st—
ream, such as chroma keying or warping a

video signal.

B EE HELILIO Mel 2Y9| HRXE, Z20IME- Mo T 15

3.2.2 Media Presentation Abstractions

To provide ithe media integration and synch-
ronization services outlined above, we have de-
fined the following mechanisms: logical time
syslem, cue, presentation context, mixer, track,
channel, and presentation. These mechanisms
are illusirated in Figure 7 and are described
below.

3.2.2.1 Logical Time System

As discussed earlier, a presentation is the cen-
tral element for providing synchronization in a
presentation. It interfaces between the liming
mechanisms and the media integration mecha-
nisms. The timing and synchronization mecha-
nisms in the MuX server are based on the logi-
cal time system (LTS).

Presentation

Channel

e 1
e
Pt

H Mixer

-O

Destination
Stream

O-00

s
Source Tracks

Streams

(Figure 7) Multimedia Presentation Mechanisms

The LTS is a relative time system and con-
sists of iwo major components: a start time and
a lick interval, The tick interval is the time be-
tween ticks on the clock and is specified in a
real-time measure, such as milliseconds. Given
these two quanlities, it is possible to transform
between logical
absolute time).

time and real lime (le.,

An advantage of the logical time system is
that time can be scaled simply by scaling the
inner tick time [2, 24]. Another important as-

pect of the LTS is that il is possible to have dif-

16 B NS HREE =2 HMIH H15(96.1)

ferent time domains for different elements. This
allows significant flexibility.

We ulilized this aspect to define the timing
mechanisms for the MuX server based on the
media integration concepts described earlier,
namely, presentations, channels, tracks, clips,
and the underlying media. The timing relation-
ship between each of these components is illus-
trated in (Figure 8).

The presentation time domain in inherited
from the master time domain. Channels inherit
the time domain from the presentation. A track
has & separate time domain derived by translat-
ing from the channel domain using the track
start time. To get from the track domain to the
medium time domain, both a translation and &
scale must be performed. The translation is
based on the cut-in time of the appropriate clip,
and the scaling factor is a ratio of the estab-
lished frame interval (i.e., the inner tick 1ime of
the master LTS) and the frame interval of the
underlying medium. The scaling factor elimi-
nates the problem of media with different frame
_ rates. Note that by tying each of the channels
to the master LTS time, synchronization be-
tween tracks can be achieved by simply specify-
ing the track start time (in the presentation
master LTS time domain) appropriately.

The logical time system (LTS) is the basic

timing specification mechanism for synchr-

PAESENTATION S
THAE L ’ ‘ + »

SCALE

CHANNEL y — ¥ ¥ — |b
THE

) 1 v |
STARY TIME TRANELATHY
TRACK
e | curt | cupz | cupa |
cyrf
/ CUT-OUT / TRANSLATION ANT) SCALE
MEDIUM £ - =)

TRAE

(Figure 8) Timing Relationship between Presenta-
tior Components

onizing sireams. Streams are svrchronmzed by
specifving their liming relative to the LTS, For
example, channel times can be related to presen-
lation time, and track times can be related to
the channel times. Through the LTS, presenta-
tion of tracks, presentations, and channels can

be scaled in a relative manner.
3.22.2Cue

A cue 1s a synchronization mechanism that
allows the specification of Liming relationships
between sireams. IL binds one timing event Lo
another, e.g., the slart of one stream is bound 1o
the end of another. A timing event can be offsev
by a delta or a delay value. Given that the dura-
tion of the two related streams is known, com-
plex temporal relationships can be specified
using a cue; including before, after, meets,

cverlaps, starts, finishes, and equals [15].
3.2.2.3 Presentation Context
The presentation context (PC) provides the

mechanisms 1o specily parameters that define
how media streams are mixed, integrated, and

Vealume = F(1)

et

A 2 e —~0 <

Time

(Figure 9) Time-based Presentation Context

PRESENTATION CONTEXT (PC)

T

AUDIGPC DISPLAYT &

T

VIDEQDISFLAYPC IMAGEDISPLAYPC GRAPHICSDISPLAYFC

(Figure 10) Hierarchical Presentation Context

2AF HEIDC0] AIAEES

()

presenied lo the end user. PCs are specific to
the medium associated with a stream. The PC
values can be specified as a funciion of time.
For example, a PC for an audio stream would
specily the volume al which that stream is pre-
sented. The volume can be specified o change
over lime as illustrated in (Figure 9). As shown
in (Figure 10), there is one PC for audio media
(APC), and there are three PCs for display
media: wvideo (VDPC), image (IDPC), and
graphics (GDPC). The presentation context
value associated with a PC varies over lime, of-
fering considerable flexibility in defining how
media sireams are integrated and mixed.

3.2.2.4 Mixer

The primary element for stream integration
and inlrastream svnchronizalion is the mixer.
Multiple integrated streams are synchronized at
the mixer input. The mixer’s main {unction is to
take frames of data from the input streams and
compose themn into a single oulput stream. Inter-
nal lo each mixer, streams can be hierarchically
integrated [16, 24] where a group of streams is
mixed with other streams, and so on.

The mixer defines a space or domain in which
the media is composed. This domain provides a
relative basis by which the individual streams
can specify how they are integrated within that
space. In a visual domain, still images, video im-
ages, and 2- and 3-D graphic objects are ren-
dered to form a final rgbaZ image [7] using
such tlechniques as warping, chromakeying,
morphing [3], alpha blending, compositing, and
texture mapping [8]

3.2.25 Track

A track mechanism facililales the synch-
ronization, reserialization, and media processing
specificalion of a single-medium stream. Sync-

HE HEDICIH M2 ZHOf HARE, FRIOIHE- M 7T 17

hronization is achieved by specifying a irack’s
glart time relative to the logical timme system of
a channel. There are three timing-specification
methods: (1) a priori specification of the track
start time relative 1o the channel’s time domain,
(2) specification of track start time with a cue,
and (3) dynamic direction from the application
or user via a start command.

A track also reserializes streams through the
use of clips. Clips define cut-in and cut-out
(start and stop) times.

Each track has a presentation conilext associ-
ated with it. The presentalion context is lime
based, relative to the track’s LTS. When a
track receives data from a stream, 1l converts
the data’s lime stamp (based on real-world
iime) to logical time, and derives the presenia-
tion context values based on the logical time, o
be used by the mixer for media integration.

3.2.2.6 Charnel

A channel groups a set of iracks thatl are in-
tegrated by a mixer. It defines a common logi-
cal time domain for specifying the timing rela-
tionships of lthe set of streams being integrated.
A channel also defines the interrelationship be-
iween the streams, including siream ordering
and processing within a mixer. A channel has a
time-based PC associated with it, which 1s ap-
plied in a hierarchical {ashion to each of the
tracks associated with the channel.

3.2.2.7 Presentation

A presentation groups together a set of chan-
nels that are synchronized in parallel. It pro-
vides a masler time domain for specifying the
time relalionships of the presentation. As with
the other mechanisms, il has a PC, which ap-
plies to all channels comprised in the presenta-

tion.

1y et 2 HEEH2E] -BA MISH H1E(961)

3.3 HYPERPRESENTATION LAYER

The highest level of the three-layer model is
the hyperpresentation layer. The abstraction of
the hyperpresentation layer is that of a dynamic
network of multimedia presentations connected
by links, forming multidimensional (time and
space) multimedia presentations. Links that
connect multimedia presentations together are
dyvnamic in that they change over time and
have fixed lifetimes during which they can be
activated [Brondmo et al. 1990; Halasz 1988;
Michon 1992; Ogawa et al. 1990; Zellwech
19927. Users can interactively access and man-
age information contained within the hyperpre—
sentation network by traversing links. In
addition, related information can aulematically
be triggered for presentalion when lime-sensi-
tive precondilions are met.

The information content of a preseniation
changes over time. One portion, or segment, of
a preseniation may address o;ae topic, while an-
other segment may cover another iopic. These
segments may overlap. A specific point in time
can be denoted by a mileslone. Segments and
milestones correspond to the visual or aural con-
tent {media specific), or correspond 1o all media
that are being presenied. Links between one
presentation and other presentations come and
go with their associated segmenls and mile-
stones. For example, a segment of a presenta.
tion might generally cover “topic X”; and dur-

ing the presehtation of that segment a user
3.3.1 HyperPresentation Layer Services

The services provided by the hyperpresen-
might hit a “tell me more” button to see a relat-
ed presentation on the same topic X. When fin-
ished with the side topic, the user could return
to the original presentation. 'This type of inter-
action is illusiraled in (Figure 11).

/err Selects “Teli Mo Mom

Pres A

- Pres C
L‘-User Hits Retumn

Pres B
“Uner Hits Return

Prea A Pres B Pres A PreaC Pres A
B 5 3 - ¥ 3

R

(Figure 11) Exarmple Serial HyperPresentation

tation layer include the following:

O Time-based linking of mullimedia presen-
tations, based on the content of the presen-
tation defined by milestones and segments
that may overlap

C Triggering of parallel presentations when

time-sensitive precondilions are mel.

3.3.2 HyperPresentation Abstractions and
Mechanisms

To provide theses serv'ices, the hyperpres-
entation laver supports the following mecha-
nisms: conditions, control streams, actions, and
comparalors, shown in (Figure 12). Using these
fundamenial components, flexible, user-defina-
ble links and triggers can be constructed. Each
of these mechanisms is described below.

Condition (Action)
Context l

Control

Stream

Comparator

(Figure 12) HyperPresentation Layer Mechanisms

3.3.2.1 Condition

A ondition describes an event upon which one
presentation is associaled or linked with another
presentation. This condition is directly related to
the information content of a segment or mile-
stone of the originating presentation. The condi-

40
>
(=}
P
m

DI A~EE

tion 1s only valid for the duration of the seg-
ment or instant of the milestone, which is de-
fined relative to the logical lime system of the
originating preseniation. A condilion can be de-
lined spatially with regions or hotspots [Michon
1992] that are compared to mouse input, aural-
lv with lones or phrases thai are compared to
audio inpul, and gesturally with gestures com-
pared Lo pen inpui, data glove input, or video
inpul. The ¢ondilion can also change over lime.
For example, a hot spot can move and change
size along with a graphic object that is moving
In & presentation. A presentation context associ-
ated with the condition defines how the condi-
tion is represented (e.g., visible or invisible but-

ton, {x, y, coordinate) to the user.
3.3.2.2 Control Stream

A control stream is the mechanism that can
aclivate a link. A link is activated when a con-
trol stream meets a condition (defined above).
A control stream can consist of, but is not limit-
ed to, inpul from the following: mouse, key-
board, data glove, video camera, or pen.

3.3.2.3 Comparator

A comparator is the primary mechanism for
detecling a link or trigger condition and execut-
ing the actlions necessary to link the presenta-
tions together. To perform this operation, a
comparator has a control stream and a condi-
tion associated with it. During operation (be-
tween the start time and the end time), a com-
parator continuously compares the input from
the control stream to the associated condition
that activates a link or trigger. This implies that
the clock or time system of the comparator
must be synchronized with the clock or time
system of the multimedia presentation. When a
condition is met by the control stream, the com-

SEOILN Al 2y

o

| ANRIE, ERI0IHE-MH] 2T 19

parator executes an action to link the presenta-
tions.

3.3.2.4 Action

‘When a comparator determines that a condi-
tion 1s mel (e.g., a button was mouse selected at
the location of a link), the comparator executes
a sel of programmatically defined actions that
perform a link traversal or trigger. For exam-
ple, if the semanlic is a jump (i.e., a sequential
link), the action pauses the current presenta-
tion, pushes that status of that presentation
onto a stack, and plays a specified segment of
the destination presentation, and upon returning
from the destination presentation, resume the
original presentatlion, using the status from the
stack. Since the aclions are defined program-
matically, an almost limitless variety of links
and triggers can be defined.

3.4 SAMPLE SCENARIO

A sample scenario, illustrated in Figure 13,
shows how sireams, swilches, tracks, channels,
presentations éomparators, and compositors can
be interconnected. This éxample demonstirates
the manner in which tracks are aggregated into
channels and channels are grouped into presen-
tations, and how multiple presenlations can in-
teract through hyperlinks.

This scenario shows a collaborative hyperp-
reseniation application in which two users ma- -
nipulate independent mouse input devices. Their
devices alternate in controlling the cursor
through a user-defined chalk-passing protocol
that controls the input selection of the switch.
Two video sources are played in the first pre-
sentation. One video source is read {rom a file
and the second comes from a network connec-
tion to a reniote device. These streams request
data from their input sources, process the data,

*H2(8)5] =2 K| H3H H1S(06 1)

and deliver to their respective iracks hefors
their assigned deadline. The track converis the
data’s real-1ime timestamp into logical ume and
queues the data 1n a time-based queue until 1t 15
accessed by the mixer. Al the appropriate time,
the mixer accesses the dala, using & synch-
ronized data-extraction technique {or both the
video tracks and the mouse track (whosz cursor
icon is defined in the mouse track’s presentation
context). The mixer then integraies the data
and writes the output 1o a stream that delivers
the data to the outputl display device.

LTS Hyperpreentatinn Laser

- Condwon

Cue -~
<Sturl Metsape

Comparatar

— Presentation |
Channel 1

Multimedin
Fresentation ayer

; @

Presentation 2
Channel 3
3
l‘ Mixer

Stream Layer

@ Filer N

(Figure 13) Sample Scenario

When the user with the cursor control (as de-
termined by the switch) selects a hot spot, the
comparator triggers a second presentation to
begin presentation of an audio stream, which is
played back from a sound file. To perform this

operailon, the comparator continuously checks
conditions against the input contrel stream (in
this case <lx. v coordinales of mouse key
presses) against the location of the hot spot.
When a condition stream matches user input, a
irigger message 18 sent to the second presenta-
uon, noliiving it to start playing al an indexed
{ime into the presentation. This message propa-
gates down Lo the channel, track and stream.

Filtering {unclions are illustrated in several
places in the first presentation. Filter A for the
video file input stream performs scaling of data,
reducing the frame rate {from 30 to 15 fps. The
second video source, from the nelwork connec-
tion, has filler B attached to ils stream. Filter B
decompresses data from MPEG encoding. Filter-
ing i1s also performed on the input mouse
streams. In filter C, the inpul events are trans
formed from global <x, y > coordinates into
window coordinates. In filter D, events are prop-
agated forward, based on whether or not they
match the window id of the current focus.

Timely delivery of data to the compositor,
and from the compositor to the oulput destina-
lion, uses time constraints specified for the
stream objecls.

4. OBJECT-ORIENTED DESIGN

In our version of a prototype MuX multime-
dia 1/0O system, we have chosen to base our im-
plementation on object-oriented design and im-
plementation techniques. An object-oriented de-
sign provides good mechanisms for exiensibility,
maintainability, and portability. By providing
general ahstract superclasses, the system can
easily be extended by adding subclasses. Exten-
sions may include adding support for new medi-
um data types, new filtering services, new mix-
ing services, and new interfaces to devices. The
modularity provided by using object-oriented
design techniques also allow for isolation of de-

ReadFrams

4 ZEDIL0 ALEHE =

vice—dependent code, which simplifies porting
tasks. We choose Lo use the C++ object-ori:
ented language for our implementation. The
¢lass hierarchy of the base set of classes lo sup-
porl this model is defined in (Figure 14) based
on the muliimedia data processing model de-
fined in Section 3. The classes illustrated in
(Figure 14) are the classes that are exposed 1o
a client application through the MuX client li-
brary. In addilion Lo these classes, several other
suites of support classes have also been imple-

mented.
Source Channel
Stream
Destination —— Track
Filter
DistributedObject{(Obj) Switch
AudioMixer
Mixer /
VisualMixer

Presentation
clip
AFC
PC <
DPC — VDPC
{Figure 14) MuX Multimedia Data Processing Model
Class Hierarchy

Readframe

@ Sourco ‘ Slrnnm @oD
= —

Recetvel taie o~ FrmenvnTrniin e

-
(MMDevice

o,

(Figure 15) Basic Stream Layer Operation
4.1 Delivery and Routing Mechanisms

The Stream" is responsible for accessing data

1) The capital 'S of the “Stream” denotes the stream object.
The same is applied to other objects.

HHE BLEICI0) XMe| ZH| MRS, F2i0(¢E - Me] i o

from Source and delivering the data to Destina-
tion. (Figure 15) illustrales this basic operation
and shows the essential objects that perform the
operations necessary Lo move data from Source
to Destlination. In order to access data and push
Il to a Stream, a Source consists of a ¢ollection
of four objects: 1) a Source, the primary ob-
ject; 2) an LTS that is used to provide timing
events; 3) a Medium thal provides a com-
mon interface to devices, and 4) a Multime-
dia Device, or MMDevice. In this scheme, the
Source object acis as the interface io the
other mechanisms. When a Source recewves a
Play message, it sends a Start message Lo
the LTS, which forks a thread that is used
o execute the tick operations. This thread
sels iis deadline for the first tick
of the clock and does a thread yield. Subse-
the LTS thread returns from the

vield and executes a callback that has been

immediately

quently,

registered with the LTS for the tick opera-
tion. This callback function calls the calls Me-
dium: :ReadFrame()* member [unction(Medi-

um::ReadFrame() stands for ReadFrame
member function of Medium class. The same
notation is applied to the member functions
of other classes). The Medium::ReadFrame(
) performs the device specific operations to
read dala from a mullimedia device. This
frame is returned to the Source object which
then executes the Stream::receiveFrame()
member function. In this basic operation ex-
Stream:

ample, the ‘receiveFrame() simply

passes the dala on to the Deslinalion via the

Destination: :receiveFrame() member func-
tion.
The abstract base class Medium 15 the

basic interface elements used by all its sub-
classes and provides a common interface to

2) The “Medium::ReadFrame()" denotes the ReadFrame(
) member function of a medium class. The same
detational rule is applied to other member functions.

It
©
i

{\)r

o

i\ll_(
[af]

10
ﬂ

| =OX| M3 R1S(96.1)

the Stream l.ayer. The Medium provides the
device specific services required 1o read or
write frame dala.

In the case where filtering i1s applied to the
datla stream, the operalion 1s much the same
as described above. However, as illusirated in
(Figure 16), the frame object is passed
through a series of Filters that have been
registered with the Stream object.

e

tick

e, Readliame .

Medium

faadliama (
N
(M‘Ml')twkb Fifter Filter
N

Source Bire 1n1
Ll

LT -

 Recelvatm ,__,,h,,.— -

(Figure 16) Strearm Layer Operation with Stream
Fiitering ’

SynchironousTorn

Sl'ﬁ""‘ Destination
_ ~_L

— R
Swilch
Sourro Slream Slmam Drestimatinn
pprer—rn \ —— 1 ’

Slream D-dmahen)

AsynchronoasPort

(Figure 17) Stream Layer Opergtion with a
Switch

In the case where a Switch is involved as
illustrated in (Figure 17), the siream’s data
flow is split by the Swilch object. The meth-
od for splitling the stream depends upon the
type of Ports thal the output Streams are
connected io. If the Port is a synchronous
Port, then the data is delivered 1o the
Stream object using lthe same thread. If the
Port is asynchronous, the a new thread is
forked io deliver the data to the Stream. In
either case, when the data buffer is delivered

lezlm'l(mn)

o the output Siream object the reference
count is ncremented rather than copyving the
data.

4,2 Synchronization and Media Integration

Mechanisms

A multimedia preseniation is a collection of
streams that are coordinated with respect to
time and space. Sireams within a presenta-
ton are svnchronized and have shared pre-
sentation conirol. There are logical groupings
of media streams for integration and media-
specific presentation control. The streams of
dissimilar media (e.g., aural and visual) are
svnchronized and presented in parallel.
Sireems of sipular media can be cut, reor-
dered, processed, and mixed to form a new
stream. These streams are grouped together
as a channel for presentation or further pro-

cessing.
427 End-Point Synchronization

The mullimedia preseniation layer elements
consist of the following: “tracks” are time-
ordered streams; “channels” are a group of
tracks associated with a mixer; and a “pre-
sentation” is the complete set of synchronized
channels. A Track object’s main role is to
connect a stream to a mixer and define the
tming parameters necessary to mix and pres-
ent a medium stream. To facilitate this, a
Track essentially serializes a set of clips from
a medium stream and queues 1L up for =
Mixer to process. A Track has a start time
that defines when the series of clips is ac-
cessed, mixed with other streams, and pre-
sented to the output siream. A Track also
has an associated Presentation Context (PC),
which defines how the medium should be

composed and presented to the destination.

A HEIDICIO] AABIS I8t WS TE(DICION M2 ZYOI HHXIZ, S210/E- M 75 2

The ‘Track’s Presentalion Context wvariables
thus
allowing {or such effects as fade-in or fade-

can have different values over time,
out. A Track is also responsible for control-
ling the flow of data, including starting the
siream and stopping lhe stream atl the speci-
fied times. When the stream is flowing, be-
tween the slart and slop limes, the Track is
also responsible for controlling the siream
speed. This speed is defined by either the PC
assoclated with the Track or as specified di-
rectly by the client.

T

(S!reaQ

(Figure 18) Track and Channel Timing
Mechanisms

N

o - =2
gy C N conti N
Slream \"‘ac" T v { TBOuUnNA g
— _ e e T

Paus=

To perform these operations, the Track reg-
isters three with the LTS clock
bound to the Channel that the Track is asso-
ciated with. As illustrated in (Figure 18), the
first action is used to prestart the stream to
account for access delay and ensure that
data arrives when the start time arrives. The
second action corresponds to the starl time
.of the Track. The, third action corresponds to
the end lime and is used to stop the stream.
After receiving the first action callback and
slarling the stream, the Stream oabject deliv-
ers frames to the Track at a constant rate.

“actions”

When the Track receives a frame, it process
the frame by converting the timestamp asso-
clated with the frame into Channel’s time do-
main and enqueues it in the time-based
queue for retrieval at a laler time .by the

Mixer. In order to do this time conversion, it

is necessary to know the real-lime in which

the track is started. This is the purpose of
callback. When this
callback is received, the current time is cap-

the second action
tured and used for subsequeni lime conver-
sions. Finally, the third action callback is
used to stop the stream. In addition, when
this c¢all back

queue is flushed to ensure thal no residual

15 received lhe time-based

frames are used.
4272 Inter-Stream Synchronization

A channel is a logical construct that inte-
grates a group of media into one logical 1I/0
stream such as left audio channel (left ear)
and right audio channel (right ear). To facili-
tate this Integration, a channel bundles to-
gelther a group of iracks that contain a se-
ries of clips from a medium stream. A chan-
nel integraies and svnchronizes the composi-
tion and presentation of each of the tracks
10 a destination via the mixer. It defines a
common logical time domain for specifying
the timing relationships of the set of sireams
being integrated. A channel also defines the
interrelationship belween the streams, includ-
Ing siream ordering and processing within a
mixer. A channel has a time-based presenta-
tion context associated with it, which speci-
fies state variables and is applied in a hierar-
chical fashion 1o each of the tracks associat-
ed with the channel. In general, a Channel 1)
groups tracks together, 2) directs iracks to
the mixer, and 3) controls presentation of the
integrated stream.

A Channel contains a PC which controls
the presentation of the Channel’s outpul.
Since actual mixing of the data 15 done by
the Mixer associated with the Channel, the
Mixer is given a reference to the Channel’s

PC. This PC 1s assoclated with the root

almidalals] S FAl M3IE HiS(96 1)

(LTS \
- ,/
e
\"[D\mue' - Qh{nnel
e S o
‘D\“é"‘*“e Mi receiveFrame
TOueug .
ueus .B‘éhume A /-' /—‘\
=t Ll 1 Gestinatiog {Medium
. tream i
chniﬁ ey 7
TOucug]’ A e e T WriteFrand
. u/ WriteFranve
Tl " Dequéue
e \(4 L ‘\
(TOueué) Display
o N

(Figure 19) Charnel Mixing Operation

group within the Mixer.

The Channel’s I.TS clock is used tc control
the svnchronization of the tracks as well as
contrel the mixing of the inpul streams and
presentation of the resull to the output
stream. The start and stop times are con-
trolled using “action” evenis from the LTS
(see Figure 18). The actual mixing of the
sireams is executed from a tick callback
from the LTS. The process of mixing an indi-
vidue! frame is iustrated in Figure 18.
When a tick callback is Teceived from the
LTS, the Channel executes a Mixer: :Mix()
member function call that performs the
actual mixing of the stream. To execute the
mix the Mixer in turn dequeues the appropri-
ate frames from the TQueues associated with
each track. After the frames have been col-
lected, they are mixed together as defined by
PCs and relurned to the Channel. The Chan-
nel then delivers the mixed frame to the out-
put stream by executing a Stream::
ReceiveData() member function call. The
output siream then proceeds to deliver the
data to its final destination.

The Time-Base Queue (TQueue) provides
a queue with some special and important
properties. In additon to providing the typical

enqueue and dequeue operations, a TQueue

3) An action is & single timing event. At the time speci-
fied when the action is regstered with the LTS, a
callback is executed which effectuates the action.

provides the abilitv engueue and dequeue ob-
jects sccording 1o a logical time wssociated
with the object. When a object 1s enqueued
into the queue, a logical time Is associated
with the object, for example, 14. This object
will not be degueued unless an object of lime
14 or zrealer is requesled (assuming thatl the
direction of the queue is "forward"). Further,
for iimes which are greater than 14, the ob-
ject associated with the time 14 will be re-
turned from a dequeue request until another
object that has a higher logical lime than 14
is Inserted, and less than or equal to the re-
quested iime.

The best way 1o describe this is through a
simple illustration. For example purposes, let’s
sav that objects are enqueued with the fol-
lowing sequences of logical times associaied
with them: 3, 4, 6, 9, 10, 11, 14. Given this
sequence of enqueues, if dequeue requests are
made for 1 through 14 in linear sequential
fashion, the result would be the following:
NULL, NULL, 3, 4, 4, 4, 6, 6, 6, 9, 10, 11,
11, 11, 14. This sequence may vary slightly
depending upon the timing between when the
objects are enqueued and when they are
dequeued.

The important aspect about this queue is
that 1t has the abilily lo smooth out jitter
within the system and prevent drop-outs.
These properties are particularly useful when
the presentation parameters of the data ob-
jects may be changing even though some
data object have been lost or dropped for
Various reasons.

4.2.3 Time Conversions

The MuX system handles four time do-
mains, logical time, real time,
SMPTE time (an 80 bit field standard that

defines time in hours : minules . seconds. fra—

including

s LEOLIL AlABES

mes), and UNIN time-val structure. 1t also
provides operations for converting belween
the various formats. The synchron-ization be.
gins at the source where data is marked
19907 or time
stamped which is specified in real time, or
or SMPTE time
code. The lime slamp is carried with the

[Salmony and Shephaerd
UNIX ume-val structure,

data to the point of synchronization. When
data 1s exchanged between site, the time
stamp 1$ corrected, within a margin of error,
relative 10 the site where the data is being
synchronized. After a stream delivers the
dala 1o a track, the track mechanism con-
verts the time stamp into logical time relative
ta its channel’s Jogical time system and plac-
es the data in a time-based queue where
helfering occurs.

4.2.4 Hierarchical Mixing for Media Integra-
tion

A Mixer is responsible for performing the
mixing operations on a set of input streams
in order to generate a single oulput stream.
The Mixer class itsell is intended to be an
abstract superclass thal is subclassed in order
to support mixing of media specific streams,
such s audio and visual streams. The Mixer
base class provides several important func-
tions, including 1) greuping of input Tracks
together to form hierarchical relationships be-
tween the tracks, as illustrated in Figure 20;
2) assoclaling & presentalion context with

PC

%Wﬂ’

pi

= “599_

(Figure 20) Hierarchical Mixing

FBE ZERICIK Xz

- M x\ -
("""““ - - 7-;-.‘(...%" - /(s..'f,-.t : - »—(wwmn)
e o ST e

2R UHRE SE0IHE- My ZE 25

each of the groups that is used to control the
mixing operations performed for each of the
groups; and 3) collection of frames of data
to perform mixing operations. The subclasses
of the Mixer class perform the actual media
specific mixing operation which is localized
into the Mixer::Composite() member func
tion. This member function is designed 10 be
overridden by subclasses o the Mixer class.

5. MuX SYSTEM ARCHITECTURE

The general architecture of the MuX sys—
tem is illustrated in (Figure 21). The central
component of the MuX architecture is the
MuX server. Media intlegration and Syne~
hronization, and multimedia processing ser-
vices are provided by the multimedia 1/0
server. In addition, the server provides pre-
sentation control mechanisms; however, man-
agementl and access to these mechanisms are
provided by the presentation manager. In our
approach, the preseniation manager is a sepa-

- rale process from the server to allow tailo-

rability and flexibility. Access to the capabili-
ties of the server are provided by the multi-
media application programmer’s interface
(API), which is implemented as a client li-

brary.

Clirnt . gl
@__’,‘m,w a“ E hu-malmn (bm
nruug-r anager nag “

\

1/

(Figure 21) MuX Systemn Architecture Overview
5.1 Virtual Object Interface

A very important aspect of the system is

2 BT S HRISE| =2 X M3 H1E(96.1)

providing network transparent access to the
services provided by the system, allowing ap
plications to operate independent of the ma-
chine they are running on. The client-server
approach 1o the systemn architecture provides
the basis of this capability.

Since many of the multimedia applications
being developed use an object-oriented ap-
proach 1o design and implementation, it is
also desirable to provide an object oriented
interface to the system. In an effort 10 com-
bine network transparenl service access and
object—oriented programming the MuX archi-
tecture provides support for “virtual objects.”
Optimally an application would like to be able
1o communicate beiween objects with a mini-
mum amount of programming effort. The
simplest way tc communicate between two
ohjects is with a member function call in the
same process address space. However, in &
distributed environment where services may
be located on other machines, this is not fea-
sible and hence object messaging must occur
across process boundaries. For a programmer,
the concept of virtual objects simplifies inter
—process object messaging significantly. With
virtual objects, an proxy object interfaces be-
tween objects within one address space and
the actual object which operates in another
address space. The proxy object takes care of
the inlerprocess communication aspects and
hides the details such that the application
programmer does not have to worry about it.
To this goal, the MuX system emplovees dis-
tributed
utilizes this within the client-server domain.

lightweight ohject messaging and

The distributed object messaging services

provide the abilily to dispaich messages to-

appropriate objects within the network. Ta
achieve this a run-time database of objects
available within the system is maintained.
When objects are created they are registered

in the run-iime database buased on wn s
signed object id. Ohject messaging uses .
i¢ for object look-up, which is done via a di
reclory Service.

The MuX client library is layered on top of
the distributed virtual object interface (Figure
22). This interface layer iranslales AFI mes-
sages into Object Message Protocol (OMP)
packeis. The encoded OMP packets are sent
via an IPC mechanism io the MuX server,
where thev are translated inlo messages for

server side objecls.

El APPLICATION

MUX SERVER .

QBJECT INTERFACE |

T
1
|

!

{Figure 22) Diswibuted Object Messaging

The Object Message Protocol encodes mes-
sages and :their parameters into packets that
contzin the object type, the identification code
for the object instance, and the size of the
data being passed to the server. The format
of the OMP packet is shown in (Figure 23).

|
| OBJECT CLASS | OBIID | MESSAGE | SIZE | DATA

(Figure 23) OMP Packet Format
5.2 Service Management

The objective of service management is to
provide the ability to readily extend the be-
vond its initial capabilities, and allow the
system to operate on multiple platforms with
varying levels of support capabilities. Essen-
tially, the basic system provides the core or
essential set of “substraie” functionality, and

S8 HEIDICIO] AlA~EE

“slots” allow the system io be extended. In
this environment, non-core services are regis-
tered with the system providing extensibility,
configurability, and portability.

Within the MuX system the types of ser-
vices that we plan to support with service
management include

O Media handling services, including file

handling and communication protocols

O Device drivers or interfaces

O Filters, and

O Mixers.

5.3 Session Management

Session management provides the capability
lo control groups of streams and presenta-
tions in a coordinated fashion. Session man-
agement also facililates external users or ap-
plications to join a session and utilize the in-
formation that is being exchanged. within a
session. These types of services should be
provided at both the local and the global
level. At the local level, sireams and presen-
tations are managed within a single station.
The types of funclions provided at the local
level include managing the allocation of
syslem resources to achieve the common ob-
jective of a group of streams or presenta-
tiong, and “publishing” publicly available
streams and presentations for use by remote
applications. At the global level, streams and
preseniations are managed across multiple
platforms. Global session management provide
the ability of application to query what ses-
sions are available at any given time and fa-
cilitale establishment of sessions.

5.4 Directory and Name Services

The directory and name services provided
by the MuX system are primarily intended to

BE TENICI0 M| SO Wi A|E, EEI0IME-ME] 1%

be a database of run-iime objects within the
svstem. The objeclive is to provide the ability
to register object in ihe database using the
object id, a name or label, a class specific
key, or an arbitrary key. After an object has
been registered by one application, another
application an look it up and utilize it’s ser-
vices. Additionally, applicalions can register
with a directory to receive notification of
changes to the object directory, specifying
what types of changes they are interested in.
We envision that the types of directories pro-
vided could include
O Service directory of physical devices, {il-
lers and media services
© Stream directory of currently active
streams thal an application could tap
into and receive & split version of
© Multimedia presentation directory of
presentations that are active within the
system
O HyperPresentation directory of links and
triggers that could be used for navigatio-
nal purposes
O Session directory of currently active ses-
sions that would allow remole parties to

join into a session.
5.5 Presentation Management

Presentation management is also an impor-
tant aspect of the Mqu system. A presenta-
tion manager allows a user lo adjust how
media streams and muliimedia presentations
are being presenied. This type of control can
be applied at both the
adjusting the master volume and managing

"master” level,

multimedia windows, and at the local level,
controling individual presentations, channels
and tracks. The presentation management
function could also allow users to select one
media over another, providing focus conirol

5 e =HEM2IE] =2X| H3A H1E5(96.7;

facilitated by dynamic resource management.
The presentalion management rcles could also
encompass adjusting system resource manage-
This
would provide users with the ability to tailor

ment parameters. type of capabilities
their environment to their specific needs or

desires.
5.6 Buffer and Frame Management

Buffer management is a very Important as-
pect of multimedia information systems due
to the magnitude of the data that is being
handled. To provide efficient management of
data buffers, we implemented (wo object
classes: a Buffer containing a block of data,
and a BufferPool which manages a set of
Buffers. There is only one BufferPool for the
system. The BufferPool currently manages
buffers or me}nory associated with the CPU,
providing allocation and deallocation opera-
tions. In the fulure it will manage buffers
through the system, including peripheral de-
vices.

The BufferPool keeps track of the number
of references to a Buffer. The actual location
of the Buffer that contains the data is main-
tained by the BufferPPool that allocates space
for incoming data and manages the data as

Application
-o{arrend —
/ [
yd l N
Cothng ceTotened - — Desplay
Sannce ...'.E --.._,___q__‘_% -‘-}‘_‘:_ [rmieed Brrvier
[refersnes, o
. =3
g ?
A Dvepiny
Tomwen, (@ [J AR e
e - Famoe
'“',?9;:,:‘ .. Bulint Manager / \:"« ‘
i Suller Mo, —

(Figure 24) Buffer Managerment within the

System

it is processed through the system, as illus
wrated in (Figure 24). With this scheme, data
copving only occurs when il is written, such
as in the decoding phase. Copying may also
occur when the data is moved from main
memeory 1o device memory, such as frame
buffer memory. With this technigue only a
reference to the data is passed through the
system. When the number of references drops
to zero, the Buffer is freed. This buffer man-
agement is a very important aspect for real-
time processing as memory allocation and
copying are expensive operations.

Data is transported through sireams in
packets called frames. In the current imple-
mentation, a frame is a siructure which con-
tains 2 time stamp for the data, the format
and type of the data, a pointer w the origi-
nating medium, a pointer to a PC for the
datz (see discussion of the Presentation
Laver for details on the PC), and handles
for the data and header
tzined in the frame. The handles are refer
ences in the BufferPool.
The size and contents of the data and header
blocks are unique 1o each formal and type of

information con-

to control blocks

frame. In most cases, these blocks of memory
can be treated as opaque.

6. CONCLUSIONS

In this paper, we discussed a mullimedia
data processing model that supports a wide
variety of applications based on multimedia
production model. This model supports net-
work-transparent access to stored multimedia
data, real-time mullimedia input devices, and
multimedia processing. The model addresses
real-time data switching and delivery, as
well as acquisition, processing, and outpul.
Most translation, compression, and synchroni-
zation services are integral to the model.

2ot HEDICIO] AAHE 28t

difference between our
model [Little 1990; Nicholaou
1990] is thal our model is based on a full
complement of generalised dala abstractions

A fundamental

and others

of mullimedia objects, namely streams, multi-
media presentations, and hyperpresentations,
rather than focusing primarily on data pro-
cessing and synchronization. In -our model,
the data abstractions provide a framework
for defining relevant and necessary process-
ing and syncfllronization services and the
mechanisms for providing those services. This
leads to a model that is more intuitive Lo ap-
plication developers and end-users, while still
being powerful enough to accommodate real-
time mullimedia scheduling and intlegration
services across a network of co-operative
processors. A result of this approach is that
much of the implementation details are hid-
den from ihe application developers, allowing
them 1o focus on application-specific issues.
We believe the most of services provided
by the model should be implemented at the
system level on an object-oriented micr-
okernel, with high-speed messaging to sup-
port the interactive real-time demands of
time-critical media. Barring this ability, these
services should be implemented via a single
server iocaled on each machine to provide in-
tegrated and central contro!l of multimedia de-
vices within a site, and efficient handling of

1992].

Efficiciency considerations include support for

multimedia data [Rennison et al
copy-on-write and oplimizations for efficient
whereby the
system provides real-uime data flow control
between buffers

support data management,
Jocated on devices and in
sysltem memory. And also a best-efforl real-
time scheduler [Northcutt 19917 to provide
uimely acces, processing, and delivery of data
to the compositors and devices should be sup-
ported by operating systems.

=

wE YEIICo] X2l 2

HE RIS, SCIOIHE-AME T2 29

In the future, we plan lo conlinue investi-
gation into real-time communicalion support
within the model, including multicasting in
heterogeneous environments [Shacham 1992],
Quality—of -Service control for parallel
streams. And we also plan to specify primi-
tive supports from operating system for the
MuX system and 1o explore to Iincoporate
these requirement Into non real-time micro-

kernels.

REFERENCES

[1] Accetta, M., R. Baron, d. Golub, R.
Rashid, R. Tevanian, and M. Young.
1986. “Mach: A New Kernel Founda-
tion for UNIX Development,” Technical

School

Carnegie Mellon Universily, Pittsburgh

Report, of Computer Science,
(August). Also in Proceedings of the
Summer 1986 USENIX Conference, pp.
93-112 (July).

[2] Anderson, D.P.,, and G. Homsy. 1991.
“A Continuous Media 1/0 Server and
Its Synchronization Mechanism,” Com-
puter, Vol. 24, No. 10 (October).

[3] Beier, T., and S. Neely. 1992. “Fealure

-Based Image Metamorphosis,” Com-

puter Graphics, Vol.26. No. 2 (July).

Blakowski, G., J. Hubel, and U.

Langrehr. 1991. “Tools for Specifying

[4]

and Executing Synchronized Multimedia

Presentations,” Second International
Workshop on Networking and Opera-
ting System Support for Digital Audio
and Video, Heidelberg, Germany (No-
vember).

[5] HP.,

1990. “Creating and viewing the Elas-

Brondmo, and G. Davenport.
tic Charles-a hypermedia journal,” in
Hypertext: State of the Ari, R.
McAleese and C. (Green, eds., Intellect,

i 0l NG RAIEE 2SR HIH M1E(%1)

L 6]

[7]

(8]

[9]

12}

[13]

f14]

Lid., Great Britain.

Crowley, T., P. Milazzo, E. Baker, H.
Forsdick, and R. Tomlinson. 1990.
“MM Conf: An for
Building Shared Multimedia
tions,” Proceedings of the Conference

Infrastructure

Applica-

on Computer-Supporied Interaciive
Work, October 7-10 1990, Los Ange-
les, California, pp. 329 ff.
Duff, T. 1985, “Compositing 3-D Ren
dered Images,” Computer
Vol. 10. No\x113(July).
Foley, JD., A. van Dam, SK. Feiner,
and J.F. Hughes. 1860.
Graphics Principles and
Addison-Wesley, New York.
Halasz, F. 1988.
NoteCards: Seven Issues for the Next
Hypermedia Systems,” Communications
of the ACM, Vol. 31, No. 7, pp. 836-
852.
Ishii, H., and N. Mikaye. 1991. “Toward
an Open Shared Workspace: Computer

Graphics,

Compuier

Practice,

“Reflections on

and Video Fusion Approach of Team
WorkStation,” Communications of the
ACM, Vol. 34, No. 12, pp. 36-50 (De-
cember).

LeGall, D. 1991. “MPEG: A Video
Compression Standard for Multimedia
Applications,” Communications of the
ACM, Vol. 34, No. 4 (ApriD).
Leydekkers, P. 1991. “Synchronization
of Multimedia Data Streams in Open
Distributed Environments,” Second In-
ternational Workshop on Networking
and Operating System Support for Dig-
ital Audio and Video, Heidelberg, Ger-
many(November).

Leydekkers, P, “Synchronization of Mul-
timedia Data Streams in Open Distrib-
Interm-

uted Environment,” Second

ational Workshop on Networking and

[15]

[16]

[17]

Operating Syslem Support for Digital
Audio and Video, Heideberg, Germany,
November 1991.

Little, T.T.D., and A.Ghafoor. 1890.
“Synchronization and Storége Models
for Multimedia Objects,” Journal on Se-
lected Areas of Communications, Vol
8, No. 3 (April).

Little, T.T.D., and A.Ghafoor. 1991.
“Spatio- Temporal Composition of Dis-
tributed Multimedia Objects for Value
—Added Networks,” Computer, Vol. 24,
No. 10 (October).

loeb, S. 1992, “Delivering Interactive
Net.
IEEE Communications Maga-
zine, Vol. 30, No. 5.

Multimedia Documents over

works,”,

[18] Michon, B. “Highly Iconic Interfaces,” in

[19]

Blatiner,
Meera M. and Dannenberg, Roger B,
eds. ACM Press, 1992,

8. J., “Operating System
Distributed Multimedia,”
Usenix Summer Conference, 1995.

Multimedia Interface Design,

Mullender,
Support for

[20] Nicolaou, C., “An Architecture for Real

[21]

(22]

Multimedia Communications
1IEEE
Areas of Communications, Vol 8, No.
3, April 1990.

Northeut, JD., and EM. Kuerman.
1991, “System Support for Time-Criti-
cal Applications,”

—time

Systems,” Journal on Selecled

Second International
Workshop on Networking and Opera-
ting System Support for Digital Audio
and Video, Heidelberg, Germany (No-
vember).

H, and A.
Kameko. 1890. “Scenario-based hyper-

Ogawa, R., Harada,

media: A model and a system,” in
Hypertext: Concepts, Systems and Ap-
plications, A. Rizk, N. Streitz and J.
Andre, eds.,

Cambridge University

A SEMCI0 AAHE ¢F B8 HEIDICI0 M) 222 HHXE, S20/HE-MY IE 5

Press, Greal Rritain.

23] Polirock, S., and J. Gudin. 1992, “Com-
puter Supported Cooperative Work and
Groupware,” Tutorial Notes, CHI9Z,
Monterey, California.

[24] Rennison, E., Rusti Baker., Doohyun
Kim, and Young-Hwan Lim. 1992.
“MuX: An X Co-Existent Time-Based
Multimedia 1/0 Server,” The X Reso-
urce, lssue 1, pp.213-33(Winter).

[25] Schwartz, F. 1992. “An Introduction to
MiSC: Multimedia Glue for Bonding
the Pieces,” presented al the IEEE Mi
crocomputer Conference, Asilomar, Cali-
fornia (March).

[26] Shepard, P., and M. Salmony. 1990.
“Extending OSI 1o Support Synchr-
onization Required by Multimedia Ap-
plications,” Computler Communications,
Vol. 13, No. 7, pp. 399-406 (Seplem-
ber).

[27] Steinmetz, R., “Synchronization Proper-
ties in Multimedia Systems,” Journal
on Selected Areas of Communications,
Vol. 8, No. 3 (April) 1990.

[28] Stenmetz, R, “Analyzing the Multimedia
Qperating System,” IEEE Multimedia,
Spring 1995.

[29] Wallace, G.K. 1991. “The JPEG Still
Piclure Compression Standard,” Com-
munications of the ACM, Vol. 34, No.
4 (April).

[30] Walanabe, K., S. Sakata, K. Maeno, H.

Fukuoka, and T. Ohmori. 1990. “Dis-

tributed Mulliparty Deskiop Confer—
encing Syslem: MERMAID,” Proceed-
ings CSCW ‘80 Conf. on Computer-
Supported Cooperative Work, Los An-
geles, California, pp. 27-38 (Octlober).
[31] Yavatkar, R. 1992. “Issues of Coordina-
tion and Temporal Synchronization in

Multimedia Communication,” Multime.
dia ‘92, Monterey, California (April).

132] Zellweger, Polle T. 1992, “Toward a.
Model for Active Multimedia Docu-
ments,” in Multimedia Interface Design,
M. Blattner, Meera M. and R. Danne-
nberg, eds. ACM Press, U.S.A.

[33]7 Interactive Multimedia
“Multimedia System Services, Version
1.0," contributed by Hewlett- Packard
Company, IBM Inc., and SunSoft Inc.,
June 1, 1993.

[34] Microsoft, “Multimedia Programmer’s

Association,

Reference for the Microsoft Windows
Operating System,” Microsoft Windows
Software Development Kit, 1992

[35] Microsoft, “Digital Video Command Set
for the Media Centrol Interface, Revi-
sion: 1.0,” August 7, 1992

[36] Parallax Graphics, Inc., “XVideo Techni-
cal Overview Release 1.0,” 1991.

[37] Ehley, L., B. Furht, and M. Ilyas, “Eval-
uation of Multimedia Synchronization
Technique,” Proc. of IEEE Int'l confer-
ence on Multimedia Computing and
Systems, May 14-19, 1994, Boston,
MA, USA, pp. 514-519.

[38] Arman, F., R. Depommier, A. Hsu, and
M.~-Y. Chiu, “Content Based Browsing
of Video Sequence,” Proc. of ACM
Multimedia 94, Oct. 15-20, 1994, San
Francisco, CA, USA, pp. 97-104.

[39] Mathur, A. G., A. Prakash, “Protocol
for Integrated Audio and Shared Win-
dows in Collaborative Systems,” Proc.
of ACM Multimedia 94, Oct. 15-20,
1994, San Francisco, CA, USA, pp.
381-388.

[40] Tobagi, F. A, “Distance Learning with
Digital Video," IEEE Muitimedia, pp.
90-93, Spring 1995.

S
W5 9
A
=

1987 ghZaely| el HaE
= (olErda})
19853 AMgdidn FFHFTH

3} =9 (D)
19873 ~H R AAFAET
2, Y87

19919 ~ 8353

ARHFTEETA

QAT e

wEutel Ag, Benite e84

=

i)
Rul
o
£
2
offl
2
[
Tl
1
il

% o %
1977 FEugy Fatw &9
(e18Hab)
19793 FT=retz]Ee] #ae

19851 Northwestern Universi-
ty 2 (e]TherA})

19793~ 7 AT A
Z ALY

